python結巴分詞
㈠ python3怎麼使用結巴分詞
下面這個程序是對一個文本文件里的內容進行分詞的程序:test.py
[python] view plain
#!/usr/bin/python
#-*-encoding:utf-8-*-
importjieba#導入jieba模塊
defsplitSentence(inputFile,outputFile):
fin=open(inputFile,'r')#以讀的方式打開文件
fout=open(outputFile,'w')#以寫得方式打開文件
foreachLineinfin:
line=eachLine.strip().decode('utf-8','ignore')#去除每行首尾可能出現的空格,並轉為Unicode進行處理
wordList=list(jieba.cut(line))#用結巴分詞,對每行內容進行分詞
outStr=''
forwordinwordList:
outStr+=word
outStr+='/'
fout.write(outStr.strip().encode('utf-8')+' ')#將分詞好的結果寫入到輸出文件
fin.close()
fout.close()
splitSentence('myInput.txt','myOutput.txt')
寫完程序之後,在Linux重點輸入:python test.py即可運行程序進行分詞。
輸入的文件內容如下所示:
注意:第11行的 jieba.cut()返回的結構是一個可迭代的generator,可以用list(jieba.cut(...))轉化為list
㈡ python的jieba怎麼自定義分詞
每行切詞完後,一行放入一個list.多行就是多個list,每個list中的item,就是切詞後的詞。
輸出的時候,直接 for x in y: ','.join(x)就ok了
㈢ 怎麼是用python 語言 使用結巴分詞 呢
Python代碼
#encoding=utf-8
importjieba
seg_list=jieba.cut("我來到北京清華大學",cut_all=True)
print"FullMode:","/".join(seg_list)#全模式
seg_list=jieba.cut("我來到北京清華大學",cut_all=False)
print"DefaultMode:","/".join(seg_list)#默認模式
seg_list=jieba.cut("他來到了網易杭研大廈")
print",".join(seg_list)
輸出:
FullMode:我/來/來到/到/北/北京/京/清/清華/清華大學/華/華大/大/大學/學
DefaultMode:我/來到/北京/清華大學
他,來到,了,網易,杭研,大廈(此處,「杭研」並沒有在詞典中,但是也被Viterbi演算法識別出來了)
㈣ python中用pip裝了jieba分詞,怎麼刪除重新裝
使用pip安裝可以使用 pip uninstall jieba 卸載
然後使用pip install jieba 重裝
㈤ 如何用python和jieba分詞,統計詞頻
#!python3
#-*-coding:utf-8-*-
importos,codecs
importjieba
fromcollectionsimportCounter
defget_words(txt):
seg_list=jieba.cut(txt)
c=Counter()
forxinseg_list:
iflen(x)>1andx!=' ':
c[x]+=1
print('常用詞頻度統計結果')
for(k,v)inc.most_common(100):
print('%s%s%s%d'%(''*(5-len(k)),k,'*'*int(v/3),v))
if__name__=='__main__':
withcodecs.open('19d.txt','r','utf8')asf:
txt=f.read()
get_words(txt)
㈥ python jieba什麼用
用來分詞的,jieba 可以:
把一句話拆分成多個詞。
從一句話(一段話)中提取最重要的幾個關鍵詞。
最常用的功能應該就是這些吧,分詞之後結合 TF-IDF,就可以開始做搜索工具和相關推薦了。
㈦ python 使用jieba分詞出錯
猜測你使用的 Python 版本為 Python2 但是使用 coding: utf-8 設置中文編碼只在 Python 3 有效
所以 設置默認編碼 應在代碼開始部分應該加上
importsys
reload(sys)
sys.setdefaultencoding('UTF-8')
㈧ 在python 環境下,使用結巴分詞,自動導入文本,分詞,提取關鍵詞.腳本 大俠給個
#-*-coding:UTF-8-*-
importjieba
__author__='lpe234'
seg_list=jieba.cut("我來到北京天安門",cut_all=True)
print','.join(seg_list)
...
Loadingmodelfromcache/var/folders/sv//T/jieba.cache
我,來到,北京,天安,天安門
Loadingmodelcost0.433seconds.
.
Processfinishedwithexitcode0
㈨ python中怎樣處理漢語的同義詞用結巴分詞
python中文分詞:結巴分詞
中文分詞是中文文本處理的一個基礎性工作,結巴分詞利用進行中文分詞。其基本實現原理有三點:
基於Trie樹結構實現高效的詞圖掃描,生成句子中漢字所有可能成詞情況所構成的有向無環圖(DAG)
採用了動態規劃查找最大概率路徑, 找出基於詞頻的最大切分組合
對於未登錄詞,採用了基於漢字成詞能力的HMM模型,使用了Viterbi演算法
安裝(Linux環境)
下載工具包,解壓後進入目錄下,運行:python setup.py install
模式
默認模式,試圖將句子最精確地切開,適合文本分析
全模式,把句子中所有的可以成詞的詞語都掃描出來,適合搜索引擎
介面
組件只提供jieba.cut 方法用於分詞
cut方法接受兩個輸入參數:
第一個參數為需要分詞的字元串
cut_all參數用來控制分詞模式
待分詞的字元串可以是gbk字元串、utf-8字元串或者unicode
jieba.cut返回的結構是一個可迭代的generator,可以使用for循環來獲得分詞後得到的每一個詞語(unicode),也可以用list(jieba.cut(...))轉化為list
實例
#! -*- coding:utf-8 -*-
import jieba
seg_list = jieba.cut("我來到北京清華大學", cut_all = True)
print "Full Mode:", ' '.join(seg_list)
seg_list = jieba.cut("我來到北京清華大學")
print "Default Mode:", ' '.join(seg_list)
㈩ python3 進行結巴分詞時可以並行處理嗎
下面這個程序是對一個文本文件里的內容進行分詞的程序:test.py
[python] view plain
#!/usr/bin/python
#-*- encoding:utf-8 -*-
import jieba #導入jieba模塊
def splitSentence(inputFile, outputFile):
fin = open(inputFile, 'r') #以讀的方式打開文件
fout = open(outputFile, 'w') #以寫得方式打開文件
for eachLine in fin:
line = eachLine.strip().decode('utf-8', 'ignore') #去除每行首尾可能出現的空格,並轉為Unicode進行處理
wordList = list(jieba.cut(line)) #用結巴分詞,對每行內容進行分詞
outStr = ''
for word in wordList:
outStr += word
outStr += '/ '
fout.write(outStr.strip().encode('utf-8') + '\n') #將分詞好的結果寫入到輸出文件
fin.close()
fout.close()
splitSentence('myInput.txt', 'myOutput.txt')
寫完程序之後,在Linux重點輸入:python test.py即可運行程序進行分詞。