演算法系列
Ⅰ 數據挖掘十大經典演算法(1)——樸素貝葉斯(Naive Bayes)
在此推出一個演算法系列的科普文章。我們大家在平時埋頭工程類工作之餘,也可以抽身對一些常見演算法進行了解,這不僅可以幫助我們拓寬思路,從另一個維度加深對計算機技術領域的理解,做到觸類旁通,同時也可以讓我們搞清楚一些既熟悉又陌生的領域——比如數據挖掘、大數據、機器學習——的基本原理,揭開它們的神秘面紗,了解到其實很多看似高深的領域,其實背後依據的基礎和原理也並不復雜。而且,掌握各類演算法的特點、優劣和適用場景,是真正從事數據挖掘工作的重中之重。只有熟悉演算法,才可能對紛繁復雜的現實問題合理建模,達到最佳預期效果。
本系列文章的目的是力求用最干練而生動的講述方式,為大家講解由國際權威的學術組織the IEEE International Conference on Data Mining (ICDM) 於2006年12月評選出的數據挖掘領域的十大經典演算法。它們包括:
本文作為本系列的第一篇,在介紹具體演算法之前,先簡單為大家鋪墊幾個數據挖掘領域的常見概念:
在數據挖掘領域,按照演算法本身的行為模式和使用目的,主要可以分為分類(classification),聚類(clustering)和回歸(regression)幾種,其中:
打幾個不恰當的比方 :
另外,還有一個經常有人問起的問題,就是 數據挖掘 和 機器學習 這兩個概念的區別,這里一句話闡明我自己的認識:機器學習是基礎,數據挖掘是應用。機器學習研製出各種各樣的演算法,數據挖掘根據應用場景把這些演算法合理運用起來,目的是達到最好的挖掘效果。
當然,以上的簡單總結一定不夠准確和嚴謹,更多的是為了方便大家理解打的比方。如果大家有更精當的理解,歡迎補充和交流。
好了,鋪墊了這么多,現在終於進入正題!
作為本系列入門的第一篇,先為大家介紹一個容易理解又很有趣的演算法—— 樸素貝葉斯 。
先站好隊,樸素貝葉斯是一個典型的 有監督的分類演算法 。
光從名字也可以想到,要想了解樸素貝葉斯,先要從 貝葉斯定理 說起。
貝葉斯定理是我們高中時代學過的一條概率學基礎定理,它描述了條件概率的計算方式。不要怕已經把這些知識還給了體育老師,相信你一看公式就能想起來。
P(A|B)表示事件B已經發生的前提下,事件A發生的概率,叫做事件B發生下事件A的條件概率。其基本求解公式為:
其中,P(AB)表示A和B同時發生的概率,P(B)標識B事件本身的概率。
貝葉斯定理之所以有用,是因為我們在生活中經常遇到這種情況:我們可以很容易直接得出P(A|B),P(B|A)則很難直接得出,但我們更關心P(B|A)。
而貝葉斯定理就為我們打通從P(A|B)獲得P(B|A)的道路。
下面不加證明地直接給出貝葉斯定理:
有了貝葉斯定理這個基礎,下面來看看樸素貝葉斯演算法的基本思路。
你看,其思想就是這么的樸素。那麼,屬於每個分類的概率該怎麼計算呢?下面我們先祭出形式化語言!
那麼現在的關鍵就是如何計算第3步中的各個條件概率。我們可以這么做:
因為分母對於所有類別為常數,因為我們只要將分子最大化皆可。又因為各特徵屬性是條件獨立的,所以有:
如果你也跟我一樣,對形式化語言有嚴重生理反應,不要怕,直接跳過前面這一坨,我們通過一個鮮活的例子,用人類的語言再解釋一遍這個過程。
某個醫院早上收了六個門診病人,如下表。
現在又來了第七個病人,是一個打噴嚏的建築工人。請問他最有可能患有何種疾病?
本質上,這就是一個典型的分類問題, 症狀 和 職業 是特徵屬性, 疾病種類 是目標類別
根據 貝葉斯定理
可得
假定"打噴嚏"和"建築工人"這兩個特徵是獨立的,因此,上面的等式就變成了
這是可以計算的。
因此,這個打噴嚏的建築工人,有66%的概率是得了感冒。同理,可以計算這個病人患上過敏或腦震盪的概率。比較這幾個概率,就可以知道他最可能得什麼病。
接下來,我們再舉一個樸素貝葉斯演算法在實際中經常被使用的場景的例子—— 文本分類器 ,通常會用來識別垃圾郵件。
首先,我們可以把一封郵件的內容抽象為由若干關鍵片語成的集合,這樣是否包含每種關鍵詞就成了一封郵件的特徵值,而目標類別就是 屬於垃圾郵件 或 不屬於垃圾郵件
假設每個關鍵詞在一封郵件里出現與否的概率相互之間是獨立的,那麼只要我們有若干已經標記為垃圾郵件和非垃圾郵件的樣本作為訓練集,那麼就可以得出,在全部垃圾郵件(記為Trash)出現某個關鍵詞Wi的概率,即 P(Wi|Trash)
而我們最重要回答的問題是,給定一封郵件內容M,它屬於垃圾郵件的概率是多大,即 P(Trash|M)
根據貝葉斯定理,有
我們先來看分子:
P(M|Trash) 可以理解為在垃圾郵件這個范疇中遇見郵件M的概率,而一封郵件M是由若干單詞Wi獨立匯聚組成的,只要我們所掌握的單詞樣本足夠多,因此就可以得到
這些值我們之前已經可以得到了。
再來看分子里的另一部分 P(Trash) ,這個值也就是垃圾郵件的總體概率,這個值顯然很容易得到,用訓練集中垃圾郵件數除以總數即可。
而對於分母來說,我們雖然也可以去計算它,但實際上已經沒有必要了,因為我們要比較的 P(Trash|M) 和 P(non-Trash|M) 的分母都是一樣的,因此只需要比較分子大小即可。
這樣一來,我們就可以通過簡單的計算,比較郵件M屬於垃圾還是非垃圾二者誰的概率更大了。
樸素貝葉斯的英文叫做 Naive Bayes ,直譯過來其實是 天真的貝葉斯 ,那麼他到底天真在哪了呢?
這主要是因為樸素貝葉斯的基本假設是所有特徵值之間都是相互獨立的,這才使得概率直接相乘這種簡單計算方式得以實現。然而在現實生活中,各個特徵值之間往往存在一些關聯,比如上面的例子,一篇文章中不同單詞之間一定是有關聯的,比如有些詞總是容易同時出現。
因此,在經典樸素貝葉斯的基礎上,還有更為靈活的建模方式—— 貝葉斯網路(Bayesian Belief Networks, BBN) ,可以單獨指定特徵值之間的是否獨立。這里就不展開了,有興趣的同學們可以做進一步了解。
最後我們來對這個經典演算法做個點評:
優點:
缺點:
好了,對於 樸素貝葉斯 的介紹就到這里,不知道各位看完之後是否會對數據挖掘這個領域產生了一點興趣了呢?
Ⅱ 六、遞歸與回溯演算法
在計算機領域裡面,很多問題都可以要採用遞歸演算法來解決。遞歸中,最長用到的方法就是回溯法。我們具體分析問題的時候,可以發現這類問題本質是一個樹的形狀。
遞歸演算法的本質還是將原來的問題轉化為了更小的同一問題,進行解決。一般注意兩點:
1、遞歸終止的條件。對應到了遞歸演算法中最基本的問題,也是最最簡單的問題。
2、遞歸過程。遞歸過程需要將原問題一步一步的推到更小的 同一 問題,更小的意思就是子問題解決起來就更加的簡單。有寫情況是能夠找到一個遞推的公式的。這個過程中就需要透徹的去理解遞歸函數的意義。明確這個函數的輸入和輸出是什麼,這樣來寫的話,就清晰多了。
因為有了這樣的遞歸公式,那麼我們就很容易的能看出來遞歸的終止條件就是我們知道的f(0)和f(1)了。有了f(0)和f(1)之後,我們就能夠繼續的遞推出f(3)一直到f(n)了。
但是我們現在才用一個遞歸演算法的思想來解決這個問題:
像我們常見的數據結構如鏈表、樹、圖等都是有著天然的遞歸結構的,鏈表由於是一個線性的結構,那麼通常我們也是能夠直接循環遍歷就能解決問題的,但是這里我們用遞歸法來解決一下LeetCode上面的問題
LeetCode 203 移除鏈表元素
分析:鏈表的結構可以理解成一個節點連接這一個更短的鏈表,這樣依次一直看下去,直到最後一個節點None,那麼我們這個時候的遞歸終止條件就是head指向None了,返回的就是None
深入的理解遞歸演算法之後,我們就開始進行回溯法的學習。通過LeetCode上面的幾道題,我們來深入的探討一下遞歸與回溯法的應用。
持續更新中...
數據結構與演算法系列博客:
一、數據結構與演算法概述
二、數組及LeetCode典型題目分析
三、鏈表(Linked list)以及LeetCode題
四、棧與隊列(Stack and Queue
五、樹(Trees)
六、遞歸與回溯演算法
七、動態規劃
八、排序與搜索
九、哈希表
參考資料
1、
2、
3、
Ⅲ 【目標檢測演算法解讀】yolo系列演算法二
https://blog.csdn.net/Gentleman_Qin/article/details/84349144
|聲明:遵循CC 4.0 BY-SA版權協議
建立在YOLOv1的基礎上,經過Joseph Redmon等的改進,YOLOv2和YOLO9000演算法在2017年CVPR上被提出,並獲得最佳論文提名,重點解決YOLOv1召回率和定位精度方面的誤差。在提出時,YOLOv2在多種監測數據集中都要快過其他檢測系統,並可以在速度與精確度上進行權衡。
YOLOv2採用Darknet-19作為特徵提取網路,增加了批量標准化(Batch Normalization)的預處理,並使用224×224和448×448兩階段訓練ImageNet,得到預訓練模型後fine-tuning。
相比於YOLOv1是利用FC層直接預測Bounding Box的坐標,YOLOv2借鑒了FSR-CNN的思想,引入Anchor機制,利用K-Means聚類的方式在訓練集中聚類計算出更好的Anchor模板,在卷積層使用Anchor Boxes操作,增加Region Proposal的預測,同時採用較強約束的定位方法,大大提高演算法召回率。同時結合圖像細粒度特徵,將淺層特徵與深層特徵相連,有助於對小尺寸目標的檢測。
下圖所示是YOLOv2採取的各項改進帶了的檢測性能上的提升:
YOLO9000 的主要檢測網路也是YOLO v2,同時使用WordTree來混合來自不同的資源的訓練數據,並使用聯合優化技術同時在ImageNet和COCO數據集上進行訓練,目的是利用數量較大的分類數據集來幫助訓練檢測模型,因此,YOLO 9000的網路結構允許實時地檢測超過9000種物體分類,進一步縮小了檢測數據集與分類數據集之間的大小代溝。
下面將具體分析YOLOv2的各個創新點:
BN概述:
對數據進行預處理(統一格式、均衡化、去噪等)能夠大大提高訓練速度,提升訓練效果。BN正是基於這個假設的實踐,對每一層輸入的數據進行加工。
BN是2015年Google研究員在論文《Batch Normalization: Accelerating Deep Network Training by Recing Internal Covariate Shift》一文中提出的,同時也將BN應用到了2014年的GoogLeNet上,也就是Inception-v2。
BN層簡單講就是對網路的每一層的輸入都做了歸一化,這樣網路就不需要每層都去學數據的分布,收斂會更快。YOLOv1演算法(採用的是GoogleNet網路提取特徵)是沒有BN層的,而在YOLOv2中作者為每個卷積層都添加了BN層。
使用BN對網路進行優化,讓網路提高了收斂性,同時還消除了對其他形式的正則化(regularization)的依賴,因此使用BN後可以從模型中去掉Dropout,而不會產生過擬合。
BN優點:
神經網路每層輸入的分布總是發生變化,加入BN,通過標准化上層輸出,均衡輸入數據分布,加快訓練速度,因此可以設置較大的學習率(Learning Rate)和衰減(Decay);
通過標准化輸入,降低激活函數(Activation Function)在特定輸入區間達到飽和狀態的概率,避免梯度彌散(Gradient Vanishing)問題;
輸入標准化對應樣本正則化,BN在一定程度上可以替代 Dropout解決過擬合問題。
BN演算法:
在卷積或池化之後,激活函數之前,對每個數據輸出進行標准化,方式如下圖所示:
公式很簡單,前三行是 Batch內數據歸一化(假設一個Batch中有每個數據),同一Batch內數據近似代表了整體訓練數據。第四行引入了附加參數 γ 和 β,此二者的取值演算法可以參考BN論文,在此不再贅述。
fine-tuning:用已經訓練好的模型,加上自己的數據集,來訓練新的模型。即使用別人的模型的前幾層,來提取淺層特徵,而非完全重新訓練模型,從而提高效率。一般新訓練模型准確率都會從很低的值開始慢慢上升,但是fine-tuning能夠讓我們在比較少的迭代次數之後得到一個比較好的效果。
YOLO模型分為兩部分,分類模型和檢測模型,前者使用在ImageNet上預訓練好的模型,後者在檢測數據集上fine-tuning。
YOLOv1在預訓練時採用的是224*224的輸入(在ImageNet數據集上進行),然後在檢測的時候採用448*448的輸入,這會導致從分類模型切換到檢測模型的時候,模型還要適應圖像解析度的改變。
YOLOv2則將預訓練分成兩步:先用224*224的輸入在ImageNet數據集訓練分類網路,大概160個epoch(將所有訓練數據循環跑160次)後將輸入調整到448*448,再訓練10個epoch(這兩步都是在ImageNet數據集上操作)。然後利用預訓練得到的模型在檢測數據集上fine-tuning。這樣訓練得到的模型,在檢測時用448*448的圖像作為輸入可以順利檢測。
YOLOv1將輸入圖像分成7*7的網格,每個網格預測2個Bounding Box,因此一共有98個Box,同時YOLOv1包含有全連接層,從而能直接預測Bounding Boxes的坐標值,但也導致丟失較多的空間信息,定位不準。
YOLOv2首先將YOLOv1網路的FC層和最後一個Pooling層去掉,使得最後的卷積層可以有更高解析度的特徵,然後縮減網路,用416*416大小的輸入代替原來的448*448,使得網路輸出的特徵圖有奇數大小的寬和高,進而使得每個特徵圖在劃分單元格(Cell)的時候只有一個中心單元格(Center Cell)。
為什麼希望只有一個中心單元格呢?由於圖片中的物體都傾向於出現在圖片的中心位置,特別是比較大的物體,所以有一個單元格單獨位於物體中心的位置用於預測這些物體。
YOLOv2通過引入Anchor Boxes,通過預測Anchor Box的偏移值與置信度,而不是直接預測坐標值。YOLOv2的卷積層採用32這個值來下采樣圖片,所以通過選擇416*416用作輸入尺寸最終能輸出一個13*13的特徵圖。若採用FSRCNN中的方式,每個Cell可預測出9個Anchor Box,共13*13*9=1521個(YOLOv2確定Anchor Boxes的方法見是維度聚類,每個Cell選擇5個Anchor Box)。
在FSRCNN中,以一個51*39大小的特徵圖為例,其可以看做一個尺度為51*39的圖像,對於該圖像的每一個位置,考慮9個可能的候選窗口:3種面積3種比例。這些候選窗口稱為Anchor Boxes。下圖示出的是51*39個Anchor Box中心,以及9種Anchor Box示例。
YOLOv1和YOLOv2特徵圖數據結構:
YOLOv1:S*S* (B*5 + C) => 7*7(2*5+20)
其中B對應Box數量,5對應邊界框的定位信息(w,y,w,h)和邊界框置信度(Confidience)。解析度是7*7,每個Cell預測2個Box,這2個Box共用1套條件類別概率(1*20)。
YOLOv2:S*S*K* (5 + C) => 13*13*9(5+20)
解析度提升至13*13,對小目標適應性更好,借鑒了FSRCNN的思想,每個Cell對應K個Anchor box(YOLOv2中K=5),每個Anchor box對應1組條件類別概率(1*20)。
聚類:聚類是指事先沒有「標簽」而通過某種成團分析找出事物之間存在聚集性原因的過程。即在沒有劃分類別的情況下,根據數據相似度進行樣本分組。
在FSR-CNN中Anchor Box的大小和比例是按經驗設定的,然後網路會在訓練過程中調整Anchor Box的尺寸,最終得到准確的Anchor Boxes。若一開始就選擇了更好的、更有代表性的先驗Anchor Boxes,那麼網路就更容易學到准確的預測位置。
YOLOv2使用K-means聚類方法類訓練Bounding Boxes,可以自動找到更好的寬高維度的值用於一開始的初始化。傳統的K-means聚類方法使用的是歐氏距離函數,意味著較大的Anchor Boxes會比較小的Anchor Boxes產生更多的錯誤,聚類結果可能會偏離。由於聚類目的是確定更精準的初始Anchor Box參數,即提高IOU值,這應與Box大小無關,因此YOLOv2採用IOU值為評判標准,即K-means 採用的距離函數(度量標准) 為:
d(box,centroid) = 1 - IOU(box,centroid)
如下圖,左邊是聚類的簇個數和IOU的關系,兩條曲線分別代表兩個不同的數據集。分析聚類結果並權衡模型復雜度與IOU值後,YOLOv2選擇K=5,即選擇了5種大小的Box 維度來進行定位預測。
其中紫色和灰色也是分別表示兩個不同的數據集,可以看出其基本形狀是類似的。更重要的是,可以看出聚類的結果和手動設置的Anchor Box位置和大小差別顯著——結果中扁長的框較少,而瘦高的框更多(更符合行人的特徵)。
YOLOv2採用的5種Anchor的Avg IOU是61,而採用9種Anchor Boxes的Faster RCNN的Avg IOU是60.9,也就是說本文僅選取5種box就能達到Faster RCNN的9中box的效果。選擇值為9的時候,AVG IOU更有顯著提高。說明K-means方法的生成的boxes更具有代表性。
直接對Bounding Boxes求回歸會導致模型不穩定,其中心點可能會出現在圖像任何位置,有可能導致回歸過程震盪,甚至無法收斂,尤其是在最開始的幾次迭代的時候。大多數不穩定因素產生自預測Bounding Box的中心坐標(x,y)位置的時候。
YOLOv2的網路在特徵圖(13*13)的每一個單元格中預測出5個Bounding Boxes(對應5個Anchor Boxes),每個Bounding Box預測出5個值(tx,ty,tw,th,t0),其中前4個是坐標偏移值,t0是置信度結果(類似YOLOv1中的邊界框置信度Confidence)。YOLOv2借鑒了如下的預測方式,即當Anchor Box的中心坐標和寬高分別是(xa,ya)和(wa,wh)時,Bounding Box坐標的預測偏移值(tx,ty,tw,th)與其坐標寬高(x,y,w,h)的關系如下:
tx = (x-xa)/wa
ty= (y-ya)/ha
tw = log(w/wa)
th = log(h/ha)
基於這種思想,YOLOv2在預測Bounding Box的位置參數時採用了如下強約束方法:
上圖中,黑色虛線框是Anchor Box,藍色矩形框就是預測的Bounding Box結果,預測出的Bounding Box的坐標和寬高為(bx,by)和(bw,bh),計算方式如圖中所示,其中:對每個Bounding Box預測出5個值(tx,ty,tw,th,t0),Cell與圖像左上角的橫縱坐標距離為(cx,cy),σ定義為sigmoid激活函數(將函數值約束到[0,1]),該Cell對應的Anchor Box對應的寬高為(pw,ph)。
簡而言之,(bx,by)就是(cx,cy)這個Cell附近的Anchor Box針對預測值(tx,ty)得到的Bounding Box的坐標預測結果,同時可以發現這種方式對於較遠距離的Bounding Box預測值(tx,ty)能夠得到很大的限制。
YOLOv2通過添加一個轉移層,把高解析度的淺層特徵連接到低解析度的深層特徵(把特徵堆積在不同Channel中)而後進行融合和檢測。具體操作是先獲取前層的26*26的特徵圖,將其同最後輸出的13*13的特徵圖進行連接,而後輸入檢測器進行檢測(檢測器的FC層起到了全局特徵融合的作用),以此來提高對小目標的檢測能力。
為了適應不同尺度下的檢測任務,YOLOv2在訓練網路時,其在檢測數據集上fine-tuning時候採用的輸入圖像的size是動態變化的。具體來講,每訓練10個Batch,網路就會隨機選擇另一種size的輸入圖像。因為YOLOv2用到了參數是32的下采樣,因此也採用32的倍數作為輸入的size,即採用{320,352,…,608}的輸入尺寸(網路會自動改變尺寸,並繼續訓練的過程)。
這一策略讓網路在不同的輸入尺寸上都能達到較好的預測效果,使同一網路能在不同解析度上進行檢測。輸入圖片較大時,檢測速度較慢,輸入圖片較小時,檢測速度較快,總體上提高了准確率,因此多尺度訓練算是在准確率和速度上達到一個平衡。
上表反映的是在檢測時,不同大小的輸入圖片情況下的YOLOv2和其他目標檢測演算法的對比。可以看出通過多尺度訓練的檢測模型,在測試的時候,輸入圖像在尺寸變化范圍較大的情況下也能取得mAP和FPS的平衡。
YOLOv1採用的訓練網路是GoogleNet,YOLOv2採用了新的分類網路Darknet-19作為基礎網路,它使用了較多的3*3卷積核,並把1*1的卷積核置於3*3的卷積核之間,用來壓縮特徵,同時在每一次池化操作後把通道(Channels)數翻倍(借鑒VGG網路)。
YOLOv1採用的GooleNet包含24個卷積層和2個全連接層,而Darknet-19包含19個卷積層和5個最大池化層(Max Pooling Layers),後面添加Average Pooling層(代替v1中FC層),而Softmax分類器作為激活被用在網路最後一層,用來進行分類和歸一化。
在ImageNet數據集上進行預訓練,主要分兩步(採用隨機梯度下降法):
輸入圖像大小是224*224,初始學習率(Learning Rate)為0.1,訓練160個epoch,權值衰減(Weight Decay)為0.0005,動量(Momentum)為0.9,同時在訓練時採用標準的數據增強(Data Augmentation)方式如隨機裁剪、旋轉以及色度、亮度的調整。
fine-tuning:第1步結束後,改用448*448輸入(高解析度模型),學習率改為0.001,訓練10個epoch,其他參數不變。結果表明:fine-tuning後的top-1准確率為76.5%,top-5准確率為93.3%,若按照原來的訓練方式,Darknet-19的top-1准確率是72.9%,top-5准確率為91.2%。可以看出,兩步分別從網路結構和訓練方式方面入手提高了網路分類准確率。
預訓練之後,開始基於檢測的數據集再進行fine-tuning。
首先,先把最後一個卷積層去掉,然後添加3個3*3的卷積層,每個卷積層有1024個卷積核,並且後面都連接一個1*1的卷積層,卷積核個數(特徵維度)根據需要檢測的類數量決定。(比如對VOC數據,每個Cell需要預測5個Boungding Box,每個Bounding Box有4個坐標值、1個置信度值和20個條件類別概率值,所以每個單元格對應125個數據,此時卷積核個數應該取125。)
然後,將最後一個3*3*512的卷積層和倒數第2個卷積層相連(提取細粒度特徵),最後在檢測數據集上fine-tuning預訓練模型160個epoch,學習率採用0.001,並且在第60和90個epoch的時候將學習率除以10,權值衰減、動量和數據增強方法與預訓練相同。
YOLO9000通過結合分類和檢測數據集,使得訓練得到的模型可以檢測約9000類物體,利用帶標注的分類數據集量比較大的特點,解決了帶標注的檢測數據集量比較少的問題。具體方法是:一方面採用WordTree融合數據集,另一方面聯合訓練分類數據集和檢測數據集。
分類數據集和檢測數據集存在較大差別:檢測數據集只有粗粒度的標記信息,如「貓」、「狗」,而分類數據集的標簽信息則更細粒度,更豐富。比如「狗」就包括「哈士奇」、「金毛狗」等等。所以如果想同時在檢測數據集與分類數據集上進行訓練,那麼就要用一種一致性的方法融合這些標簽信息。
用於分類的方法,常用Softmax(比如v2),Softmax意味著分類的類別之間要互相獨立的,而ImageNet和COCO這兩種數據集之間的分類信息不相互獨立(ImageNet對應分類有9000種,而COCO僅提供80種目標檢測),所以使用一種多標簽模型來混合數據集,即假定一張圖片可以有多個標簽,並且不要求標簽之間獨立,而後進行Softmax分類。
由於ImageNet的類別是從WordNet選取的,作者採用以下策略重建了一個樹形結構(稱為WordTree):
遍歷ImageNet的標簽,然後在WordNet中尋找該標簽到根節點(所有的根節點為實體對象)的路徑;
如果路徑只有一條,將該路徑直接加入到WordTree結構中;
否則,從可選路徑中選擇一條最短路徑,加入到WordTree結構中。
WordTree的作用就在於將兩種數據集按照層級進行結合。
如此,在WordTree的某個節點上就可以計算該節點的一些條件概率值,比如在terrier這個節點,可以得到如下條件概率值:
進而,如果要預測此節點的概率(即圖片中目標是Norfolk terrier的概率),可以根據WordTree將該節點到根節點的條件概率依次相乘得到,如下式:
其中:
YOLO9000在WordTree1k(用有1000類別的ImageNet1k創建)上訓練了Darknet-19模型。為了創建WordTree1k作者添加了很多中間節點(中間詞彙),把標簽由1000擴展到1369。
訓練過程中GroundTruth標簽要順著向根節點的路徑傳播:為了計算條件概率,模型預測了一個包含1369個元素的向量,而且基於所有「同義詞集」計算Softmax,其中「同義詞集」是同一概念下的所屬詞。
現在一張圖片是多標記的,標記之間不需要相互獨立。在訓練過程中,如果有一個圖片的標簽是「Norfolk terrier」,那麼這個圖片還會獲得「狗」以及「哺乳動物」等標簽。
如上圖所示,之前的ImageNet分類是使用一個大Softmax進行分類,而現在WordTree只需要對同一概念下的同義詞進行Softmax分類。然後作者分別兩個數據集上用相同訓練方法訓練Darknet-19模型,最後在ImageNet數據集上的top-1准確率為72.9%,top-5准確率為91.2%;在WordTree數據集上的top-1准確率為71.9%,top-5准確率為90.4%。
這種方法的好處是有「退而求其次」的餘地:在對未知或者新的物體進行分類時,性能損失更低,比如看到一個狗的照片,但不知道是哪種種類的狗,那麼就預測其為「狗」。
以上是構造WordTree的原理,下圖是融合COCO數據集和ImageNet數據集以及生成它們的WordTree的示意圖(用顏色區分了COCO數據集和ImageNet數據集的標簽節點), 混合後的數據集對應的WordTree有9418個類。另一方面,由於ImageNet數據集太大,YOLO9000為了平衡兩個數據集之間的數據量,通過過采樣(Oversampling)COCO數據集中的數據,使COCO數據集與ImageNet數據集之間的數據量比例達到1:4。
對YOLO9000進行評估,發現其mAP比DPM高,而且YOLO有更多先進的特徵,YOLO9000是用部分監督的方式在不同訓練集上進行訓練,同時還能檢測9000個物體類別,並保證實時運行。雖然YOLO9000對動物的識別性能很好,但是對衣服或者裝備的識別性能不是很好(這跟數據集的數據組成有關)。
YOLO9000的網路結構和YOLOv2類似,區別是每個單元格只採用3個Anchor Boxes。
YOLO9000提出了一種在分類數據集和檢測數據集上聯合訓練的機制,即使用檢測數據集(COCO)的圖片去學習檢測相關的信息即查找對象(例如預測邊界框坐標、邊界框是否包含目標及目標屬於各個類別的概率),使用僅有類別標簽的分類數據集(ImageNet)中的圖片去擴展檢測到的對象的可識別種類。
具體方法是:當網路遇到一個來自檢測數據集的圖片與標記信息,就把這些數據用完整的損失函數(v2和9000均沿用了v1網路的損失函數)反向傳播,而當網路遇到一個來自分類數據集的圖片和分類標記信息,只用代表分類誤差部分的損失函數反向傳播這個圖片。
YOLO v2 在大尺寸圖片上能夠實現高精度,在小尺寸圖片上運行更快,可以說在速度和精度上達到了平衡,具體性能表現如下所示。
coco數據集
voc2012數據集
Ⅳ 插入排序的演算法
排序演算法在編程領域中起著舉足輕重的作用,在目標檢索、機器學習、數值計算、圖像處理等領域有著廣泛地應用。為了追本溯源,公眾號特推出常用經典排序演算法系列推文,讓小夥伴們深入了解排序演算法的實現原理,同時也提升matlab編程能力。
插入排序演算法,它是將無序序列分成兩部分,一部分為假設已經排列完成的序列,另一部分為餘下序列,將餘下序列中的元素取出插入到已排列完成的序列中,依次比較確定插入位置,下面就一起來看看該算的實現原理吧。
插入排序演算法實現過程(以升序排列為例):
對於長度為N的無序數組A,假定序列A(1)為排列完成的序列K,將A(2)與A(1)作比較,如果A(2)<A(1),則兩者交換,否則保持不變,即完成序列K的元素添加;將A(3)與A(2)比較,如果A(2)<A(3),則保持不變,否則兩者交換,繼續將A(3)與A(1)比較,如果A(3)>A(1),則兩者交換,否則保持不變;以此類推,將餘下序列中的元素取出插入到序列K中,從序列K尾部往首部進行比較,直至完成所有元素的插入。
matlab代碼
主程序:main.m
format short;
clc;clear;
A = round(rand(1,8),2);
nA = InsertSort(A);
disp(['原始序列:',num2str(A)]);
disp(['插入排序:',num2str(nA)]);
插入排序函數:InsertSort.m
function A = InsertSort(A)
% 感謝關註:matlab愛好者
% 插入排序演算法源代碼
% 作者:matlab愛好者
len = length(A);
for w = 1:len-1
% 從餘下序列中取出一個元素插入到新序列中
for v = w+1:-1:2
if(A(v)<A(v-1))
% 如果新元素小於所插入位置的元素,則交換
tmp = A(v-1);
A(v-1) = A(v);
A(v) = tmp;
else
% 否則保持位置不變
break;
end
end
end
Ⅳ python演算法有哪些
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
一個演算法應該具有以下七個重要的特徵:
①有窮性(Finiteness):演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
②確切性(Definiteness):演算法的每一步驟必須有確切的定義;
③輸入項(Input):一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸 入是指演算法本身定出了初始條件;
④輸出項(Output):一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒 有輸出的演算法是毫無意義的;
⑤可行性(Effectiveness):演算法中執行的任何計算步驟都是可以被分解為基本的可執行 的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性);
⑥高效性(High efficiency):執行速度快,佔用資源少;
⑦健壯性(Robustness):對數據響應正確。
相關推薦:《Python基礎教程》
五種常見的Python演算法:
1、選擇排序
2、快速排序
3、二分查找
4、廣度優先搜索
5、貪婪演算法
Ⅵ 簡述演算法的定義和特徵以及它在c語言編程中如何使用的
一、什麼是演算法
演算法是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。演算法常常含有重復的步驟和一些比較或邏輯判斷。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。時間復雜度用「O(數量級)」來表示,稱為「階」。常見的時間復雜度有: O(1)常數階;O(log2n)對數階;O(n)線性階;O(n2)平方階。
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。
二、演算法設計的方法
1.遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。設要求問題規模為N的解,當N=1時,解或為已知,或能非常方便地得到解。能採用遞推法構造演算法的問題有重要的遞推性質,即當得到問題規模為i-1的解後,由問題的遞推性質,能從已求得的規模為1,2,…,i-1的一系列解,構造出問題規模為I的解。這樣,程序可從i=0或i=1出發,重復地,由已知至i-1規模的解,通過遞推,獲得規模為i的解,直至得到規模為N的解。
Ⅶ 共識演算法系列之一:私鏈的raft演算法和聯盟鏈的 pbft 演算法
對數據順序達成一致共識是很多共識演算法要解決的本質問題
Fabic的pbft演算法實現
現階段的共識演算法主要可以分成三大類:公鏈,聯盟鏈和私鏈
私鏈,所有節點可信
聯盟鏈,存在對等的不信任節點
私鏈:私鏈的共識演算法即區塊鏈這個概念還沒普及時的傳統分布式系統里的共識演算法,比如 zookeeper 的 zab 協議,就是類 paxos 演算法的一種。私鏈的適用環境一般是不考慮集群中存在作惡節點,只考慮因為系統或者網路原因導致的故障節點。
聯盟鏈:聯盟鏈中,經典的代表項目是 Hyperledger 組織下的 Fabric 項目, Fabric0.6 版本使用的就是 pbft 演算法。聯盟鏈的適用環境除了需要考慮集群中存在故障節點,還需要考慮集群中存在作惡節點。對於聯盟鏈,每個新加入的節點都是需要驗證和審核的。
公鏈:公鏈不僅需要考慮網路中存在故障節點,還需要考慮作惡節點,這一點和聯盟鏈是類似的。和聯盟鏈最大的區別就是,公鏈中的節點可以很自由的加入或者退出,不需要嚴格的驗證和審核。
在公有鏈中用的最多的是pow演算法和pos演算法,這些演算法都是參與者的利益直接相關,通過利益來制約節點誠實的工作,解決分布式系統中的拜占庭問題。拜占庭容錯演算法是一種狀態機副本復制演算法,通過節點間的多輪消息傳遞,網路內的所有誠實節點就可以達成一致的共識。
使用拜占庭容錯演算法不需要發行加密貨幣,但是只能用於私有鏈或者聯盟鏈,需要對節點的加入進行許可權控制;不能用於公有鏈,因為公有鏈中所有節點都可以隨意加入退出,無法抵擋女巫攻擊(sybil attack)
raft 演算法包含三種角色,分別是:跟隨者( follower ),候選人(candidate )和領導者( leader )。集群中的一個節點在某一時刻只能是這三種狀態的其中一種,這三種角色是可以隨著時間和條件的變化而互相轉換的。
raft 演算法主要有兩個過程:一個過程是領導者選舉,另一個過程是日誌復制,其中日誌復制過程會分記錄日誌和提交數據兩個階段。raft 演算法支持最大的容錯故障節點是(N-1)/2,其中 N 為 集群中總的節點數量。
國外有一個動畫介紹raft演算法介紹的很透徹,鏈接地址為: http://thesecretlivesofdata.com/raft/ 。這個動畫主要包含三部分內容,第一部分介紹簡單版的領導者選舉和日誌復制的過程,第二部分內容介紹詳細版的領導者選舉和日誌復制的過程,第三部分內容介紹的是如果遇到網路分區(腦裂),raft 演算法是如何恢復網路一致的。
pbft 演算法的提出主要是為了解決拜占庭將軍問題
要讓這個問題有解,有一個 十分重要的前提 ,那就是 信道必須是可靠的 。如果信道不能保證可靠,那麼拜占庭問題無解。關於信道可靠問題,會引出兩軍問題。兩軍問題的結論是,在一個不可靠的通信鏈路上試圖通過通信以達成一致是基本不可能或者十分困難的。
拜占庭將軍問題最早是由 Leslie Lamport 與另外兩人在 1982 年發表的論文《The Byzantine Generals Problem 》提出的, 他證明了在將軍總數大於 3f ,背叛者為f 或者更少時,忠誠的將軍可以達成命令上的一致,即 3f+1<=n 。演算法復雜度為 o(n^(f+1)) 。而 Miguel Castro (卡斯特羅)和 Barbara Liskov (利斯科夫)在1999年發表的論文《 Practical Byzantine Fault Tolerance 》中首次提出 pbft 演算法,該演算法容錯數量也滿足 3f+1<=n ,演算法復雜度為 o(n^2)。
首先我們先來思考一個問題,為什麼 pbft 演算法的最大容錯節點數量是(n-1)/3,而 raft 演算法的最大容錯節點數量是(n-1)/2 ?
對於raft演算法,raft演算法的的容錯只支持容錯故障節點,不支持容錯作惡節點。什麼是故障節點呢?就是節點因為系統繁忙、宕機或者網路問題等其它異常情況導致的無響應,出現這種情況的節點就是故障節點。那什麼是作惡節點呢?作惡節點除了可以故意對集群的其它節點的請求無響應之外,還可以故意發送錯誤的數據,或者給不同的其它節點發送不同的數據,使整個集群的節點最終無法達成共識,這種節點就是作惡節點。
raft 演算法只支持容錯故障節點,假設集群總節點數為n,故障節點為 f ,根據小數服從多數的原則,集群里正常節點只需要比 f 個節點再多一個節點,即 f+1 個節點,正確節點的數量就會比故障節點數量多,那麼集群就能達成共識。因此 raft 演算法支持的最大容錯節點數量是(n-1)/2。
對於 pbft 演算法,因為 pbft 演算法的除了需要支持容錯故障節點之外,還需要支持容錯作惡節點。假設集群節點數為 N,有問題的節點為 f。有問題的節點中,可以既是故障節點,也可以是作惡節點,或者只是故障節點或者只是作惡節點。那麼會產生以下兩種極端情況:
第一種情況,f 個有問題節點既是故障節點,又是作惡節點,那麼根據小數服從多數的原則,集群里正常節點只需要比f個節點再多一個節點,即 f+1 個節點,確節點的數量就會比故障節點數量多,那麼集群就能達成共識。也就是說這種情況支持的最大容錯節點數量是 (n-1)/2。
第二種情況,故障節點和作惡節點都是不同的節點。那麼就會有 f 個問題節點和 f 個故障節點,當發現節點是問題節點後,會被集群排除在外,剩下 f 個故障節點,那麼根據小數服從多數的原則,集群里正常節點只需要比f個節點再多一個節點,即 f+1 個節點,確節點的數量就會比故障節點數量多,那麼集群就能達成共識。所以,所有類型的節點數量加起來就是 f+1 個正確節點,f個故障節點和f個問題節點,即 3f+1=n。
結合上述兩種情況,因此 pbft 演算法支持的最大容錯節點數量是(n-1)/3
pbft 演算法的基本流程主要有以下四步:
客戶端發送請求給主節點
主節點廣播請求給其它節點,節點執行 pbft 演算法的三階段共識流程。
節點處理完三階段流程後,返回消息給客戶端。
客戶端收到來自 f+1 個節點的相同消息後,代表共識已經正確完成。
為什麼收到 f+1 個節點的相同消息後就代表共識已經正確完成?從上一小節的推導里可知,無論是最好的情況還是最壞的情況,如果客戶端收到 f+1 個節點的相同消息,那麼就代表有足夠多的正確節點已全部達成共識並處理完畢了。
3.演算法核心三階段流程
演算法的核心三個階段分別是 pre-prepare 階段(預准備階段),prepare 階段(准備階段), commit 階段(提交階段)
流程的對比上,對於 leader 選舉這塊, raft 演算法本質是誰快誰當選,而 pbft 演算法是按編號依次輪流做主節點。對於共識過程和重選 leader 機制這塊,為了更形象的描述這兩個演算法,接下來會把 raft 和 pbft 的共識過程比喻成一個團隊是如何執行命令的過程,從這個角度去理解 raft 演算法和 pbft 的區別。
一個團隊一定會有一個老大和普通成員。對於 raft 演算法,共識過程就是:只要老大還沒掛,老大說什麼,我們(團隊普通成員)就做什麼,堅決執行。那什麼時候重新老大呢?只有當老大掛了才重選老大,不然生是老大的人,死是老大的鬼。
對於 pbft 演算法,共識過程就是:老大向我發送命令時,當我認為老大的命令是有問題時,我會拒絕執行。就算我認為老大的命令是對的,我還會問下團隊的其它成員老大的命令是否是對的,只有大多數人 (2f+1) 都認為老大的命令是對的時候,我才會去執行命令。那什麼時候重選老大呢?老大掛了當然要重選,如果大多數人都認為老大不稱職或者有問題時,我們也會重新選擇老大。
四、結語
raft 演算法和 pbft 演算法是私鏈和聯盟鏈中經典的共識演算法,本文主要介紹了 raft 和 pbft 演算法的流程和區別。 raft 和 pbft 演算法有兩點根本區別:
raft 演算法從節點不會拒絕主節點的請求,而 pbft 演算法從節點在某些情況下會拒絕主節點的請求 ;
raft 演算法只能容錯故障節點,並且最大容錯節點數為 (n-1)/2 ,而 pbft 演算法能容錯故障節點和作惡節點,最大容錯節點數為 (n-1)/3 。
pbft演算法是通過投票來達成共識,可以很好的解決包括分叉等問題的同時提升效率。但僅僅比較適合於聯盟鏈私有鏈,因為兩兩節點之間通信量是O(n^2)(通過優化可以減少通信量),一般來說不能應用於超過100個節點。
pbft有解的前提是 信道必須是可靠的 ,存在的問題是 可擴展性(scalability)差
部分來自: https://blog.csdn.net/kojhliang/article/details/80270223
區塊鏈在設計上就是為了BFT
Ⅷ 摘要演算法的分類
1、CRC8、CRC16、CRC32
CRC(Cyclic Rendancy Check,循環冗餘校驗)演算法出現時間較長,應用也十分廣泛,尤其是通訊領域,現在應用最多的就是 CRC32 演算法,它產生一個4位元組(32位)的校驗值,一般是以8位十六進制數,如FA 12 CD 45等。CRC演算法的優點在於簡便、速度快,嚴格的來說,CRC更應該被稱為數據校驗演算法,但其功能與數據摘要演算法類似,因此也作為測試的可選演算法。
在 WinRAR、WinZIP 等軟體中,也是以 CRC32 作為文件校驗演算法的。一般常見的簡單文件校驗(Simple File Verify – SFV)也是以 CRC32演算法為基礎,它通過生成一個後綴名為 .SFV 的文本文件,這樣可以任何時候可以將文件內容 CRC32運算的結果與 .SFV 文件中的值對比來確定此文件的完整性。
與 SFV 相關工具軟體有很多,如MagicSFV、MooSFV等。
2、MD2 、MD4、MD5
這是應用非常廣泛的一個演算法家族,尤其是 MD5(Message-Digest Algorithm 5,消息摘要演算法版本5),它由MD2、MD3、MD4發展而來,由Ron Rivest(RSA公司)在1992年提出,被廣泛應用於數據完整性校驗、數據(消息)摘要、數據加密等。MD2、MD4、MD5 都產生16位元組(128位)的校驗值,一般用32位十六進制數表示。MD2的演算法較慢但相對安全,MD4速度很快,但安全性下降,MD5比MD4更安全、速度更快。
在互聯網上進行大文件傳輸時,都要得用MD5演算法產生一個與文件匹配的、存儲MD5值的文本文件(後綴名為 .md5或.md5sum),這樣接收者在接收到文件後,就可以利用與 SFV 類似的方法來檢查文件完整性,絕大多數大型軟體公司或開源組織都是以這種方式來校驗數據完整性,而且部分操作系統也使用此演算法來對用戶密碼進行加密,另外,它也是目前計算機犯罪中數據取證的最常用演算法。
與MD5 相關的工具有很多,如 WinMD5等。
3、SHA1、SHA256、SHA384、SHA512
SHA(Secure Hash Algorithm)是由美國專門制定密碼演算法的標准機構—— 美國國家標准技術研究院(NIST)制定的,SHA系列演算法的摘要長度分別為:SHA為20位元組(160位)、SHA256為32位元組(256位)、 SHA384為48位元組(384位)、SHA512為64位元組(512位),由於它產生的數據摘要的長度更長,因此更難以發生碰撞,因此也更為安全,它是未來數據摘要演算法的發展方向。由於SHA系列演算法的數據摘要長度較長,因此其運算速度與MD5相比,也相對較慢。
SHA1的應用較為廣泛,主要應用於CA和數字證書中,另外在互聯網中流行的BT軟體中,也是使用SHA1來進行文件校驗的。
4、RIPEMD、PANAMA、TIGER、ADLER32 等
RIPEMD是Hans Dobbertin等3人在對MD4,MD5缺陷分析基礎上,於1996年提出來的,有4個標准128、160、256和320,其對應輸出長度分別為16位元組、20位元組、32位元組和40位元組。
TIGER由Ross在1995年提出。Tiger號稱是最快的Hash演算法,專門為64位機器做了優化。
Ⅸ 大數據常用的各種演算法
我們經常談到的所謂的 數據挖掘 是通過大量的數據集進行排序,自動化識別趨勢和模式並且建立相關性的過程。那現在市面的數據公司都是通過各種各樣的途徑來收集海量的信息,這些信息來自於網站、公司應用、社交媒體、移動設備和不斷增長的物聯網。
比如我們現在每天都在使用的搜索引擎。在自然語言處理領域,有一種非常流行的演算法模型,叫做詞袋模型,即把一段文字看成一袋水果,這個模型就是要算出這袋水果里,有幾個蘋果、幾個香蕉和幾個梨。搜索引擎會把這些數字記下來,如果你想要蘋果,它就會把有蘋果的這些袋子給你。
當我們在網上買東西或是看電影時,網站會推薦一些可能符合我們偏好的商品或是電影,這個推薦有時候還挺准。事實上,這背後的演算法,是在數你喜歡的電影和其他人喜歡的電影有多少個是一樣的,如果你們同時喜歡的電影超過一定個數,就把其他人喜歡、但你還沒看過的電影推薦給你。 搜索引擎和推薦系統 在實際生產環境中還要做很多額外的工作,但是從本質上來說,它們都是在數數。
當數據量比較小的時候,可以通過人工查閱數據。而到了大數據時代,幾百TB甚至上PB的數據在分析師或者老闆的報告中,就只是幾個數字結論而已。 在數數的過程中,數據中存在的信息也隨之被丟棄,留下的那幾個數字所能代表的信息價值,不抵其真實價值之萬一。 過去十年,許多公司花了大價錢,用上了物聯網和雲計算,收集了大量的數據,但是到頭來卻發現得到的收益並沒有想像中那麼多。
所以說我們現在正處於「 數字化一切 」的時代。人們的所有行為,都將以某種數字化手段轉換成數據並保存下來。每到新年,各大網站、App就會給用戶推送上一年的回顧報告,比如支付寶會告訴用戶在過去一年裡花了多少錢、在淘寶上買了多少東西、去什麼地方吃過飯、花費金額超過了百分之多少的小夥伴;航旅縱橫會告訴用戶去年做了多少次飛機、總飛行里程是多少、去的最多的城市是哪裡;同樣的,最後讓用戶知道他的行程超過了多少小夥伴。 這些報告看起來非常酷炫,又冠以「大數據」之名,讓用戶以為是多麼了不起的技術。
實際上,企業對於數據的使用和分析,並不比我們每年收到的年度報告更復雜。已經有30多年歷史的商業智能,看起來非常酷炫,其本質依然是數數,並把數出來的結果畫成圖給管理者看。只是在不同的行業、場景下,同樣的數字和圖表會有不同的名字。即使是最近幾年炙手可熱的大數據處理技術,也不過是可以數更多的數,並且數的更快一些而已。
在大數據處理過程中會用到那些演算法呢?
1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的較佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是較佳優先搜索的範例。
2、集束搜索(又名定向搜索,Beam Search)——較佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。
3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。
4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。
5、Buchberger演算法——一種數學演算法,可將其視為針對單變數較大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。
6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。
7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。
8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。
9、離散微分演算法(Discrete differentiation)。
10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法
11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的較大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。
12、期望-較大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-較大演算法在概率模型中尋找可能性較大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其較大可能估計值;第二步是較大化,較大化在第一步上求得的較大可能值來計算參數的值。
13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。
14、梯度下降(Gradient descent)——一種數學上的最優化演算法。
15、哈希演算法(Hashing)。
16、堆排序(Heaps)。
17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。
18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。
19、較大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到較大的流。它優勢被定義為找到這樣一個流的值。較大流問題可以看作更復雜的網路流問題的特定情況。較大流與網路中的界面有關,這就是較大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的較大流。
20、合並排序(Merge Sort)。
21、牛頓法(Newton's method)——求非線性方程(組)零點的一種重要的迭代法。
22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。
23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。
24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。
25、RSA——公鑰加密演算法。較早的適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。
26、Schönhage-Strassen演算法——在數學中,Schönhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。
27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待較大化(或最小化)的固定線性函數。
28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。
29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。
30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。
31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:
查找:判斷某特定元素屬於哪個組。
合並:聯合或合並兩個組為一個組。
32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。