當前位置:首頁 » 操作系統 » 程序基本演算法

程序基本演算法

發布時間: 2022-08-21 03:06:17

演算法和軟體的關系,程序員應該學習哪些演算法

一.基本演算法:

枚舉. (poj1753,poj2965)

貪心(poj1328,poj2109,poj2586)

遞歸和分治法.

遞推.

構造法.(poj3295)

模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)

二.圖演算法:

圖的深度優先遍歷和廣度優先遍歷.

最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓撲排序 (poj1094)

二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)

最大流的增廣路演算法(KM演算法). (poj1459,poj3436)

三.數據結構.

串 (poj1035,poj3080,poj1936)

排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)

簡單並查集的應用.

哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼樹(poj3253)



trie樹(靜態建樹、動態建樹) (poj2513)

四.簡單搜索

深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)

廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)

簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)

五.動態規劃

背包問題. (poj1837,poj1276)

型如下表的簡單DP(可參考lrj的書 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學

組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.

幾何公式.

叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)

多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)

中級(校賽壓軸及省賽中等難度):
一.基本演算法:

C++的標准模版庫的應用. (poj3096,poj3007)

較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)

二.圖演算法:

差分約束系統的建立和求解. (poj1201,poj2983)

最小費用最大流(poj2516,poj2516,poj2195)

雙連通分量(poj2942)

強連通分支及其縮點.(poj2186)

圖的割邊和割點(poj3352)

最小割模型、網路流規約(poj3308)

㈡ 程序設計常見的演算法

常用的演算法有:遞推法、貪心法、列舉法、遞歸法、分治法和模擬法。
建議你去看看《演算法導論》,上面很全的。

㈢ 作為程序員提高編程能力的幾個基礎演算法

一:快速排序演算法

快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要Ο(nlogn)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(nlogn)演算法更快,因為它的內部循環(innerloop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divideandconquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

演算法步驟:

1從數列中挑出一個元素,稱為「基準」(pivot),

2重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。

3遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。

二:堆排序演算法

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。

堆排序的平均時間復雜度為Ο(nlogn) 。

創建一個堆H[0..n-1]

把堆首(最大值)和堆尾互換

3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置

4.重復步驟2,直到堆的尺寸為1

三:歸並排序

歸並排序(Mergesort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(DivideandConquer)的一個非常典型的應用。

1.申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列

2.設定兩個指針,最初位置分別為兩個已經排序序列的起始位置

3.比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置

4.重復步驟3直到某一指針達到序列尾

5.將另一序列剩下的所有元素直接復制到合並序列尾

四:二分查找演算法

二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。

五:BFPRT(線性查找演算法)

BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。

1.將n個元素每5個一組,分成n/5(上界)組。

2.取出每一組的中位數,任意排序方法,比如插入排序。

3.遞歸的調用selection演算法查找上一步中所有中位數的中位數,設為x,偶數個中位數的情況下設定為選取中間小的一個。

4.用x來分割數組,設小於等於x的個數為k,大於x的個數即為n-k。

5.若i==k,返回x;若i<k,在小於x的元素中遞歸查找第i小的元素;若i>k,在大於x的元素中遞歸查找第i-k小的元素。

終止條件:n=1時,返回的即是i小元素。

六:DFS(深度優先搜索)

深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。

深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。

深度優先遍歷圖演算法步驟:

1.訪問頂點v;

2.依次從v的未被訪問的鄰接點出發,對圖進行深度優先遍歷;直至圖中和v有路徑相通的頂點都被訪問;

3.若此時圖中尚有頂點未被訪問,則從一個未被訪問的頂點出發,重新進行深度優先遍歷,直到圖中所有頂點均被訪問過為止。

上述描述可能比較抽象,舉個實例:

DFS在訪問圖中某一起始頂點v後,由v出發,訪問它的任一鄰接頂點w1;再從w1出發,訪問與w1鄰接但還沒有訪問過的頂點w2;然後再從w2出發,進行類似的訪問,…如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點u為止。

接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。

七:BFS(廣度優先搜索)

廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。

BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。

1.首先將根節點放入隊列中。

2.從隊列中取出第一個節點,並檢驗它是否為目標。

如果找到目標,則結束搜尋並回傳結果。

否則將它所有尚未檢驗過的直接子節點加入隊列中。

3.若隊列為空,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」。

4.重復步驟2。

八:Dijkstra演算法

戴克斯特拉演算法(Dijkstra』salgorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。

該演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E表示G中所有邊的集合,而邊的權重則由權重函數w:E→[0,∞]定義。因此,w(u,v)就是從頂點u到頂點v的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。

1.初始時令S=,T=,T中頂點對應的距離值

若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值

若不存在<V0,Vi>,d(V0,Vi)為∞

2.從T中選取一個其距離值為最小的頂點W且不在S中,加入S

3.對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值縮短,則修改此距離值

重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止

九:動態規劃演算法

動態規劃(Dynamicprogramming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。

動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表。這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。

關於動態規劃最經典的問題當屬背包問題。

1.最優子結構性質。如果問題的最優解所包含的子問題的解也是最優的,我們就稱該問題具有最優子結構性質(即滿足最優化原理)。最優子結構性質為動態規劃演算法解決問題提供了重要線索。

2.子問題重疊性質。子問題重疊性質是指在用遞歸演算法自頂向下對問題進行求解時,每次產生的子問題並不總是新問題,有些子問題會被重復計算多次。動態規劃演算法正是利用了這種子問題的重疊性質,對每一個子問題只計算一次,然後將其計算結果保存在一個表格中,當再次需要計算已經計算過的子問題時,只是在表格中簡單地查看一下結果,從而獲得較高的效率。

十:樸素貝葉斯分類演算法

樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下,如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。

樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。

盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。

通過掌握以上演算法,能夠幫你迅速提高編程能力,成為一名優秀的程序員。

㈣ 計算機程序語言包括哪幾個基本演算法

冒泡排序、選擇排序、、插入排序、希爾排序、歸並排序、堆排序

Java版代碼:

package com.kevin;

/**
* 七種排序演算法Java版
*
* @author Administrator
*
*/
public class Sort {

/**
* 列印數組
*
* @param data
*/
public static void displayData(int[] data) {
for (int d : data) {
System.out.print(d + " ");
}
System.out.println();
}

/**
* 冒泡排序演算法,時間復雜度O(n2),演算法具有穩定性,堆排序和快速排序演算法不具有穩定性,即排序後相同元素的順序會發生變化
*
* @param src
*/
public static void bubbleSort(int[] src) {
if (src.length > 0) {
int length = src.length;
for (int i = 1; i < length; i++) {
for (int j = 0; j < length - i; j++) {
if (src[j] > src[j + 1]) {
int temp = src[j];
src[j] = src[j + 1];
src[j + 1] = temp;
}
}
}
}
}

/**
* 快速排序,時間復雜度O(nlogn),最壞時間復雜度O(n2),平均時間復雜度O(nlogn),演算法不具穩定性
*
* @param src
* @param begin
* @param end
*/
public static void quickSort(int[] src, int begin, int end) {
if (begin < end) {
int key = src[begin];
int i = begin;
int j = end;

while (i < j) {
while (i < j && src[j] > key) {
j--;
}
if (i < j) {
src[i] = src[j];
i++;
}
while (i < j && src[i] < key) {
i++;
}
if (i < j) {
src[j] = src[i];
j--;
}
}

src[i] = key;

quickSort(src, begin, i - 1);
quickSort(src, i + 1, end);
}

}

/**
* 選擇排序,分為簡單選擇排序、樹形選擇排序(錦標賽排序)、堆排序 此演算法為簡單選擇排序
*
* @param a
*/
public static void selectSort(int[] a) {
int length = a.length;
for (int i = 0; i < length; i++) {
int minIndex = i;

for (int j = i + 1; j < a.length; j++) {
if (a[j] < a[minIndex]) {
minIndex = j;
}
}

if (minIndex != i) {
int temp = a[minIndex];
a[minIndex] = a[i];
a[i] = temp;
}
}
}

/**
* 插入排序,適用於少量數據的排序,時間復雜度O(n2),是穩定的排序演算法,原地排序
*
* @param a
*/
public static void insertSort(int[] a) {
int length = a.length;

for (int i = 1; i < length; i++) {
int temp = a[i];
int j = i;
for (; j > 0 && a[j - 1] > temp; j--) {
a[j] = a[j - 1];
}
a[j] = temp;
}
}

/**
* 歸並排序演算法,穩定排序,非原地排序,空間復雜度O(n),時間復雜度O(nlogn)
*
* @param a
* @param low
* @param high
*/
public static void mergeSort(int a[], int low, int high) {
if (low < high) {
mergeSort(a, low, (low + high) / 2);
mergeSort(a, (low + high) / 2 + 1, high);
merge(a, low, (high + low) / 2, high);
}
}

/**
* 歸並排序輔助方法,合並
*
* @param a
* @param low
* @param mid
* @param high
*/
private static void merge(int[] a, int low, int mid, int high) {
int[] b = new int[high - low + 1];
int s = low;
int t = mid + 1;
int k = 0;
while (s <= mid && t <= high) {
if (a[s] <= a[t])
b[k++] = a[s++];
else
b[k++] = a[t++];
}
while (s <= mid)
b[k++] = a[s++];
while (t <= high)
b[k++] = a[t++];
for (int i = 0; i < b.length; i++) {
a[low + i] = b[i];
}
}

/**
* 希爾排序的一種實現方法
*
* @param a
*/
public static void shellSort(int[] a) {
int temp;
for (int k = a.length / 2; k > 0; k /= 2) {
for (int i = k; i < a.length; i++) {
for (int j = i; j >= k; j -= k) {
if (a[j - k] > a[j]) {
temp = a[j - k];
a[j - k] = a[j];
a[j] = temp;
}
}
}
}
}

/**
* 堆排序,最壞時間復雜度O(nlog2n),平均性能接近於最壞性能。由於建初始堆所需的比較次數多,故堆不適合記錄較少的比較 堆排序為原地不穩定排序
*
* @param array
*/
public static void heapSort(int[] array) {
for (int i = 1; i < array.length; i++) {
makeHeap(array, i);
}

for (int i = array.length - 1; i > 0; i--) {
int temp = array[i];
array[i] = array[0];
array[0] = temp;
rebuildHeap(array, i);
}
}

/**
* 堆排序輔助方法---創建堆
*
* @param array
* @param k
*/
private static void makeHeap(int[] array, int k) {
int current = k;
while (current > 0 && array[current] > array[(current - 1) / 2]) {
int temp = array[current];
array[current] = array[(current - 1) / 2];
array[(current - 1) / 2] = temp;
current = (current - 1) / 2;
}

}

/**
* 堆排序輔助方法---堆的根元素已刪除,末尾元素已移到根位置,開始重建
*
* @param array
* @param size
*/
private static void rebuildHeap(int[] array, int size) {
int currentIndex = 0;
int right = currentIndex * 2 + 2;
int left = currentIndex * 2 + 1;
int maxIndex = currentIndex;
boolean isHeap = false;
while (!isHeap) {
if (left < size && array[currentIndex] < array[left]) {
maxIndex = left;
}
if (right < size && array[maxIndex] < array[right]) {
maxIndex = right;
}
if (currentIndex == maxIndex) {
isHeap = true;
} else {
int temp = array[currentIndex];
array[currentIndex] = array[maxIndex];
array[maxIndex] = temp;
currentIndex = maxIndex;
right = currentIndex * 2 + 2;
left = currentIndex * 2 + 1;
}
}
}

public static void main(String[] args) {
int data[] = { 2, -1, 5, 4, 6, 8, 7, -3 };
Sort.displayData(data);

Sort.bubbleSort(data);
Sort.displayData(data);
}

}

㈤ 程序設計與基本演算法的內容提要

全書共分10章。第1章介紹了Pascal語言程序開發環境;第2~9章介紹了』Pascal語言的各種基本知識,體現了Pascal語言自身的描述能力和編程方法;第10章介紹了程序設計中的基本演算法;書末附有部分習題參考答案。為了使學生盡快掌握競賽的內容和范圍,除前兩章和第10章外,其餘各章特意從近年來全國青少年信息學奧林匹克競賽試題中精選了若干題目,組成了「典型試題分析」一節的內容。這些試題應用本章所講內容完全可以解答。
本書深入淺出,思路清晰,不僅能幫助剛剛邁進信息學奧林匹克競賽大門的選手掌握程序設計的基本知識,還能從啟迪思維、開發智力的角度引導他們如何使用計算機來分析問題和解決問題。
本書既可以作為全國青少年信息學奧林匹克競賽的培訓教材和自學用書,也可以作為ACM大學生程序設計競賽及大專院校相關專業教師和學生的參考書。

㈥ 程序演算法的介紹

程序演算法是對特定問題求解過程的描述,是指令的有限序列,每條指令完成一個或多個操作。通俗地講,就是為解決某一特定問題而採取的具體有限的操作步驟。

㈦ C語言基本演算法

1.輸入語句:scanf("控制格式",接受值列表),其中控制格式常用的有:%d,%c,%s,%f,分別
表示整型,字元型,字元串和浮點型.
例如int
a;char
c;scanf("%d
%c",&a,&c);表示向a和c輸入值
2.賦值語句:=號,如將b賦值為10,為b=10
3.條件:if(布爾表達式){程序}else{程序}(注:此結構可嵌套)
switch(離散量){case
常量:...;case
常量:...}
例:int
a;scanf("%d",&a);
if(a>10)
{printf("大於10");}
else
{printf("小於10")}
例:switch(months)
{
case
1:printf("1月有31天");break;
case
3:printf("3月有31天");break;
....
default:break;
}
4.循環:for結構,while結構,do-while結構
for(初始化;判斷;變化)
{
}
while(條件)
{
}
do
{
}while(條件)

㈧ 什麼是程序演算法

演算法是對特定問題求解過程的描述,是指令的有限序列,每條指令完成一個或多個操作。通俗地講,就是為解決某一特定問題而採取的具體有限的操作步驟。

演算法具有以下特性:

(1)有窮性:在有限的操作步驟內完成。有窮性是演算法的重要特性,任何一個問題的解決不論其採取什麼樣的演算法,其終歸是要把問題解決好。如果一種演算法的執行時間是無限的,或在期望的時間內沒有完成,那麼這種演算法就是無用和徒勞的,我們不能稱其為演算法。

(2)確定性:每個步驟確定,步驟的結果確定。演算法中的每一個步驟其目的應該是明確的,對問題的解決是有貢獻的。如果採取了一系列步驟而問題沒有得到徹底的解決,也就達不到目的,則該步驟是無意義的。

(3)可行性:每個步驟有效執行,得到確定的結果。每一個具體步驟在通過計算機實現時應能夠使計算機完成,如果這一步驟在計算機上無法實現,也就達不到預期的目的,那麼這一步驟是不完善的和不正確的,是不可行的。

(4)零個或多個輸入:從外界獲得信息。演算法的過程可以無數據輸入,也可以有多種類型的多個數據輸入,需根據具體的問題加以分析。

(5)一個或多個:演算法得到的結果就是演算法的輸出(不一定就是列印輸出)。演算法的目的是為解決一個具體問題,一旦問題得以解決,就說明採取的演算法是正確的,而結果的輸出正是驗證這一目的的最好方式。

熱點內容
安卓如何修改cpu 發布:2025-05-16 21:58:20 瀏覽:364
pythonainb 發布:2025-05-16 21:45:56 瀏覽:855
淘汰伺服器可以做家用電腦嗎 發布:2025-05-16 21:41:31 瀏覽:842
遊程編碼c語言 發布:2025-05-16 21:26:51 瀏覽:586
帝來哪個配置值得購買 發布:2025-05-16 21:12:29 瀏覽:462
什麼是nodejs前端伺服器 發布:2025-05-16 21:12:17 瀏覽:405
編譯選項立即綁定未定義符號 發布:2025-05-16 20:55:13 瀏覽:906
linuxmysql慢日誌 發布:2025-05-16 20:47:58 瀏覽:272
村兩委有哪些配置 發布:2025-05-16 20:34:47 瀏覽:294
我的世界有什麼伺服器好玩的 發布:2025-05-16 20:28:57 瀏覽:484