基礎查詢演算法
A. 數據結構有哪些基本演算法
數據結構是一門研究非數值計算的程序設計問題中的操作對象,以及它們之間的關系和操作等相關問題的學科。
可以理解為:程序設計 = 數據結構 + 演算法
數據結構演算法具有五個基本特徵:輸入、輸出、有窮性、確定性和可行性。
1、輸入:一個演算法具有零個或者多個輸出。以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件。後面一句話翻譯過來就是,如果一個演算法本身給出了初始條件,那麼可以沒有輸出。比如,列印一句話:NSLog(@"你最牛逼!");
2、輸出:演算法至少有一個輸出。也就是說,演算法一定要有輸出。輸出的形式可以是列印,也可以使返回一個值或者多個值等。也可以是顯示某些提示。
3、有窮性:演算法的執行步驟是有限的,演算法的執行時間也是有限的。
4、確定性:演算法的每個步驟都有確定的含義,不會出現二義性。
5、可行性:演算法是可用的,也就是能夠解決當前問題。
數據結果的基本演算法有:
1、圖搜索(廣度優先、深度優先)深度優先特別重要
2、排序
3、動態規劃
4、匹配演算法和網路流演算法
5、正則表達式和字元串匹配
6、三路劃分-快速排序
7、合並排序(更具擴展性,復雜度類似快速排序)
8、DF/BF 搜索 (要知道使用場景)
9、Prim / Kruskal (最小生成樹)
10、Dijkstra (最短路徑演算法)
11、選擇演算法
B. 作為程序員提高編程能力的幾個基礎演算法
一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要Ο(nlogn)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(nlogn)演算法更快,因為它的內部循環(innerloop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divideandconquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1從數列中挑出一個元素,稱為「基準」(pivot),
2重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
堆排序的平均時間復雜度為Ο(nlogn) 。
創建一個堆H[0..n-1]
把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
三:歸並排序
歸並排序(Mergesort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(DivideandConquer)的一個非常典型的應用。
1.申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列
2.設定兩個指針,最初位置分別為兩個已經排序序列的起始位置
3.比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置
4.重復步驟3直到某一指針達到序列尾
5.將另一序列剩下的所有元素直接復制到合並序列尾
四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。
1.將n個元素每5個一組,分成n/5(上界)組。
2.取出每一組的中位數,任意排序方法,比如插入排序。
3.遞歸的調用selection演算法查找上一步中所有中位數的中位數,設為x,偶數個中位數的情況下設定為選取中間小的一個。
4.用x來分割數組,設小於等於x的個數為k,大於x的個數即為n-k。
5.若i==k,返回x;若i<k,在小於x的元素中遞歸查找第i小的元素;若i>k,在大於x的元素中遞歸查找第i-k小的元素。
終止條件:n=1時,返回的即是i小元素。
六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
深度優先遍歷圖演算法步驟:
1.訪問頂點v;
2.依次從v的未被訪問的鄰接點出發,對圖進行深度優先遍歷;直至圖中和v有路徑相通的頂點都被訪問;
3.若此時圖中尚有頂點未被訪問,則從一個未被訪問的頂點出發,重新進行深度優先遍歷,直到圖中所有頂點均被訪問過為止。
上述描述可能比較抽象,舉個實例:
DFS在訪問圖中某一起始頂點v後,由v出發,訪問它的任一鄰接頂點w1;再從w1出發,訪問與w1鄰接但還沒有訪問過的頂點w2;然後再從w2出發,進行類似的訪問,…如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點u為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。
BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
1.首先將根節點放入隊列中。
2.從隊列中取出第一個節點,並檢驗它是否為目標。
如果找到目標,則結束搜尋並回傳結果。
否則將它所有尚未檢驗過的直接子節點加入隊列中。
3.若隊列為空,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」。
4.重復步驟2。
八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』salgorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E表示G中所有邊的集合,而邊的權重則由權重函數w:E→[0,∞]定義。因此,w(u,v)就是從頂點u到頂點v的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
1.初始時令S=,T=,T中頂點對應的距離值
若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值
若不存在<V0,Vi>,d(V0,Vi)為∞
2.從T中選取一個其距離值為最小的頂點W且不在S中,加入S
3.對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值縮短,則修改此距離值
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
九:動態規劃演算法
動態規劃(Dynamicprogramming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表。這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
1.最優子結構性質。如果問題的最優解所包含的子問題的解也是最優的,我們就稱該問題具有最優子結構性質(即滿足最優化原理)。最優子結構性質為動態規劃演算法解決問題提供了重要線索。
2.子問題重疊性質。子問題重疊性質是指在用遞歸演算法自頂向下對問題進行求解時,每次產生的子問題並不總是新問題,有些子問題會被重復計算多次。動態規劃演算法正是利用了這種子問題的重疊性質,對每一個子問題只計算一次,然後將其計算結果保存在一個表格中,當再次需要計算已經計算過的子問題時,只是在表格中簡單地查看一下結果,從而獲得較高的效率。
十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下,如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
通過掌握以上演算法,能夠幫你迅速提高編程能力,成為一名優秀的程序員。
C. 計算機中的順序查詢,隨機查詢,直接查詢什麼意思
計算機中的順序查詢是指:是按照序列原有順序對數組進行遍歷比較查詢的基本查找演算法。對於任意一個序列以及一個給定的元素,將給定元素與序列中元素依次比較,直到找出與給定關鍵字相同的元素,或者將序列中的元素與其都比較完為止。
計算機中的隨機查詢是指:從數據中隨機抽出一個數字跟5比較,比如第一次隨機抽到了4跟5比較,然後再隨機抽一個3跟5比較,不斷的隨機抽然後比較,最終找到結果。
計算機中的直接查詢是指:基於啟發式方法的只利用目標函數值信息的無約束優化方法,如坐標輪換法、鮑威爾法,稱為直接搜索法。因為直接搜索法既不需要計算也不要逼近導數,他們常常被描述成「導數無關」。
(3)基礎查詢演算法擴展閱讀:
直接查詢法一般被分為三類,許多在應用文獻中提到的新方法都是這三種方法的基本原理的改進版本。分為:模式搜索法、單純形法、搜索方向集適應法。
模式搜索法(Pattern search)用一系列的點模式考慮目標函數的行為的試探位移來刻劃。所有都依賴於有理格。試探位移由當前迭代鄰近網格的點訪問的系統策略組成。在戴維森的 ANL 5990[2]延期的序言中,他描述了最基礎的一種模式搜索演算法,由於這么簡單而沒有歸類。
單純形搜索法(Simplex search)由指導搜索的簡單策略刻劃。第一個單純形方法是在 1962 年由 Spendley et al.[3]在論文中提出的。他們是由於早期的直接搜索法在任何地方都需要 2n 到 2n 個目標估值完成疊代改進的搜索的事實。
搜索方向集適應法,最後一個經典方法的家族包括 Rosenbrock 和 Powell 的方法,稱作搜索方向集適應法(Methods with adaptive sets of search directions)。這些演算法試圖利用在搜索過程中獲得的函數曲率的信息構造方向來加速搜索。
D. 數據結構中關於數據查詢的演算法有哪些
數據查詢分靜態查找和動態查找:
靜態查找有:順序查找、有順序表的折半查找、分塊查
動態查找主要用二叉排序數查找。
哈希表 常用的哈希函數有;直接定址法,除留余數法,數字分析法,平方取中法,折疊法。
一般情況下這些就夠用了
E. 怎樣才能快速搜索路由表有哪些著名的搜索演算法
有三個路由器,a,b和c。路由器a的兩個網路介面f0和s0
分別連接在
10.1.0.0和10.2.0.0網段上;路由器b的兩個網路介面s0和s1
分別連接在
10.2.0.0和10.3.0.0網段上;路由器c的兩個網路介面s0和e0
分別連接在
10.3.0.0和10.4.0.0網段上;
如上圖中各路由表的前兩行所示,通過路由表的網路介面到與之直接相連的網
絡的網路連接,其向量距離設置為0。這即是最初的路由表。
當路由器b和a以及b和c之間相互交換路由信息後,它們會更新各自的路由表。
例如,路由器b通過網路埠s1收到路由器c的路由信息(10.3.0.0,s0,0)和(10.4.0.0,e0,0)後,在自己的路由表中增加一條(10.4.0.0,s1,1)路由信息。該信息表示:通過路由器b的網路接
口s1可以訪問到10.4.0.0網段,其向量距離為1,該向量距離是在路由器c的基礎上加1獲得的。
同樣道理,路由器b還會產生一條(10.1.0.0,s0,1)路由,這條路由是通過網路埠s0從路由器a
獲得的。如此反復,直到最終收斂,形成圖中所示的路由表。
概括地說,距離向量演算法要求每一個路由器把它的整個路由表發送給與它直接連接的其它路由
器。路由表中的每一條記錄都包括目標邏輯地址、相應的網路介面和該條路由的向量距離。當一個路
由器從它的相鄰處收到更新信息時,它會將更新信息與本身的路由表相比較。如果該路由器比較出一條
新路由或是找到一條比當前路由更好的路由時,它會對路由表進行更新:將從該路由器到鄰居之間的
向量距離與更新信息中的向量距離相加作為新路由的向量距離。
F. 資料庫查詢功能
資料庫的查詢功能原理:
資料庫查詢是資料庫的最主要功能之一。我們都希望查詢數據的速度能盡可能的快,因此資料庫系統的設計者會從查詢演算法的角度進行優化。最基本的查詢演算法當然是順序查找(linear search),這種復雜度為O(n)的演算法在數據量很大時顯然是糟糕的,好在計算機科學的發展提供了很多更優秀的查找演算法,例如二分查找(binary search)、二叉樹查找(binary tree search)等。如果稍微分析一下會發現,每種查找演算法都只能應用於特定的數據結構之上,例如二分查找要求被檢索數據有序,而二叉樹查找只能應用於二叉查找樹上,但是數據本身的組織結構不可能完全滿足各種數據結構(例如,理論上不可能同時將兩列都按順序進行組織),所以,在數據之外,資料庫系統還維護著滿足特定查找演算法的數據結構,這些數據結構以某種方式引用(指向)數據,這樣就可以在這些數據結構上實現高級查找演算法。這種數據結構,就是索引。
圖1展示了一種可能的索引方式。左邊是數據表,一共有兩列七條記錄,最左邊的是數據記錄的物理地址(注意邏輯上相鄰的記錄在磁碟上也並不是一定物理相鄰的)。為了加快Col2的查找,可以維護一個右邊所示的二叉查找樹,每個節點分別包含索引鍵值和一個指向對應數據記錄物理地址的指針,這樣就可以運用二叉查找在O(log2n)O(log2n)的復雜度內獲取到相應數據。
G. 簡單的列車中轉查詢演算法設計,SQL代碼或者思路也可以!
你這個表設計的真夠不合理的...
t_che表基本沒什麼用處
A->B
select* from t_zhan a
inner join t_zhan b on a.checi=b.checi
where a.zhan=A and b.zhan=B
A->B中轉
因為你中轉站無法確定 要查詢所有可能車次 需要看所有站點
select * from (
-- 所有經過A的車會經過的所有站
select checi,zhan from t_zhan where checi in(
--所有經過A的車
select checi from t_zhan where checi=A))a
inner join(
-- 所有經過B的車會經過的所有站
select checi,zhan from t_zhan where checi in(
--所有經過B的車
select checi from t_zhan where checi=B)) b
on a.zhan =b.zhan -- 站有交集的表示可以該站中轉
可以找出所有中轉車 但是無法保證乘坐站數最少
H. 百度搜索引擎的演算法是怎樣的
網路基礎演算法分析:鏈接流行度核心演算法+網路推廣+框計算+開放平台
1.【鏈接流行度】和大多數關鍵詞搜索引擎一樣,頁面URL地址鏈接的流行程度為核心的基礎核心演算法;
2.【網路推廣】起先叫做網路競價,後改為網路推廣,包括關鍵詞競價演算法和網盟推廣演算法兩部分;
3.【框計算】語義分析、行為分析、智能人機交互、海量基礎演算法等。
網路收錄流程
1.【頁面的收錄】搜索蜘蛛程序>收錄的頁面鏈接>現新的鏈接並爬行>的頁面及內容合格>錄快照並分類存儲>立頁面基本數據(頁面URL、頁面關鍵詞、頁面標題描述、收錄來源、收錄時間、內容簡述、頁面權重、更新周期);
2.【網路免費產品】網路、網路文庫、網路貼吧、網路知道、網路空間等網路自身免費產品的頁面收錄;
3.【網路開放平台】主要是站長提供的結構化數據(網站與網路的深度合作,如汽車網站的參數數據、網路知道介面等)和開發者提交的各種應用(開發者加入網路開發者中心並提交相關應用通過審核);
4.【網路競價推廣】網站主開通網路推廣賬戶>付費並通過網站審核>輯關鍵詞廣告及推廣計劃>交網路推廣後台;
5.【網路網盟推廣】網站主開通網路推廣賬戶>付費並通過網站審核>輯網盟廣告及推廣計劃>交網路推廣後台;網路聯盟廣告合作夥伴站長參與網盟推廣並審核通過》預留廣告位並做好網盟介面。
網路檢索流程
搜索需求>義分析>據庫檢索>名顯示反饋
1.【網路搜索頁面的檢索】用戶輸入關鍵詞並檢索>架算(語義分析及分詞判斷、行為分析、智能人機交互、海量基礎演算法)>計算結果(開放平台的數據、傳統搜索結果、網路推廣結果、網路自身產品結果)>計算結果排名。
2.【網路網盟頁面的推薦】用戶訪問網路網盟某合作網站頁面>盟演算法根據用戶瀏覽器大量有價值的搜索Cookis計算並推薦廣告>戶被有質量的廣告吸引並點擊>盟推廣後台引導用戶進入參與網盟推廣的網站相應頁面。
I. 如何查看資料庫的演算法
資料庫裡面最常用的排序演算法莫過於合並排序。
優化的查找演算法如二分查找、二叉樹查找等,雖然查找效率提高了。但是各自對檢索的數據都有要求:二分查找要求被檢索數據有序,而二叉樹查找只能應用於二叉查找樹上,但是數據本身的組織結構不可能完全滿足各種數據結構。
資料庫查詢是資料庫的主要功能之一,最基本的查詢演算法是順序查找時間復雜度為O(n),顯然在數據量很大時效率很低。優化的查找演算法如二分查找、二叉樹查找等,雖然查找效率提高了。
J. 數據結構中有哪些基本演算法
數據結構中最基本的演算法有:查找、排序、快速排序,堆排序,歸並排序,,二分搜索演算法
等等。
1、用的最多也是最簡單的數據結構是線性表。
2、有前途的又難數據結構是圖 。
3、常用的80%演算法是排序和查找。