當前位置:首頁 » 密碼管理 » md5密碼加密

md5密碼加密

發布時間: 2022-08-01 17:55:21

Ⅰ 什麼叫MD5加密

好象已經被山東大學的一個教授破了

Ⅱ 關於md5加密

你把用戶輸入的老密碼做一次md5加密然後和資料庫中加密過的密碼做比對,一致說明輸入正確,不一致說明不正確,驗證老密碼輸入正確後,新密碼一樣要經過md5加密後再保存

Ⅲ 關於MD5加密,有什麼用途

一 md5加密是對字元或密碼進行的16位或32位等加密方式! 一般在普通MDB資料庫經常用到,比如論壇資料庫等.有用!
二 加密解密並不矛盾,比如銀行系統的128位加密現在誰可以輕易破的了呢?
雖然md5加密不算很難破,但一般也是窮破法,如果密碼不是過於簡單的 話,那麼就很難破(使用工具)!比如密碼為 dafsd63f43t5#$! 這樣的密碼經過md5加密之後就形成了一段密文.用窮破法的話這樣一個密碼也許要用幾年的時間才可以破開~!

Ⅳ 怎樣對數據進行md5加密呢

用md5演算法啊;public class MD5 {
private static MD5 md5 = null; static final int S11 = 7; static final int S12 = 12; static final int S13 = 17; static final int S14 = 22; static final int S21 = 5; static final int S22 = 9; static final int S23 = 14; static final int S24 = 20; static final int S31 = 4; static final int S32 = 11; static final int S33 = 16; static final int S34 = 23; static final int S41 = 6; static final int S42 = 10; static final int S43 = 15; static final int S44 = 21; static final byte PADDING[] = { -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 }; private long state[]; private long count[]; private byte buffer[]; public String digestHexStr; private byte digest[]; public static synchronized MD5 getInstance() {
if (md5 == null)
md5 = new MD5();
return md5;
} public String getMD5ofStr(String s) {
md5Init();
md5Update(s.getBytes(), s.length());
md5Final();
digestHexStr = "";
for (int i = 0; i < 16; i++) {
digestHexStr += byteHEX(digest[i]);
} return digestHexStr;
} private MD5() {
state = new long[4];
count = new long[2];
buffer = new byte[64];
digest = new byte[16];
md5Init();
} private void md5Init() {
count[0] = 0L;
count[1] = 0L;
state[0] = 0x67452301L;
state[1] = 0xefcdab89L;
state[2] = 0x98badcfeL;
state[3] = 0x10325476L;
} private long F(long l, long l1, long l2) {
return l & l1 | ~l & l2;
} private long G(long l, long l1, long l2) {
return l & l2 | l1 & ~l2;
} private long H(long l, long l1, long l2) {
return l ^ l1 ^ l2;
} private long I(long l, long l1, long l2) {
return l1 ^ (l | ~l2);
} private long FF(long l, long l1, long l2, long l3, long l4, long l5, long l6) {
l += F(l1, l2, l3) + l4 + l6;
l = (int) l << (int) l5 | (int) l >>> (int) (32L - l5);
l += l1;
return l;
} private long GG(long l, long l1, long l2, long l3, long l4, long l5, long l6) {
l += G(l1, l2, l3) + l4 + l6;
l = (int) l << (int) l5 | (int) l >>> (int) (32L - l5);
l += l1;
return l;
} private long HH(long l, long l1, long l2, long l3, long l4, long l5, long l6) {
l += H(l1, l2, l3) + l4 + l6;
l = (int) l << (int) l5 | (int) l >>> (int) (32L - l5);
l += l1;
return l;
} private long II(long l, long l1, long l2, long l3, long l4, long l5, long l6) {
l += I(l1, l2, l3) + l4 + l6;
l = (int) l << (int) l5 | (int) l >>> (int) (32L - l5);
l += l1;
return l;
} private void md5Update(byte abyte0[], int i) {
byte abyte1[] = new byte[64];
int k = (int) (count[0] >>> 3) & 0x3f;
if ((count[0] += i << 3) < (long) (i << 3)) {
count[1]++;
}
count[1] += i >>> 29;
int l = 64 - k;
int j;
if (i >= l) {
md5Memcpy(buffer, abyte0, k, 0, l);
md5Transform(buffer);
for (j = l; j + 63 < i; j += 64) {
md5Memcpy(abyte1, abyte0, 0, j, 64);
md5Transform(abyte1);
} k = 0;
} else {
j = 0;
}
md5Memcpy(buffer, abyte0, k, j, i - j);
} private void md5Final() {
byte abyte0[] = new byte[8];
Encode(abyte0, count, 8);
int i = (int) (count[0] >>> 3) & 0x3f;
int j = i >= 56 ? 120 - i : 56 - i;
md5Update(PADDING, j);
md5Update(abyte0, 8);
Encode(digest, state, 16);
} private void md5Memcpy(byte abyte0[], byte abyte1[], int i, int j, int k) {
for (int l = 0; l < k; l++) {
abyte0[i + l] = abyte1[j + l];
} } private void md5Transform(byte abyte0[]) {
long l = state[0];
long l1 = state[1];
long l2 = state[2];
long l3 = state[3];
long al[] = new long[16];
Decode(al, abyte0, 64);
l = FF(l, l1, l2, l3, al[0], 7L, 0xd76aa478L);
l3 = FF(l3, l, l1, l2, al[1], 12L, 0xe8c7b756L);
l2 = FF(l2, l3, l, l1, al[2], 17L, 0x242070dbL);
l1 = FF(l1, l2, l3, l, al[3], 22L, 0xc1bdceeeL);
l = FF(l, l1, l2, l3, al[4], 7L, 0xf57c0fafL);
l3 = FF(l3, l, l1, l2, al[5], 12L, 0x4787c62aL);
l2 = FF(l2, l3, l, l1, al[6], 17L, 0xa8304613L);
l1 = FF(l1, l2, l3, l, al[7], 22L, 0xfd469501L);
l = FF(l, l1, l2, l3, al[8], 7L, 0x698098d8L);
l3 = FF(l3, l, l1, l2, al[9], 12L, 0x8b44f7afL);
l2 = FF(l2, l3, l, l1, al[10], 17L, 0xffff5bb1L);
l1 = FF(l1, l2, l3, l, al[11], 22L, 0x895cd7beL);
l = FF(l, l1, l2, l3, al[12], 7L, 0x6b901122L);
l3 = FF(l3, l, l1, l2, al[13], 12L, 0xfd987193L);
l2 = FF(l2, l3, l, l1, al[14], 17L, 0xa679438eL);
l1 = FF(l1, l2, l3, l, al[15], 22L, 0x49b40821L);
l = GG(l, l1, l2, l3, al[1], 5L, 0xf61e2562L);
l3 = GG(l3, l, l1, l2, al[6], 9L, 0xc040b340L);
l2 = GG(l2, l3, l, l1, al[11], 14L, 0x265e5a51L);
l1 = GG(l1, l2, l3, l, al[0], 20L, 0xe9b6c7aaL);
l = GG(l, l1, l2, l3, al[5], 5L, 0xd62f105dL);
l3 = GG(l3, l, l1, l2, al[10], 9L, 0x2441453L);
l2 = GG(l2, l3, l, l1, al[15], 14L, 0xd8a1e681L);
l1 = GG(l1, l2, l3, l, al[4], 20L, 0xe7d3fbc8L);
l = GG(l, l1, l2, l3, al[9], 5L, 0x21e1cde6L);
l3 = GG(l3, l, l1, l2, al[14], 9L, 0xc33707d6L);
l2 = GG(l2, l3, l, l1, al[3], 14L, 0xf4d50d87L);
l1 = GG(l1, l2, l3, l, al[8], 20L, 0x455a14edL);
l = GG(l, l1, l2, l3, al[13], 5L, 0xa9e3e905L);
l3 = GG(l3, l, l1, l2, al[2], 9L, 0xfcefa3f8L);
l2 = GG(l2, l3, l, l1, al[7], 14L, 0x676f02d9L);
l1 = GG(l1, l2, l3, l, al[12], 20L, 0x8d2a4c8aL);
l = HH(l, l1, l2, l3, al[5], 4L, 0xfffa3942L);
l3 = HH(l3, l, l1, l2, al[8], 11L, 0x8771f681L);
l2 = HH(l2, l3, l, l1, al[11], 16L, 0x6d9d6122L);
l1 = HH(l1, l2, l3, l, al[14], 23L, 0xfde5380cL);
l = HH(l, l1, l2, l3, al[1], 4L, 0xa4beea44L);
l3 = HH(l3, l, l1, l2, al[4], 11L, 0x4bdecfa9L);
l2 = HH(l2, l3, l, l1, al[7], 16L, 0xf6bb4b60L);
l1 = HH(l1, l2, l3, l, al[10], 23L, 0xbebfbc70L);
l = HH(l, l1, l2, l3, al[13], 4L, 0x289b7ec6L);
l3 = HH(l3, l, l1, l2, al[0], 11L, 0xeaa127faL);
l2 = HH(l2, l3, l, l1, al[3], 16L, 0xd4ef3085L);
l1 = HH(l1, l2, l3, l, al[6], 23L, 0x4881d05L);
l = HH(l, l1, l2, l3, al[9], 4L, 0xd9d4d039L);
l3 = HH(l3, l, l1, l2, al[12], 11L, 0xe6db99e5L);
l2 = HH(l2, l3, l, l1, al[15], 16L, 0x1fa27cf8L);
l1 = HH(l1, l2, l3, l, al[2], 23L, 0xc4ac5665L);
l = II(l, l1, l2, l3, al[0], 6L, 0xf4292244L);
l3 = II(l3, l, l1, l2, al[7], 10L, 0x432aff97L);
l2 = II(l2, l3, l, l1, al[14], 15L, 0xab9423a7L);
l1 = II(l1, l2, l3, l, al[5], 21L, 0xfc93a039L);
l = II(l, l1, l2, l3, al[12], 6L, 0x655b59c3L);
l3 = II(l3, l, l1, l2, al[3], 10L, 0x8f0ccc92L);
l2 = II(l2, l3, l, l1, al[10], 15L, 0xffeff47dL);
l1 = II(l1, l2, l3, l, al[1], 21L, 0x85845dd1L);
l = II(l, l1, l2, l3, al[8], 6L, 0x6fa87e4fL);
l3 = II(l3, l, l1, l2, al[15], 10L, 0xfe2ce6e0L);
l2 = II(l2, l3, l, l1, al[6], 15L, 0xa3014314L);
l1 = II(l1, l2, l3, l, al[13], 21L, 0x4e0811a1L);
l = II(l, l1, l2, l3, al[4], 6L, 0xf7537e82L);
l3 = II(l3, l, l1, l2, al[11], 10L, 0xbd3af235L);
l2 = II(l2, l3, l, l1, al[2], 15L, 0x2ad7d2bbL);
l1 = II(l1, l2, l3, l, al[9], 21L, 0xeb86d391L);
state[0] += l;
state[1] += l1;
state[2] += l2;
state[3] += l3;
} private void Encode(byte abyte0[], long al[], int i) {
int j = 0;
for (int k = 0; k < i; k += 4) {
abyte0[k] = (byte) (int) (al[j] & 255L);
abyte0[k + 1] = (byte) (int) (al[j] >>> 8 & 255L);
abyte0[k + 2] = (byte) (int) (al[j] >>> 16 & 255L);
abyte0[k + 3] = (byte) (int) (al[j] >>> 24 & 255L);
j++;
} } private void Decode(long al[], byte abyte0[], int i) {
int j = 0;
for (int k = 0; k < i; k += 4) {
al[j] = b2iu(abyte0[k]) | b2iu(abyte0[k + 1]) << 8
| b2iu(abyte0[k + 2]) << 16 | b2iu(abyte0[k + 3]) << 24;
j++;
} } public static long b2iu(byte byte0) {
return byte0 >= 0 ? byte0 : byte0 & 0xff;
} public static String byteHEX(byte byte0) {
char ac[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
'B', 'C', 'D', 'E', 'F' };
char ac1[] = new char[2];
ac1[0] = ac[byte0 >>> 4 & 0xf];
ac1[1] = ac[byte0 & 0xf];
String s = new String(ac1);
return s;
} public static String getMD5Str(String string) {
return getInstance().getMD5ofStr(string);
} public static void main(String args[]) {
MD5 md5 = new MD5();
System.out.println(md5.getMD5ofStr("stupid"));
System.out.println(md5.getMD5Str(""));
}
}

Ⅳ 如何對MD5加密

md5的全稱是message-digest algorithm 5(信息-摘要演算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest開發出來,經md2、md3和md4發展而來。它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的大整數)。不管是md2、md4還是md5,它們都需要獲得一個隨機長度的信息並產生一個128位的信息摘要。雖然這些演算法的結構或多或少有些相似,但md2的設計與md4和md5完全不同,那是因為md2是為8位機器做過設計優化的,而md4和md5卻是面向32位的電腦。這三個演算法的描述和c語言源代碼在internet rfcs 1321中有詳細的描述(h++p://www.ietf.org/rfc/rfc1321.txt),這是一份最權威的文檔,由ronald l. rivest在1992年8月向ieft提交。

rivest在1989年開發出md2演算法。在這個演算法中,首先對信息進行數據補位,使信息的位元組長度是16的倍數。然後,以一個16位的檢驗和追加到信息末尾。並且根據這個新產生的信息計算出散列值。後來,rogier和chauvaud發現如果忽略了檢驗和將產生md2沖突。md2演算法的加密後結果是唯一的--既沒有重復。

為了加強演算法的安全性,rivest在1990年又開發出md4演算法。md4演算法同樣需要填補信息以確保信息的位元組長度加上448後能被512整除(信息位元組長度mod 512 = 448)。然後,一個以64位二進製表示的信息的最初長度被添加進來。信息被處理成512位damg?rd/merkle迭代結構的區塊,而且每個區塊要通過三個不同步驟的處理。den boer和bosselaers以及其他人很快的發現了攻擊md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的個人電腦在幾分鍾內找到md4完整版本中的沖突(這個沖突實際上是一種漏洞,它將導致對不同的內容進行加密卻可能得到相同的加密後結果)。毫無疑問,md4就此被淘汰掉了。

盡管md4演算法在安全上有個這么大的漏洞,但它對在其後才被開發出來的好幾種信息安全加密演算法的出現卻有著不可忽視的引導作用。除了md5以外,其中比較有名的還有sha-1、ripe-md以及haval等。

一年以後,即1991年,rivest開發出技術上更為趨近成熟的md5演算法。它在md4的基礎上增加了"安全-帶子"(safety-belts)的概念。雖然md5比md4稍微慢一些,但卻更為安全。這個演算法很明顯的由四個和md4設計有少許不同的步驟組成。在md5演算法中,信息-摘要的大小和填充的必要條件與md4完全相同。den boer和bosselaers曾發現md5演算法中的假沖突(pseudo-collisions),但除此之外就沒有其他被發現的加密後結果了。

van oorschot和wiener曾經考慮過一個在散列中暴力搜尋沖突的函數(brute-force hash function),而且他們猜測一個被設計專門用來搜索md5沖突的機器(這台機器在1994年的製造成本大約是一百萬美元)可以平均每24天就找到一個沖突。但單從1991年到2001年這10年間,竟沒有出現替代md5演算法的md6或被叫做其他什麼名字的新演算法這一點,我們就可以看出這個瑕疵並沒有太多的影響md5的安全性。上面所有這些都不足以成為md5的在實際應用中的問題。並且,由於md5演算法的使用不需要支付任何版權費用的,所以在一般的情況下(非絕密應用領域。但即便是應用在絕密領域內,md5也不失為一種非常優秀的中間技術),md5怎麼都應該算得上是非常安全的了。

演算法的應用

md5的典型應用是對一段信息(message)產生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多軟體在下載的時候都有一個文件名相同,文件擴展名為.md5的文件,在這個文件中通常只有一行文本,大致結構如:

md5 (tanajiya.tar.gz) =

這就是tanajiya.tar.gz文件的數字簽名。md5將整個文件當作一個大文本信息,通過其不可逆的字元串變換演算法,產生了這個唯一的md5信息摘要。如果在以後傳播這個文件的過程中,無論文件的內容發生了任何形式的改變(包括人為修改或者下載過程中線路不穩定引起的傳輸錯誤等),只要你對這個文件重新計算md5時就會發現信息摘要不相同,由此可以確定你得到的只是一個不正確的文件。如果再有一個第三方的認證機構,用md5還可以防止文件作者的"抵賴",這就是所謂的數字簽名應用。

md5還廣泛用於加密和解密技術上。比如在unix系統中用戶的密碼就是以md5(或其它類似的演算法)經加密後存儲在文件系統中。當用戶登錄的時候,系統把用戶輸入的密碼計算成md5值,然後再去和保存在文件系統中的md5值進行比較,進而確定輸入的密碼是否正確。通過這樣的步驟,系統在並不知道用戶密碼的明碼的情況下就可以確定用戶登錄系統的合法性。這不但可以避免用戶的密碼被具有系統管理員許可權的用戶知道,而且還在一定程度上增加了密碼被破解的難度。

正是因為這個原因,現在被黑客使用最多的一種破譯密碼的方法就是一種被稱為"跑字典"的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用md5程序計算出這些字典項的md5值,然後再用目標的md5值在這個字典中檢索。我們假設密碼的最大長度為8位位元組(8 bytes),同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是p(62,1)+p(62,2)….+p(62,8),那也已經是一個很天文的數字了,存儲這個字典就需要tb級的磁碟陣列,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼md5值的情況下才可以。這種加密技術被廣泛的應用於unix系統中,這也是為什麼unix系統比一般操作系統更為堅固一個重要原因。

演算法描述

對md5演算法簡要的敘述可以為:md5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。

在md5演算法中,首先需要對信息進行填充,使其位元組長度對512求余的結果等於448。因此,信息的位元組長度(bits length)將被擴展至n*512+448,即n*64+56個位元組(bytes),n為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對信息的填充。然後,在在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,現在的信息位元組長度=n*512+448+64=(n+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。

md5中有四個32位被稱作鏈接變數(chaining variable)的整數參數,他們分別為:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。

當設置好這四個鏈接變數後,就開始進入演算法的四輪循環運算。循環的次數是信息中512位信息分組的數目。

將上面四個鏈接變數復制到另外四個變數中:a到a,b到b,c到c,d到d。

主循環有四輪(md4隻有三輪),每輪循環都很相似。第一輪進行16次操作。每次操作對a、b、c和d中的其中三個作一次非線性函數運算,然後將所得結果加上第四個變數,文本的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a、b、c或d中之一。最後用該結果取代a、b、c或d中之一。
以一下是每次操作中用到的四個非線性函數(每輪一個)。

f(x,y,z) =(x&y)|((~x)&z)
g(x,y,z) =(x&z)|(y&(~z))
h(x,y,z) =x^y^z
i(x,y,z)=y^(x|(~z))
(&是與,|是或,~是非,^是異或)

這四個函數的說明:如果x、y和z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
f是一個逐位運算的函數。即,如果x,那麼y,否則z。函數h是逐位奇偶操作符。

假設mj表示消息的第j個子分組(從0到15),<<
ff(a,b,c,d,mj,s,ti)表示a=b+((a+(f(b,c,d)+mj+ti)<< gg(a,b,c,d,mj,s,ti)表示a=b+((a+(g(b,c,d)+mj+ti)<< hh(a,b,c,d,mj,s,ti)表示a=b+((a+(h(b,c,d)+mj+ti)<< ii(a,b,c,d,mj,s,ti)表示a=b+((a+(i(b,c,d)+mj+ti)<<
這四輪(64步)是:

第一輪

ff(a,b,c,d,m0,7,0xd76aa478)
ff(d,a,b,c,m1,12,0xe8c7b756)
ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
ff(a,b,c,d,m4,7,0xf57c0faf)
ff(d,a,b,c,m5,12,0x4787c62a)
ff(c,d,a,b,m6,17,0xa8304613)
ff(b,c,d,a,m7,22,0xfd469501)
ff(a,b,c,d,m8,7,0x698098d8)
ff(d,a,b,c,m9,12,0x8b44f7af)
ff(c,d,a,b,m10,17,0xffff5bb1)
ff(b,c,d,a,m11,22,0x895cd7be)
ff(a,b,c,d,m12,7,0x6b901122)
ff(d,a,b,c,m13,12,0xfd987193)
ff(c,d,a,b,m14,17,0xa679438e)
ff(b,c,d,a,m15,22,0x49b40821)

第二輪

gg(a,b,c,d,m1,5,0xf61e2562)
gg(d,a,b,c,m6,9,0xc040b340)
gg(c,d,a,b,m11,14,0x265e5a51)
gg(b,c,d,a,m0,20,0xe9b6c7aa)
gg(a,b,c,d,m5,5,0xd62f105d)
gg(d,a,b,c,m10,9,0x02441453)
gg(c,d,a,b,m15,14,0xd8a1e681)
gg(b,c,d,a,m4,20,0xe7d3fbc8)
gg(a,b,c,d,m9,5,0x21e1cde6)
gg(d,a,b,c,m14,9,0xc33707d6)
gg(c,d,a,b,m3,14,0xf4d50d87)
gg(b,c,d,a,m8,20,0x455a14ed)
gg(a,b,c,d,m13,5,0xa9e3e905)
gg(d,a,b,c,m2,9,0xfcefa3f8)
gg(c,d,a,b,m7,14,0x676f02d9)
gg(b,c,d,a,m12,20,0x8d2a4c8a)

第三輪

hh(a,b,c,d,m5,4,0xfffa3942)
hh(d,a,b,c,m8,11,0x8771f681)
hh(c,d,a,b,m11,16,0x6d9d6122)
hh(b,c,d,a,m14,23,0xfde5380c)
hh(a,b,c,d,m1,4,0xa4beea44)
hh(d,a,b,c,m4,11,0x4bdecfa9)
hh(c,d,a,b,m7,16,0xf6bb4b60)
hh(b,c,d,a,m10,23,0xbebfbc70)
hh(a,b,c,d,m13,4,0x289b7ec6)
hh(d,a,b,c,m0,11,0xeaa127fa)
hh(c,d,a,b,m3,16,0xd4ef3085)
hh(b,c,d,a,m6,23,0x04881d05)
hh(a,b,c,d,m9,4,0xd9d4d039)
hh(d,a,b,c,m12,11,0xe6db99e5)
hh(c,d,a,b,m15,16,0x1fa27cf8)
hh(b,c,d,a,m2,23,0xc4ac5665)

第四輪

ii(a,b,c,d,m0,6,0xf4292244)
ii(d,a,b,c,m7,10,0x432aff97)
ii(c,d,a,b,m14,15,0xab9423a7)
ii(b,c,d,a,m5,21,0xfc93a039)
ii(a,b,c,d,m12,6,0x655b59c3)
ii(d,a,b,c,m3,10,0x8f0ccc92)
ii(c,d,a,b,m10,15,0xffeff47d)
ii(b,c,d,a,m1,21,0x85845dd1)
ii(a,b,c,d,m8,6,0x6fa87e4f)
ii(d,a,b,c,m15,10,0xfe2ce6e0)
ii(c,d,a,b,m6,15,0xa3014314)
ii(b,c,d,a,m13,21,0x4e0811a1)
ii(a,b,c,d,m4,6,0xf7537e82)
ii(d,a,b,c,m11,10,0xbd3af235)
ii(c,d,a,b,m2,15,0x2ad7d2bb)
ii(b,c,d,a,m9,21,0xeb86d391)

常數ti可以如下選擇:

在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。(4294967296等於2的32次方)
所有這些完成之後,將a、b、c、d分別加上a、b、c、d。然後用下一分組數據繼續運行演算法,最後的輸出是a、b、c和d的級聯。

當你按照我上面所說的方法實現md5演算法以後,你可以用以下幾個信息對你做出來的程序作一個簡單的測試,看看程序有沒有錯誤。

md5 ("") =
md5 ("a") =
md5 ("abc") =
md5 ("message digest") =
md5 ("abcdefghijklmnopqrstuvwxyz") =
md5 ("") =

md5 ("
01234567890") =

如果你用上面的信息分別對你做的md5演算法實例做測試,最後得出的結論和標准答案完全一樣,那我就要在這里象你道一聲祝賀了。要知道,我的程序在第一次編譯成功的時候是沒有得出和上面相同的結果的。

md5的安全性

md5相對md4所作的改進:

1. 增加了第四輪;

2. 每一步均有唯一的加法常數;

3. 為減弱第二輪中函數g的對稱性從(x&y)|(x&z)|(y&z)變為(x&z)|(y&(~z));

4. 第一步加上了上一步的結果,這將引起更快的雪崩效應;

5. 改變了第二輪和第三輪中訪問消息子分組的次序,使其更不相似;

6. 近似優化了每一輪中的循環左移位移量以實現更快的雪崩效應。各輪的位移量互不相同。

[color=red]簡單的說:

MD5叫信息-摘要演算法,是一種密碼的演算法,它可以對任何文件產生一個唯一的MD5驗證碼,每個文件的MD5碼就如同每個人的指紋一樣,都是不同的,這樣,一旦這個文件在傳輸過程中,其內容被損壞或者被修改的話,那麼這個文件的MD5碼就會發生變化,通過對文件MD5的驗證,可以得知獲得的文件是否完整。

參考資料:http://www.i170.com/Article/28572

Ⅵ MD5加密是怎麼實現加密的

什麼是MD5???---MD5的全稱是Message-Digest Algorithm 5

MD5的典型應用是對一段信息(Message)產生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多軟體在下載的時候都有一個文件名相同,文件擴展名為.md5的文件,在這個文件中通常只有一行文本,大致結構如:

MD5 (tanajiya.tar.gz) =

這就是tanajiya.tar.gz文件的數字簽名。MD5將整個文件當作一個大文本信息,通過其不可逆的字元串變換演算法,產生了這個唯一的MD5信息摘要。如果在以後傳播這個文件的過程中,無論文件的內容發生了任何形式的改變(包括人為修改或者下載過程中線路不穩定引起的傳輸錯誤等),只要你對這個文件重新計算MD5時就會發現信息摘要不相同,由此可以確定你得到的只是一個不正確的文件。如果再有一個第三方的認證機構,用MD5還可以防止文件作者的 "抵賴",這就是所謂的數字簽名應用。

MD5還廣泛用於加密和解密技術上。比如在UNIX系統中用戶的密碼就是以MD5(或其它類似的演算法)經加密後存儲在文件系統中。當用戶登錄的時候,系統把用戶輸入的密碼計算成MD5值,然後再去和保存在文件系統中的MD5值進行比較,進而確定輸入的密碼是否正確。通過這樣的步驟,系統在並不知道用戶密碼的明碼的情況下就可以確定用戶登錄系統的合法性。這不但可以避免用戶的密碼被具有系統管理員許可權的用戶知道,而且還在一定程度上增加了密碼被破解的難度。

正是因為這個原因,現在被黑客使用最多的一種破譯密碼的方法就是一種被稱為"跑字典"的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用MD5程序計算出這些字典項的MD5 值,然後再用目標的MD5值在這個字典中檢索。我們假設密碼的最大長度為8位位元組(8 Bytes),同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是P(62,1)+P(62,2)….+P (62,8),那也已經是一個很天文的數字了,存儲這個字典就需要TB級的磁碟陣列,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼MD5值的情況下才可以。這種加密技術被廣泛的應用於UNIX系統中,這也是為什麼UNIX系統比一般操作系統更為堅固一個重要原因。

Ⅶ 誰能通俗易懂地講講MD5加密原理

MD5演算法的原理可簡要的敘述為:MD5碼以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。

在MD5演算法中,首先需要對信息進行填充,這個數據按位(bit)補充,要求最終的位數對512求模的結果為448。也就是說數據補位後,其位數長度只差64位(bit)就是512的整數倍。

即便是這個數據的位數對512求模的結果正好是448也必須進行補位。

補位的實現過程:首先在數據後補一個1 bit; 接著在後面補上一堆0 bit, 直到整個數據的位數對512求模的結果正好為448。總之,至少補1位,而最多可能補512位。

(7)md5密碼加密擴展閱讀

當需要保存某些密碼信息以用於身份確認時,如果直接將密碼信息以明碼方式保存在資料庫中,不使用任何保密措施,系統管理員就很容易能得到原來的密碼信息,這些信息一旦泄露, 密碼也很容易被破譯。為了增加安全性,有必要對資料庫中需要保密的信息進行加密,這樣,即使有人得到了整個資料庫,如果沒有解密演算法,也不能得到原來的密碼信息。

MD5演算法可以很好地解決這個問題,因為它可以將任意長度的輸入串經過計算得到固定長度的輸出,而且只有在明文相同的情況下,才能等到相同的密文,並且這個演算法是不可逆的,即便得到了加密以後的密文,也不可能通過解密演算法反算出明文。

這樣就可以把用戶的密碼以MD5值(或類似的其它演算法)的方式保存起來,用戶注冊的時候,系統是把用戶輸入的密碼計算成 MD5 值,然後再去和系統中保存的 MD5 值進行比較,如果密文相同,就可以認定密碼是正確的,否則密碼錯誤。

通過這樣的步驟,系統在並不知道用戶密碼明碼的情況下就可以確定用戶登錄系統的合法性。這樣不但可以避免用戶的密碼被具有系統管理員許可權的用戶知道,而且還在一定程度上增加了密碼被破解的難度。

MD5 演算法還可以作為一種電子簽名的方法來使用,使用 MD5演算法就可以為任何文件(不管其大小、格式、數量)產生一個獨一無二的「數字指紋」,藉助這個「數字指紋」,通過檢查文件前後 MD5 值是否發生了改變,就可以知道源文件是否被改動。

Ⅷ 網站製作中,MD5 管理用戶密碼加密指的是什麼

是一種
機密演算法,一般網站登陸的地方
資料庫
會加密,而
md5
就是其中的一種加密方式,如果不加密
那麼你的資料庫密碼
就會
完全暴露在資料庫中
容易被破解,如果你的加密過了,那麼資料庫裡面的密碼就是
字元串,就不容易暴露,但是這種加密方式
對於擅長攻擊的人,是不算什麼的!

Ⅸ 怎樣把密碼進行md5加密

是在宿主語言里加密的,如用java開發的可以用java的md5。c++也有對應的md5加密類。
跟資料庫無關,資料庫只是存儲加密後的密碼,記得把欄位長度設為32位(如果沒記錯的話^_^),md5加密後的字元串長度.
去網上查:java
md5.

Ⅹ 怎麼使用md5加密

或那個地方,請個高手給個詳細說明
------解決方案--------------------------------------------------------
MD5 不是用來加密的,MD5 是摘要演算法(或稱散列)。
MD5 的典型應用是對一段信息(Message)產生信息摘要(Message-Digest),以防止被篡改。
換個說法:地球上任何人都有自己獨一無二的指紋,這常常成為公安機關鑒別罪犯身份最值
得信賴的方法;與之類似,MD5 就可以為任何文件(不管其大小、格式、數量)產生一個同
樣獨一無二的「數字指紋」,如果任何人對文件做了任何改動,其MD5 值也就是對應的「數
字指紋」都會發生變化。
你會誤認為MD5 是加密的原因,是因為大多數系統為了保證密碼安全性,在系統中不存儲用
戶的實際密碼,而是存儲用戶密碼所對應的MD5 摘要值,這樣能避免資料庫信息被竊取後賬
戶密碼泄漏的問題,同時也能保證密碼可以被驗證(通過再次計算MD5)。
方式很簡單:
1、用戶初始設置密碼時,在JSP 界面中計算密碼的MD5,然後將散列值存儲資料庫的密碼欄位;
2、用戶登錄時,JSP 得到用戶登錄密碼後,同樣對其計算MD5,然後將計算後的散列值與數
據庫中的密碼欄位所保存的原始散列值進行比較,相同則說明密碼符合。

熱點內容
三位數乘兩位數速演算法 發布:2025-05-12 13:05:48 瀏覽:388
暴風影音緩存在哪裡 發布:2025-05-12 12:42:03 瀏覽:535
access資料庫exe 發布:2025-05-12 12:39:04 瀏覽:623
五開的配置是什麼 發布:2025-05-12 12:36:37 瀏覽:359
加密ovpn 發布:2025-05-12 12:01:55 瀏覽:45
python練手項目 發布:2025-05-12 11:14:07 瀏覽:123
壓縮聽算音頻 發布:2025-05-12 10:58:12 瀏覽:801
資料庫系統報告 發布:2025-05-12 10:43:17 瀏覽:603
日產高配有哪些配置 發布:2025-05-12 10:32:16 瀏覽:475
大眾朗逸哪個配置值得入手 發布:2025-05-12 10:31:20 瀏覽:505