半監督演算法有哪些
Ⅰ 演算法有哪些分類
演算法分類編輯演算法可大致分為:
基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
Ⅱ 標簽傳播演算法是一種分類演算法,還是聚類演算法
在聚類分析中,K-均值聚類演算法(k-meansalgorithm)是無監督分類中的一種基本方法,其也稱為C-均值演算法,其基本思想是:通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結果.\x0d假設要把樣本集分為c個類別,演算法如下:\x0d(1)適當選擇c個類的初始中心;\x0d(2)在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類,\x0d(3)利用均值等方法更新該類的中心值;\x0d(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代.\x0d下面介紹作者編寫的一個分兩類的程序,可以把其作為函數調用.\x0d%%function[samp1,samp2]=kmeans(samp);作為調用函數時去掉注釋符\x0dsamp=[11.15066.72222.31395.901811.08275.745913.217413.82434.80050.937012.3576];%樣本集\x0d[l0l]=size(samp);\x0d%%利用均值把樣本分為兩類,再將每類的均值作為聚類中心\x0dth0=mean(samp);n1=0;n2=0;c1=0.0;c1=double(c1);c2=c1;fori=1:lifsamp(i)<th0\x0dc1=c1+samp(i);n1=n1+1;elsec2=c2+samp(i);n2=n2+1;endendc1=c1/n1;c2=c2/n2;%初始聚類中心t=0;cl1=c1;cl2=c2;\x0dc11=c1;c22=c2;%聚類中心whilet==0samp1=zeros(1,l);\x0dsamp2=samp1;n1=1;n2=1;fori=1:lifabs(samp(i)-c11)<abs(samp(i)-c22)\x0dsamp1(n1)=samp(i);\x0dcl1=cl1+samp(i);n1=n1+1;\x0dc11=cl1/n1;elsesamp2(n2)=samp(i);\x0dcl2=cl2+samp(i);n2=n2+1;\x0dc22=cl2/n2;endendifc11==c1&&c22==c2t=1;endcl1=c11;cl2=c22;\x0dc1=c11;c2=c22;\x0dend%samp1,samp2為聚類的結果.\x0d初始中心值這里採用均值的法,也可以根據問題的性質,用經驗的方法來確定,或者將樣本集隨機分成c類,計算每類的均值.\x0dk-均值演算法需要事先知道分類的數量,這是其不足之處.
Ⅲ 監督學習 非監督學習 半監督學習 包含哪些演算法
半監督學習(Semi-Supervised Learning,SSL)是模式識別和機器學習領域研究的重點問題,是監督學習與無監督學習相結合的一種學習方法。半監督學習使用大量的未標記數據,以及同時使用標記數據,來進行模式識別工作。當使用半監督學習時,將會要求盡量少的人員來從事工作,同時,又能夠帶來比較高的准確性,因此,半監督學習目前正越來越受到人們的重視。
Ⅳ 適合於多分類的半監督學習演算法有哪些
maxsoft作為logistics二分類的改進版,天生適合多分類;神經網路(如bp神經網路,隨機權神經網路,RBF神經網路等);通過建立多個支持向量機或者最小二乘支持向量機分類模型,通過投票演算法選擇概率最大的分類標簽;也可以通過聚類演算法(KNN,kMeans等)等無監督學習演算法實現分類。或許不太完善,歡迎補充。(機器學習演算法與Python學習)
Ⅳ 半監督學習和無監督學習的區別
無監督與半監督學習的區別在於一個無教學值,一個有教學值。但是,個人認為他們的區別在於無監督學習一般是採用聚簇等演算法來分類不同樣本。而半監督學習一般是利用教學值與實際輸出值產生的誤差,進行誤差反向傳播修改權值來完成網路修正的。但是無監督學習沒有反向傳播修改權值操作。
無監督學習:訓練樣本的標記信息未知,目標是通過對無標記訓練樣本的學習來揭示數據的內在性質及規律,為進一步的數據分析提供基礎,此類學習任務中研究最多、應用最廣的是"聚類" ,其他無監督演算法還有:密度估計、異常檢測等。
半監督學習:訓練集同時包含有標記樣本數據和未標記樣本數據,不需要人工干預,讓學習器不依賴外界交互、自動地利用未標記樣本來提升學習性能。
想要了解更多有關半監督學習和無監督學習的信息,可以了解一下CDA數據分析師的課程。CDA證書已得到中國成人教育協會的認可和工信部認可,考過CDA認證考生可以得到經管之家CDA數據分析師中文證書,CDAINSTITUTE英文證書以及可額外申請工信部數據分析師證書。幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。點擊預約免費試聽課。
Ⅵ 半監督學習的起源和發展歷程
SSL的研究歷史可以追溯到20世紀70年代,這一時期,出現了自訓練(Self-Training)、直推學習(Transctive Learning)、生成式模型(Generative Model)等學習方法。
90年代,新的理論的出現,以及自然語言處理、文本分類和計算機視覺中的新應用的發展,促進了SSL的發展,出現了協同訓練(Co-Training)和轉導支持向量機(Transctive Support Vector Machine,TSVM)等新方法。Merz等人在1992年提出了SSL這個術語,並首次將SSL用於分類問題。接著Shahshahani和Landgrebe展開了對SSL的研究。協同訓練方法由Blum和Mitchell提出,基於不同的視圖訓練出兩個不同的學習機,提高了訓練樣本的置信度。Vapnik和Sterin提出了TSVM,用於估計類標簽的線性預測函數。為了求解TSVM,Joachims提出了SVM方法,Bie和Cristianini將TSVM放鬆為半定規劃問題從而進行求解。許多研究學者廣泛研究將期望最大演算法(Expectation Maximum,EM)與高斯混合模型(Gaussian Mixture Model,GMM)相結合的生成式SSL方法。Blum等人提出了最小割法(Mincut),首次將圖論應用於解決SSL問題。Zhu等人提出的調和函數法(Harmonic Function)將預測函數從離散形式擴展到連續形式。由Belkin等人提出的流形正則化法(Manifold Regularization)將流形學習的思想用於SSL場景。Klein等人提出首個用於聚類的半監督距離度量學習方法,學習一種距離度量。
Ⅶ 半監督網路的數學形式
監督學習(Supervised Learning)
監督學習是使用已知正確答案的示例來訓練網路的。想像一下,我們可以訓練一個網路,讓其從照片庫中(其中包含你父母的照片)識別出你父母的照片。以下就是我們在這個假設場景中所要採取的步驟。
步驟1:數據集的創建和分類
首先,我們要瀏覽你的照片(數據集),確定所有有你父母的照片,並對其進行標注,從而開始此過程。然後我們將把整堆照片分成兩堆。我們將使用第一堆來訓練網路(訓練數據),而通過第二堆來查看模型在選擇我們父母照片操作上的准確程度(驗證數據)。
等到數據集准備就緒後,我們就會將照片提供給模型。在數學上,我們的目標就是在深度網路中找到一個函數,這個函數的輸入是一張照片,而當你的父母不在照片中時,其輸出為0,否則輸出為1。
此步驟通常稱為分類任務。在這種情況下,我們進行的通常是一個結果為yes or no的訓練,但事實是,監督學習也可以用於輸出一組值,而不僅僅是0或1。例如,我們可以訓練一個網路,用它來輸出一個人償還信用卡貸款的概率,那麼在這種情況下,輸出值就是0到100之間的任意值。這些任務我們稱之為回歸。
步驟2:訓練
為了繼續該過程,模型可通過以下規則(激活函數)對每張照片進行預測,從而決定是否點亮工作中的特定節點。這個模型每次從左到右在一個層上操作——現在我們將更復雜的網路忽略掉。當網路為網路中的每個節點計算好這一點後,我們將到達亮起(或未亮起)的最右邊的節點(輸出節點)。
既然我們已經知道有你父母的照片是哪些圖片,那麼我們就可以告訴模型它的預測是對還是錯。然後我們會將這些信息反饋(feed back)給網路。
該演算法使用的這種反饋,就是一個量化「真實答案與模型預測有多少偏差」的函數的結果。這個函數被稱為成本函數(cost function),也稱為目標函數(objective function),效用函數(utility function)或適應度函數(fitness function)。然後,該函數的結果用於修改一個稱為反向傳播(backpropagation)過程中節點之間的連接強度和偏差,因為信息從結果節點「向後」傳播。
Ⅷ 人工智慧演算法簡介
人工智慧的三大基石—演算法、數據和計算能力,演算法作為其中之一,是非常重要的,那麼人工智慧都會涉及哪些演算法呢?不同演算法適用於哪些場景呢?
一、按照模型訓練方式不同可以分為監督學習(Supervised Learning),無監督學習(Unsupervised Learning)、半監督學習(Semi-supervised Learning)和強化學習(Reinforcement Learning)四大類。
常見的監督學習演算法包含以下幾類:
(1)人工神經網路(Artificial Neural Network)類:反向傳播(Backpropagation)、波爾茲曼機(Boltzmann Machine)、卷積神經網路(Convolutional Neural Network)、Hopfield網路(hopfield Network)、多層感知器(Multilyer Perceptron)、徑向基函數網路(Radial Basis Function Network,RBFN)、受限波爾茲曼機(Restricted Boltzmann Machine)、回歸神經網路(Recurrent Neural Network,RNN)、自組織映射(Self-organizing Map,SOM)、尖峰神經網路(Spiking Neural Network)等。
(2)貝葉斯類(Bayesin):樸素貝葉斯(Naive Bayes)、高斯貝葉斯(Gaussian Naive Bayes)、多項樸素貝葉斯(Multinomial Naive Bayes)、平均-依賴性評估(Averaged One-Dependence Estimators,AODE)
貝葉斯信念網路(Bayesian Belief Network,BBN)、貝葉斯網路(Bayesian Network,BN)等。
(3)決策樹(Decision Tree)類:分類和回歸樹(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5演算法(C4.5 Algorithm)、C5.0演算法(C5.0 Algorithm)、卡方自動交互檢測(Chi-squared Automatic Interaction Detection,CHAID)、決策殘端(Decision Stump)、ID3演算法(ID3 Algorithm)、隨機森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)線性分類器(Linear Classifier)類:Fisher的線性判別(Fisher』s Linear Discriminant)
線性回歸(Linear Regression)、邏輯回歸(Logistic Regression)、多項邏輯回歸(Multionmial Logistic Regression)、樸素貝葉斯分類器(Naive Bayes Classifier)、感知(Perception)、支持向量機(Support Vector Machine)等。
常見的無監督學習類演算法包括:
(1) 人工神經網路(Artificial Neural Network)類:生成對抗網路(Generative Adversarial Networks,GAN),前饋神經網路(Feedforward Neural Network)、邏輯學習機(Logic Learning Machine)、自組織映射(Self-organizing Map)等。
(2) 關聯規則學習(Association Rule Learning)類:先驗演算法(Apriori Algorithm)、Eclat演算法(Eclat Algorithm)、FP-Growth演算法等。
(3)分層聚類演算法(Hierarchical Clustering):單連鎖聚類(Single-linkage Clustering),概念聚類(Conceptual Clustering)等。
(4)聚類分析(Cluster analysis):BIRCH演算法、DBSCAN演算法,期望最大化(Expectation-maximization,EM)、模糊聚類(Fuzzy Clustering)、K-means演算法、K均值聚類(K-means Clustering)、K-medians聚類、均值漂移演算法(Mean-shift)、OPTICS演算法等。
(5)異常檢測(Anomaly detection)類:K最鄰近(K-nearest Neighbor,KNN)演算法,局部異常因子演算法(Local Outlier Factor,LOF)等。
常見的半監督學習類演算法包含:生成模型(Generative Models)、低密度分離(Low-density Separation)、基於圖形的方法(Graph-based Methods)、聯合訓練(Co-training)等。
常見的強化學習類演算法包含:Q學習(Q-learning)、狀態-行動-獎勵-狀態-行動(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度演算法(Policy Gradients)、基於模型強化學習(Model Based RL)、時序差分學習(Temporal Different Learning)等。
常見的深度學習類演算法包含:深度信念網路(Deep Belief Machines)、深度卷積神經網路(Deep Convolutional Neural Networks)、深度遞歸神經網路(Deep Recurrent Neural Network)、分層時間記憶(Hierarchical Temporal Memory,HTM)、深度波爾茲曼機(Deep Boltzmann Machine,DBM)、棧式自動編碼器(Stacked Autoencoder)、生成對抗網路(Generative Adversarial Networks)等。
二、按照解決任務的不同來分類,粗略可以分為二分類演算法(Two-class Classification)、多分類演算法(Multi-class Classification)、回歸演算法(Regression)、聚類演算法(Clustering)和異常檢測(Anomaly Detection)五種。
1.二分類(Two-class Classification)
(1)二分類支持向量機(Two-class SVM):適用於數據特徵較多、線性模型的場景。
(2)二分類平均感知器(Two-class Average Perceptron):適用於訓練時間短、線性模型的場景。
(3)二分類邏輯回歸(Two-class Logistic Regression):適用於訓練時間短、線性模型的場景。
(4)二分類貝葉斯點機(Two-class Bayes Point Machine):適用於訓練時間短、線性模型的場景。(5)二分類決策森林(Two-class Decision Forest):適用於訓練時間短、精準的場景。
(6)二分類提升決策樹(Two-class Boosted Decision Tree):適用於訓練時間短、精準度高、內存佔用量大的場景
(7)二分類決策叢林(Two-class Decision Jungle):適用於訓練時間短、精確度高、內存佔用量小的場景。
(8)二分類局部深度支持向量機(Two-class Locally Deep SVM):適用於數據特徵較多的場景。
(9)二分類神經網路(Two-class Neural Network):適用於精準度高、訓練時間較長的場景。
解決多分類問題通常適用三種解決方案:第一種,從數據集和適用方法入手,利用二分類器解決多分類問題;第二種,直接使用具備多分類能力的多分類器;第三種,將二分類器改進成為多分類器今兒解決多分類問題。
常用的演算法:
(1)多分類邏輯回歸(Multiclass Logistic Regression):適用訓練時間短、線性模型的場景。
(2)多分類神經網路(Multiclass Neural Network):適用於精準度高、訓練時間較長的場景。
(3)多分類決策森林(Multiclass Decision Forest):適用於精準度高,訓練時間短的場景。
(4)多分類決策叢林(Multiclass Decision Jungle):適用於精準度高,內存佔用較小的場景。
(5)「一對多」多分類(One-vs-all Multiclass):取決於二分類器效果。
回歸
回歸問題通常被用來預測具體的數值而非分類。除了返回的結果不同,其他方法與分類問題類似。我們將定量輸出,或者連續變數預測稱為回歸;將定性輸出,或者離散變數預測稱為分類。長巾的演算法有:
(1)排序回歸(Ordinal Regression):適用於對數據進行分類排序的場景。
(2)泊松回歸(Poission Regression):適用於預測事件次數的場景。
(3)快速森林分位數回歸(Fast Forest Quantile Regression):適用於預測分布的場景。
(4)線性回歸(Linear Regression):適用於訓練時間短、線性模型的場景。
(5)貝葉斯線性回歸(Bayesian Linear Regression):適用於線性模型,訓練數據量較少的場景。
(6)神經網路回歸(Neural Network Regression):適用於精準度高、訓練時間較長的場景。
(7)決策森林回歸(Decision Forest Regression):適用於精準度高、訓練時間短的場景。
(8)提升決策樹回歸(Boosted Decision Tree Regression):適用於精確度高、訓練時間短、內存佔用較大的場景。
聚類
聚類的目標是發現數據的潛在規律和結構。聚類通常被用做描述和衡量不同數據源間的相似性,並把數據源分類到不同的簇中。
(1)層次聚類(Hierarchical Clustering):適用於訓練時間短、大數據量的場景。
(2)K-means演算法:適用於精準度高、訓練時間短的場景。
(3)模糊聚類FCM演算法(Fuzzy C-means,FCM):適用於精確度高、訓練時間短的場景。
(4)SOM神經網路(Self-organizing Feature Map,SOM):適用於運行時間較長的場景。
異常檢測
異常檢測是指對數據中存在的不正常或非典型的分體進行檢測和標志,有時也稱為偏差檢測。
異常檢測看起來和監督學習問題非常相似,都是分類問題。都是對樣本的標簽進行預測和判斷,但是實際上兩者的區別非常大,因為異常檢測中的正樣本(異常點)非常小。常用的演算法有:
(1)一分類支持向量機(One-class SVM):適用於數據特徵較多的場景。
(2)基於PCA的異常檢測(PCA-based Anomaly Detection):適用於訓練時間短的場景。
常見的遷移學習類演算法包含:歸納式遷移學習(Inctive Transfer Learning) 、直推式遷移學習(Transctive Transfer Learning)、無監督式遷移學習(Unsupervised Transfer Learning)、傳遞式遷移學習(Transitive Transfer Learning)等。
演算法的適用場景:
需要考慮的因素有:
(1)數據量的大小、數據質量和數據本身的特點
(2)機器學習要解決的具體業務場景中問題的本質是什麼?
(3)可以接受的計算時間是什麼?
(4)演算法精度要求有多高?
————————————————
原文鏈接: https://blog.csdn.net/nfzhlk/article/details/82725769
Ⅸ 半監督演算法有哪些
這樣的一個演算法應該是有很多種演算法的了,你可以通過一些數據或者是相關的資料去查詢。
Ⅹ 如何理解半監督的樸素貝葉斯分類演算法
為了測試評估貝葉斯分類器的性能,用不同數據集進行對比實驗是必不可少的. 現有的貝葉斯網路實驗軟體包都是針對特定目的設計的,不能滿足不同研究的需要. 介紹了用Matlab在BNT軟體包基礎上建構的貝葉斯分類器實驗平台MBNC,闡述了MBNC的系統結構和主要功能,以及在MBNC上建立的樸素貝葉斯分類器NBC,基於互信息和條件互信息測度的樹擴展的貝葉斯分類器TANC,基於K2演算法和GS演算法的貝葉斯網路分類器BNC. 用來自UCI的標准數據集對MBNC進行測試,實驗結果表明基於MBNC所建構的貝葉斯分類器的性能優於國外同類工作的結果,編程量大大小於使用同類的實驗軟體包,所建立的MBNC實驗平台工作正確、有效、穩定. 在MBNC上已經進行貝葉斯分類器的優化和改進實驗,以及處理缺失數據等研究工作