分割聚類演算法
Ⅰ 圖像分割的特定理論
圖像分割至今尚無通用的自身理論。隨著各學科許多新理論和新方法的提出,出現了許多與一些特定理論、方法相結合的圖像分割方法。 特徵空間聚類法進行圖像分割是將圖像空間中的像素用對應的特徵空間點表示,根據它們在特徵空間的聚集對特徵空間進行分割,然後將它們映射回原圖像空間,得到分割結果。其中,K均值、模糊C均值聚類(FCM)演算法是最常用的聚類演算法。K均值演算法先選K個初始類均值,然後將每個像素歸入均值離它最近的類並計算新的類均值。迭代執行前面的步驟直到新舊類均值之差小於某一閾值。模糊C均值演算法是在模糊數學基礎上對K均值演算法的推廣,是通過最優化一個模糊目標函數實現聚類,它不像K均值聚類那樣認為每個點只能屬於某一類,而是賦予每個點一個對各類的隸屬度,用隸屬度更好地描述邊緣像素亦此亦彼的特點,適合處理事物內在的不確定性。利用模糊C均值(FCM)非監督模糊聚類標定的特點進行圖像分割,可以減少人為的干預,且較適合圖像中存在不確定性和模糊性的特點。
FCM演算法對初始參數極為敏感,有時需要人工干預參數的初始化以接近全局最優解,提高分割速度。另外,傳統FCM演算法沒有考慮空間信息,對雜訊和灰度不均勻敏感。 模糊集理論具有描述事物不確定性的能力,適合於圖像分割問題。1998年以來,出現了許多模糊分割技術,在圖像分割中的應用日益廣泛。模糊技術在圖像分割中應用的一個顯著特點就是它能和現有的許多圖像分割方法相結合,形成一系列的集成模糊分割技術,例如模糊聚類、模糊閾值、模糊邊緣檢測技術等。
模糊閾值技術利用不同的S型隸屬函數來定義模糊目標,通過優化過程最後選擇一個具有最小不確定性的S函數。用該函數增強目標及屬於該目標的像素之間的關系,這樣得到的S型函數的交叉點為閾值分割需要的閾值,這種方法的困難在於隸屬函數的選擇。基於模糊集合和邏輯的分割方法是以模糊數學為基礎,利用隸屬圖像中由於信息不全面、不準確、含糊、矛盾等造成的不確定性問題。該方法在醫學圖像分析中有廣泛的應用,如薛景浩 等人提出的一種新的基於圖像間模糊散度的閾值化演算法以及它在多閾值選擇中的推廣演算法,採用了模糊集合分別表達分割前後的圖像,通過最小模糊散度准則來實現圖像分割中最優閾值的自動提取。該演算法針對圖像閾值化分割的要求構造了一種新的模糊隸屬度函數,克服了傳統S函數帶寬對分割效果的影響,有很好的通用性和有效性,方案能夠快速正確地實現分割,且不需事先認定分割類數。實驗結果令人滿意。 概述
小波變換是2002年來得到了廣泛應用的數學工具,它在時域和頻域都具有良好的局部化性質,而且小波變換具有多尺度特性,能夠在不同尺度上對信號進行分析,因此在圖像處理和分析等許多方面得到應用。
小波變換的分割方法
基於小波變換的閾值圖像分割方法的基本思想是首先由二進小波變換將圖像的直方圖分解為不同層次的小波系數,然後依據給定的分割准則和小波系數選擇閾值門限,最後利用閾值標出圖像分割的區域。整個分割過程是從粗到細,有尺度變化來控制,即起始分割由粗略的L2(R)子空間上投影的直方圖來實現,如果分割不理想,則利用直方圖在精細的子空間上的小波系數逐步細化圖像分割。分割演算法的計算饋與圖像尺寸大小呈線性變化。
Ⅱ 基於超像素的譜聚類分割演算法怎麼做
譜聚類演算法將數據集中的每個對象看作是圖的頂點V,將頂點間的相似度量化作為相應頂點連接邊E的權值,這樣就得到一個基於相似度的無向加權圖G(V,E),於是聚類問題就可以轉化為圖的劃分問題。基於圖論的最優劃分准則就是使劃分成的子圖內部相似度最大,子圖之間的相似度最小。雖然根據不同的准則函數及譜映射方法,譜聚類演算法有著不同的具體實現方法,但是這些實現方法都可以歸納為下面三個主要步驟:1)構建表示對象集的相似度矩陣W;2)通過計算相似度矩陣或拉普拉斯矩陣的前k個特徵值與特徵向量,構建特徵向量空間;3)利用K-means或其它經典聚類演算法對特徵向量空間中的特徵向量進行聚類。上面的步驟只是譜聚類演算法的一個總體框架,由於劃分准則、相似度矩陣計算方法等因素的差別,具體的演算法實現同樣會有所差別,但其本質依然是圖劃分問題的連續放鬆形式。
Ⅲ 聚類的圖像分割演算法
《C語言數值演算法程序大全》第二版,定價88元,樓主掏點金子吧,我手頭有一本,不過你看不著。
Ⅳ 基於直方圖的k均值聚類彩色圖像分割方法
簡要說一下:
圖像分割
基本原理:根據圖像的組成結構和應用需求將圖像劃分為若干個互不相交的子區域的過程。這些子區域四某種意義下具有共同屬性的像素的連通集合。常用方法有:
1) 以區域為對象進行分割,以相似性原則作為分割的依據,即可根據圖像的灰度、色彩、變換關系等方面的特徵相似來劃分圖像的子區域,並將各像素劃歸到相應物體或區域的像素聚類方法,即區域法;
2) 以物體邊界為對象進行分割,通過直接確定區域間的邊界來實現分割;
3) 先檢測邊緣像素,再將邊緣像素連接起來構成邊界形成分割。
具體的閾值分割:
閾值分割方法分為以下3類:
1) 全局閾值:T=T[p(x,y)〕,即僅根據f(x,y)來選取閾值,閾值僅與各個圖像像素的本身性質有關。
2) 局部閾值:T=T[f(x,y),p(x,y)],閾值與圖像像素的本身性質和局部區域性質相關。
3) 動態閾值:T=T[x,y,f(x,y),p(x,y)],閾值與像素坐標,圖像像素的本身性質和局部區域性質相關。
全局閾值對整幅圖像僅設置一個分割閾值,通常在圖像不太復雜、灰度分布較集中的情況下採用;局部閾值則將圖像劃分為若干個子圖像,並對每個子圖像設定局部閾值;動態閾值是根據空間信息和灰度信息確定。局部閾值分割法雖然能改善分割效果,但存在幾個缺點:
1) 每幅子圖像的尺寸不能太小,否則統計出的結果無意義。
2) 每幅圖像的分割是任意的,如果有一幅子圖像正好落在目標區域或背景區域,而根據統計結果對其進行分割,也許會產生更差的結果。
3) 局部閾值法對每一幅子圖像都要進行統計,速度慢,難以適應實時性的要求。
全局閾值分割方法在圖像處理中應用比較多,它在整幅圖像內採用固定的閾值分割圖像。考慮到全局閾值分割方法應用的廣泛性,本文所著重討論的就是全局閾值分割方法中的直方圖雙峰法和基於遺傳演算法的最大類間方差法。在本節中,將重點討論灰度直方圖雙峰法,最大類間方差法以及基於遺傳演算法的最大類間方差法留待下章做繼續深入地討論。
參詳書目當然是《數字圖像處理》,及網上的一些有用文檔;工具:MATLAB或VC++