pythonim
⑴ 在python Image中可以用show()來顯示圖片,但是顯示以後,下面的代碼就不運行了,如何運行下面的代碼
Image.show()函數是這個樣子的,必須先關了圖片程序才往下走。
不使用show,如imshow(BW)在 Matlab 7.0 中,二進制圖像是一個邏輯類,僅包括 0 和 1 兩個數值。像素 0 顯示為黑色,像素 1 顯示為白色。顯示時,也可通過NOT(~)命令,對二進制圖象進行取反,使數值 0 顯示為白色;1 顯示為黑色。
例如: imshow(~BW)
擴展資料:
不使用show函數來滿足運行的需求:
import threading
import Image
class ThreadClass(threading.Thread):
def run(self):
im=Image.open('z.jpg')
im.show()
print (1)
t = ThreadClass()
t.start()
print (2)
a=input('End')
#===============================
圖像的表示原理:
最基本的物理圖像是根據矩形網格抽樣原理從連續圖像域中抽取二維灰度陣列(矩陣)得到的。也可以用長向量表示二維灰度矩陣,它是按列(或行)掃描灰度矩陣,把下一列(或行)的頭和前一列(或行)的尾相接而成。
它們的線性可逆變換同樣可以用來表示圖像。圖像的每一行由行程(具有同一灰度的鄰近像元集合)序列所組成,因此也可以用行程長度編碼(見圖像編碼)表示圖像。
⑵ Python程序抓圖 怎麼用程序實現截圖
由於在我的一個程序中想要添加一個截圖功能,今天看一下利用Python怎樣截圖,功能實現都挺簡單了,直接上代碼
from
PIL
import
ImageGrab
im
=
ImageGrab.grab()
im.save(addr,'jpeg')
很簡單的幾行代碼就實現了我要的功能,PIL(Python
Image
Library)是Python的一個圖形庫,需要自己下載安裝,im
=
ImageGrab.grab()這行代碼實現截圖功能,可以帶參數,指定要截取圖片的坐標位置,不帶參數默認全屏截圖,im.save(addr,'jpeg')是保存截取的圖片,第一個參數是保存路徑,第二個參數是圖片格式
⑶ python PIL的問題
我能想的的是,不用 Image.open("XXXX")讀文件,因為會有之後的惰性操作,
改用ImageFile從另一個open的圖片文件中讀到內存裡面,讀完也可以刪除原文件
import ImageFile
fp = open("1.png", "rb")
p = ImageFile.Parser()
while 1:
s = fp.read(1024)
if not s:
break
p.feed(s)
im = p.close()
im.save(".jpg")
⑷ python 正則表達式提取字典中的imUrl的value值
對於你給的字元串,可以被看作一個字典,所以可以按照鍵值來提取imUrl的value值,也可以用正則表達式提取imUrl的value值.
兩種方法我都寫出來了,你看看吧,要用哪種方法,你自己決定.(因為回答問題不能出現鏈接,所以我把imUrl的value值改成了'imUrl鏈接',意思是一樣的)
第一種方法
data={'asin': '0000037214', 'related': {'also_viewed': ['B00JO8II76', 'B00DGN4R1Q', 'B00E1YRI4C']}, 'title': 'Purple Sequin Tiny Dancer Tutu Ballet Dance Fairy Princess Costume Accessory', 'price': 6.99, 'salesRank': {'Clothing': 1233557}, 'imUrl': 'imUrl鏈接', 'brand': 'Big Dreams','categories': [['Clothing, Shoes & Jewelry', 'Girls'], ['Clothing, Shoes & Jewelry', 'Novelty, Costumes & More', 'Costumes & Accessories', 'More Accessories', 'Kids & Baby']]}
print(data['imUrl'])
源代碼(注意源代碼的縮進)
⑸ python頁面靜態化可以用什麼方法有哪些
主要特點就是需要綁定到一個對象上,python解析器會自動把實例自身傳遞給方法,如14行所示,而直接使用InstanceMethod.f1()調用方法是不行的。
class InstanceMethod(object):
def __init__(self, a):
self.a = a
def f1(self):
print 'This is {0}.'.format(self)
def f2(self, a):
print 'Value:{0}'.format(a)
if __name__ == '__main__':
# im = InstanceMethod()
im = InstanceMethod('233')
im.f1()
# im.f2()
im.f2(233)
⑹ python 驗證碼 閾值有什麼用
看上去不怎麼難,沒有干擾線沒有粘連沒有扭曲.但我還是沒能用pytesser直接將它識別出來,因為當中有噪點和其他背景雜訊的存在.我的工作就是去掉這些討厭的東西
先介紹一下,我們的工具:
1.Pytesser它是基於一個c語言實現名為tesser的識別工具的python封裝.可惜比較笨,只能做最簡單的識別而且不認識漢字
2.Requests它是我們喜歡寫爬蟲的孩子的最愛,提供人性化的介面,代價是失去了一點效率(寫python就別考慮效率啦)
3.BeautifulSoup它和Requests是一對好機油,讓提取文檔中所需的內容變成一件簡單的事情
4.PIL它是今天的主角,PIL是專門用作圖像處理的庫,很好很強大.熟練的人甚至可以用它來P圖
如何寫爬蟲去實現模擬登錄此處不細說,下面說說怎麼解決驗證碼識別
解決思路如下:
1.先用PIL對圖像做一次圖像增強,因為原圖中數字的邊緣和背景中的雜訊並不是太分明,做了增強之後能將兩者分離.如果不分離,可能會在去噪點的時候導致數字中有部分會缺失
im = Image.open("randomimage/randomImage11.jpg")
im = ImageEnhance.Sharpness(im).enhance(3)參數為3是經過實驗之後感覺比較理想的值,太強不好,太弱也不好
2.做完預處理之後,就是去背景雜訊了.背景雜訊指的是背景中各種明暗變換的色塊,肉眼也許不會注意到這個.但是它的存在會給識別帶來影響.我最初的做法是將圖像轉換為只有黑白兩色,這樣自然就將雜訊轉換成了噪點.
效果如圖
但我希望能去掉噪點,成為這樣
最先想到的是種子染色法 ,什麼是種子染色法請參看這個鏈接
為了防止壞鏈,此處做部分轉載
種子染色法英文叫做Flood Fill ,實際上Flood Fill這個名稱更貼切一點,因為這個方法作用在一個圖的結點上時恰似洪水一樣「淹沒」與之相連的其他結點並以相同的方式蔓延出去,這個方法通常用於計算一個圖的極大連通子圖(這里的「圖」是圖論的概念)。設想一個無向圖,我們從這個圖中一個未標號(「標號」可以理解為「染色」)的結點開始,將此結點和從這個結點出發可達的所有結點都賦予相同的標號(染上相同的顏色),那麼我們就得到了這些被標號的結點所組成的一個極大連通子圖,搜索下一個未標號的結點並重復上述過程我們便可以找到所有的極大連通子圖。「染色」的過程可以用DFS或者BFS實現,如果結點數為V,邊數為E,因為我們在Flood Fill過程中「造訪」每個結點兩次,「造訪」每條邊兩次,所以得到所有極大連通子圖的時間復雜度為o(V+E) 。
來自Wikipedia的一個示例:
想像每個白色方塊為圖中的結點,相鄰的方塊(上下左右)有邊相連,那麼這個圖就有三個極大連通子圖,這演示了Flood Fill查找其中一個極大連通子圖的過程。
在這是借要用種子染色法計算每塊的面積,然後把小體積的塊當作噪點去除.
代碼在這
def check(j,i):
try:
if pix[j,i] == 0 and matrix[j][i] != -1:
return True
else:
return False
except:
return False
def juli(r,s):
return abs(r[0]-s[0])+abs(r[1]-s[1])+abs(r[2]-s[2])
for i in range(w):
for j in range(h):
r = [0,0,0]
s = [0,0,0]
if pix[j,i] == 0:
if check(j-1,i):
r[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j-1,i))
print r
print s
print "-"*55
if juli(r,s) <=l:
matrix[j][i] = matrix[j-1][i]
maps[str(matrix[j][i])]+=1
elif check(j-1,i-1):
r[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j-1,i-1))
if juli(r,s) <=l:
matrix[j][i] = matrix[j-1][i-1]
maps[str(matrix[j][i])]+=1
elif check(j,i-1):
r[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j-1,i))
if juli(r,s) <=l:
matrix[j][i] = matrix[j][i-1]
maps[str(matrix[j][i])]+=1
elif check(j+1,i+1):
r[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j+1,i+1))
if juli(r,s) <=l:
matrix[j][i] = matrix[j+1][i+1]
maps[str(matrix[j][i])]+=1
elif check(j,i+1):
r[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j,i+1))
if juli(r,s) <=l:
matrix[j][i] = matrix[j][i+1]
maps[str(matrix[j][i])]+=1
elif check(j-1,i+1):
pr[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j-1,i+1))
if juli(r,s) <=l:
matrix[j][i] = matrix[j-1][i+1]
maps[str(matrix[j][i])]+=1
elif check(j+1,i-1):
r[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j+1,i-1))
if juli(r,s) <=l:
matrix[j][i] = matrix[j+1][i-1]
maps[str(matrix[j][i])]+=1
elif check(j+1,i):
r[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j+1,i))
if juli(r,s) <=l:
matrix[j][i] = matrix[j+1][i]
maps[str(matrix[j][i])]+=1
else:
n+=1
maps[str(n)]=1
matrix[j][i] = n
for i in range(w):
for j in range(h):
if matrix[j][i]!=-1 and maps[str(matrix[j][i])]<=2:
im.putpixel((j,i),255)View Code
結果呢,不是很理想因為這個體積參數設小了,噪點沒去干凈,設大了數字部分可能也去了一小塊.最重要的是這里噪點的大小不是很規律,很難找到一個不錯的面積參數.
失敗只是暫時的,經過觀察發現背景雜訊顏色明顯比數字要淺的多.這也意味著它的RGB值要比數字小的多,通過分析RGB值能去掉大部分雜訊,剩下來的噪點可以再通過種子染色法處理.也就是說,分別在兩張圖片(分別是黑白和彩色)上獲取信息,在一張圖片上做處理最後做識別
核心代碼在這
r[0],r[1],r[2] = im2.getpixel((j,i))
if r[0]+r[1]+r[2]>=400 or r[0]>=250 or r[1]>=250 or r[2]>=250 :
im2.putpixel((j,i),(255,255,255)) 至此,本次識別的問題就搞定啦,成功率在50%以上基本滿足介面的需求
⑺ python中im.size[0]和im.size[1]是什麼意思
classIM(object):
size=[1,2,3,4]
im=IM()
print(im.size[0])#1
print(im.size[1])#2
⑻ python圖像處理初學者求助
Pillow是Python里的圖像處理庫(PIL:Python Image Library),提供了了廣泛的文件格式支持,強大的圖像處理能力,主要包括圖像儲存、圖像顯示、格式轉換以及基本的圖像處理操作等。
1)使用 Image 類
PIL最重要的類是 Image class, 你可以通過多種方法創建這個類的實例;你可以從文件載入圖像,或者處理其他圖像, 或者從 scratch 創建。
要從文件載入圖像,可以使用open( )函數,在Image模塊中:
1
2
>>> from PIL import Image
>>> im = Image.open("E:/photoshop/1.jpg")
載入成功後,將返回一個Image對象,可以通過使用示例屬性查看文件內容:
1
2
3
>>> print(im.format, im.size, im.mode)
('JPEG', (600, 351), 'RGB')
>>>
format 這個屬性標識了圖像來源。如果圖像不是從文件讀取它的值就是None。size屬性是一個二元tuple,包含width和height(寬度和高度,單位都是px)。 mode 屬性定義了圖像bands的數量和名稱,以及像素類型和深度。常見的modes 有 「L」 (luminance) 表示灰度圖像, 「RGB」 表示真彩色圖像, and 「CMYK」 表示出版圖像。
如果文件打開錯誤,返回 IOError 錯誤。
只要你有了 Image 類的實例,你就可以通過類的方法處理圖像。比如,下列方法可以顯示圖像:
1
im.show()
2)讀寫圖像
PIL 模塊支持大量圖片格式。使用在 Image 模塊的 open() 函數從磁碟讀取文件。你不需要知道文件格式就能打開它,這個庫能夠根據文件內容自動確定文件格式。要保存文件,使用 Image 類的 save() 方法。保存文件的時候文件名變得重要了。除非你指定格式,否則這個庫將會以文件名的擴展名作為格式保存。
載入文件,並轉化為png格式:
1
2
3
4
5
6
7
8
9
10
11
12
13
"Python Image Library Test"
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +".png"
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print("Cannot convert", infile)
save() 方法的第二個參數可以指定文件格式。
3)創建縮略圖
縮略圖是網路開發或圖像軟體預覽常用的一種基本技術,使用Python的Pillow圖像庫可以很方便的建立縮略圖,如下:
1
2
3
4
5
6
7
# create thumbnail
size = (128,128)
for infile in glob.glob("E:/photoshop/*.jpg"):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+".thumbnail","JPEG")
上段代碼對photoshop下的jpg圖像文件全部創建縮略圖,並保存,glob模塊是一種智能化的文件名匹配技術,在批圖像處理中經常會用到。
注意:Pillow庫不會直接解碼或者載入圖像柵格數據。當你打開一個文件,只會讀取文件頭信息用來確定格式,顏色模式,大小等等,文件的剩餘部分不會主動處理。這意味著打開一個圖像文件的操作十分快速,跟圖片大小和壓縮方式無關。
4)圖像的剪切、粘貼與合並操作
Image 類包含的方法允許你操作圖像部分選區,PIL.Image.Image.crop 方法獲取圖像的一個子矩形選區,如:
1
2
3
4
# crop, paste and merge
im = Image.open("E:/photoshop/lena.jpg")
box = (100,100,300,300)
region = im.crop(box)
矩形選區有一個4元元組定義,分別表示左、上、右、下的坐標。這個庫以左上角為坐標原點,單位是px,所以上訴代碼復制了一個 200×200 pixels 的矩形選區。這個選區現在可以被處理並且粘貼到原圖。
1
2
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
當你粘貼矩形選區的時候必須保證尺寸一致。此外,矩形選區不能在圖像外。然而你不必保證矩形選區和原圖的顏色模式一致,因為矩形選區會被自動轉換顏色。
5)分離和合並顏色通道
對於多通道圖像,有時候在處理時希望能夠分別對每個通道處理,處理完成後重新合成多通道,在Pillow中,很簡單,如下:
1
2
r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))
對於split( )函數,如果是單通道的,則返回其本身,否則,返回各個通道。
6)幾何變換
對圖像進行幾何變換是一種基本處理,在Pillow中包括resize( )和rotate( ),如用法如下:
1
2
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
其中,resize( )函數的參數是一個新圖像大小的元祖,而rotate( )則需要輸入順時針的旋轉角度。在Pillow中,對於一些常見的旋轉作了專門的定義:
1
2
3
4
5
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)顏色空間變換
在處理圖像時,根據需要進行顏色空間的轉換,如將彩色轉換為灰度:
1
2
cmyk = im.convert("CMYK")
gray = im.convert("L")
8)圖像濾波
⑼ 什麼是維納濾波,對於python里的函數scipy.signal.wiener(im,mysize
文檔很細致啊。
im : ndarray
An N-dimensional array.
mysize : int or arraylike, optional
A scalar or an N-length list giving the size of the Wiener filter window in each dimension. Elements of mysize should be odd. If mysize is a scalar, then this scalar is used as the size in each dimension.
noise : float, optional
The noise-power to use. If None, then noise is estimated as the average of the local variance of the input.
⑽ Python如何圖像識別
首先,先定位好問題是屬於圖像識別任務中的哪一類,最好上傳一張植物葉子的圖片。因為目前基於深度學習的卷積神經網路(CNN)確實在圖像識別任務中取得很好的效果,深度學習屬於機器學習,其研究的範式,或者說處理圖像的步驟大體上是一致的。
1、第一步,准備好數據集,這里是指,需要知道輸入、輸出(視任務而定,針對你這個問題,建議使用有監督模型)是什麼。你可以准備一個文件夾,裡面存放好植物葉子的圖像,而每張圖像對應一個標簽(有病/沒病,或者是多類別標簽,可能具體到哪一種病)。
具體實現中,會將數據集分為三個:訓練集(計算模型參數)、驗證集(調參,這個經常可以不需要實現劃分,在python中可以用scikit-learn中的函數解決。測試集用於驗證模型的效果,與前面兩個的區別是,模型使用訓練集和驗證集時,是同時使用了輸入數據和標簽,而在測試階段,模型是用輸入+模型參數,得到的預測與真實標簽進行對比,進而評估效果。
2、確定圖像識別的任務是什麼?
圖像識別的任務可以分為四個:圖像分類、目標檢測、語義分割、實例分割,有時候是幾個任務的結合。
圖像分類是指以圖像為輸入,輸出對該圖像內容分類的描述,可以是多分類問題,比如貓狗識別。通過足夠的訓練數據(貓和狗的照片-標簽,當然現在也有一系列的方法可以做小樣本訓練,這是細節了,這里並不敞開講),讓計算機/模型輸出這張圖片是貓或者狗,及其概率。當然,如果你的訓練數據還有其它動物,也是可以的,那就是圖像多分類問題。
目標檢測指將圖像或者視頻中的目標與不感興趣的部分區分開,判斷是否存在目標,並確定目標的具體位置。比如,想要確定這只狗所佩戴的眼睛的位置,輸入一張圖片,輸出眼睛的位置(可視化後可以講目標區域框出來)。
看到這里,應該想想植物葉子診斷疾病的問題,只需要輸入一整張植物葉子的圖片,輸出是哪種疾病,還是需要先提取葉子上某些感興趣區域(可能是病變區域),在用病變區域的特徵,對應到具體的疾病?
語義分割是當今計算機視覺領域的關鍵問題之一,宏觀上看,語義分割是一項高層次的任務。其目的是以一些原始圖像作為輸入,輸出具有突出顯示的感興趣的掩膜,其實質上是實現了像素級分類。對於輸入圖片,輸出其舌頭區域(注意可以是不規則的,甚至不連續的)。
而實例分割,可以說是在語義分割的基礎上,在像素層面給出屬於每個實例的像素。
看到這里,可以具體思考下自己的問題是對應其中的哪一類問題,或者是需要幾種任務的結合。
3、實際操作
可以先通過一個簡單的例子入手,先了解構建這一個框架需要准備什麼。手寫數字識別可以說是深度學習的入門數據集,其任務也經常作為該領域入門的案例,也可以自己在網上尋找。