當前位置:首頁 » 操作系統 » fft演算法matlab

fft演算法matlab

發布時間: 2022-11-05 11:09:15

⑴ matlab中為什麼fft演算法要基於2

的確不基於2^n也能算
作為用戶,我們可以通過命令fft(xn,m)計算任意m點(m大於等於xn的長度)的fft。你可以通過
help
fft
發現fft還有很多附加參數。
matlab的內核演算法到底是否基於2^n,我們不需要知道。

⑵ matlab中fft()函數是什麼意思

FFT(快速傅里葉變換)是一種實現DFT(離散傅里葉變換)的快速演算法,是利用復數形式的離散傅里葉變換來計算實數形式的離散傅里葉變換,matlab中的fft()函數是實現該演算法的實現。

MATLAB它將數值分析、矩陣計算、科學數據可視化以及非線性動態系統的建模和模擬等諸多強大功能集成在一個易於使用的視窗環境中,為科學研究、工程設計以及必須進行有效數值計算的眾多科學領域提供了一種全面的解決方案,並在很大程度上擺脫了傳統非互動式程序設計語言(如C、Fortran)的編輯模式,代表了當今國際科學計算軟體的先進水平。

快速傅里葉變換, 即利用計算機計算離散傅里葉變換(DFT)的高效、快速計算方法的統稱,簡稱FFT。快速傅里葉變換是1965年由J.W.庫利和T.W.圖基提出的。採用這種演算法能使計算機計算離散傅里葉變換所需要的乘法次數大為減少,特別是被變換的抽樣點數N越多,FFT演算法計算量的節省就越顯著。

(2)fft演算法matlab擴展閱讀:

matlab優勢特點:

1、高效的數值計算及符號計算功能,能使用戶從繁雜的數學運算分析中解脫出來;

2、具有完備的圖形處理功能,實現計算結果和編程的可視化;

3、友好的用戶界面及接近數學表達式的自然化語言,使學者易於學習和掌握;

4、功能豐富的應用工具箱(如信號處理工具箱、通信工具箱等) ,為用戶提供了大量方便實用的處理工具。

參考資料來源:

網路-快速傅里葉變換

網路-MATLAB

⑶ Matlab如何對實驗數據進行FFT運算

這個很簡單,FFT 是Z 變換和離散序列傅立葉變換上的單位圓上等間隔取點,而傅立葉和Z變換均包含周期為2pi的特性。那麼你在單位圓上取點,根據三角函數的特性他們相位相差一百八十度只需要在前面加一個負號(sinx)或者直接不用加(cosx),而我們得到的FFT是幅頻特性曲線,高低只代表幅度大小,重點來了:我們在單位原上取的點是一個復數(s域或者z域),復數的大小是實部的平方加虛部的平方再開根號,根據剛剛我們推得的三角函數特性,如果相位差180度,也就是一個pi,他們之間的幅度應該是完全一樣的! 現在你再看Matlab畫的圖,是不是對稱點是(pi,0)啊?我講得夠明白透徹了吧,希望能幫上忙。

⑷ 如何應用matlab進行fft分析

FFT是離散傅立葉變換的快速演算法,可以將一個信號變換
到頻域。有些信號在時域上是很難看出什麼特徵的,但是如
果變換到頻域之後,就很容易看出特徵了。這就是很多信號
分析採用FFT變換的原因。另外,FFT可以將一個信號的頻譜
提取出來,這在頻譜分析方面也是經常用的。
雖然很多人都知道FFT是什麼,可以用來做什麼,怎麼去
做,但是卻不知道FFT之後的結果是什意思、如何決定要使用
多少點來做FFT。

現在圈圈就根據實際經驗來說說FFT結果的具體物理意義。
一個模擬信號,經過ADC采樣之後,就變成了數字信號。采樣
定理告訴我們,采樣頻率要大於信號頻率的兩倍,這些我就
不在此羅嗦了。

采樣得到的數字信號,就可以做FFT變換了。N個采樣點,
經過FFT之後,就可以得到N個點的FFT結果。為了方便進行FFT
運算,通常N取2的整數次方。

假設采樣頻率為Fs,信號頻率F,采樣點數為N。那麼FFT
之後結果就是一個為N點的復數。每一個點就對應著一個頻率
點。這個點的模值,就是該頻率值下的幅度特性。具體跟原始
信號的幅度有什麼關系呢?假設原始信號的峰值為A,那麼FFT
的結果的每個點(除了第一個點直流分量之外)的模值就是A
的N/2倍。而第一個點就是直流分量,它的模值就是直流分量
的N倍。而每個點的相位呢,就是在該頻率下的信號的相位。
第一個點表示直流分量(即0Hz),而最後一個點N的再下一個
點(實際上這個點是不存在的,這里是假設的第N+1個點,也
可以看做是將第一個點分做兩半分,另一半移到最後)則表示
采樣頻率Fs,這中間被N-1個點平均分成N等份,每個點的頻率
依次增加。例如某點n所表示的頻率為:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到頻率為為Fs/N,如果
采樣頻率Fs為1024Hz,采樣點數為1024點,則可以分辨到1Hz。
1024Hz的采樣率采樣1024點,剛好是1秒,也就是說,采樣1秒
時間的信號並做FFT,則結果可以分析到1Hz,如果采樣2秒時
間的信號並做FFT,則結果可以分析到0.5Hz。如果要提高頻率
分辨力,則必須增加采樣點數,也即采樣時間。頻率解析度和
采樣時間是倒數關系。
假設FFT之後某點n用復數a+bi表示,那麼這個復數的模就是
An=根號a*a+b*b,相位就是Pn=atan2(b,a)。根據以上的結果,
就可以計算出n點(n≠1,且n<=N/2)對應的信號的表達式為:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
對於n=1點的信號,是直流分量,幅度即為A1/N。
由於FFT結果的對稱性,通常我們只使用前半部分的結果,
即小於采樣頻率一半的結果。

好了,說了半天,看著公式也暈,下面圈圈以一個實際的
信號來做說明。

假設我們有一個信號,它含有2V的直流分量,頻率為50Hz、
相位為-30度、幅度為3V的交流信號,以及一個頻率為75Hz、
相位為90度、幅度為1.5V的交流信號。用數學表達式就是如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)

式中cos參數為弧度,所以-30度和90度要分別換算成弧度。
我們以256Hz的采樣率對這個信號進行采樣,總共采樣256點。
按照我們上面的分析,Fn=(n-1)*Fs/N,我們可以知道,每兩個
點之間的間距就是1Hz,第n個點的頻率就是n-1。我們的信號
有3個頻率:0Hz、50Hz、75Hz,應該分別在第1個點、第51個點、
第76個點上出現峰值,其它各點應該接近0。實際情況如何呢?
我們來看看FFT的結果的模值如圖所示。

圖1 FFT結果
從圖中我們可以看到,在第1點、第51點、和第76點附近有
比較大的值。我們分別將這三個點附近的數據拿上來細看:
1點: 512+0i
2點: -2.6195E-14 - 1.4162E-13i
3點: -2.8586E-14 - 1.1898E-13i

50點:-6.2076E-13 - 2.1713E-12i
51點:332.55 - 192i
52點:-1.6707E-12 - 1.5241E-12i

75點:-2.2199E-13 -1.0076E-12i
76點:3.4315E-12 + 192i
77點:-3.0263E-14 +7.5609E-13i

很明顯,1點、51點、76點的值都比較大,它附近的點值
都很小,可以認為是0,即在那些頻率點上的信號幅度為0。
接著,我們來計算各點的幅度值。分別計算這三個點的模值,
結果如下:
1點: 512
51點:384
76點:192
按照公式,可以計算出直流分量為:512/N=512/256=2;
50Hz信號的幅度為:384/(N/2)=384/(256/2)=3;75Hz信號的
幅度為192/(N/2)=192/(256/2)=1.5。可見,從頻譜分析出來
的幅度是正確的。
然後再來計算相位信息。直流信號沒有相位可言,不用管
它。先計算50Hz信號的相位,atan2(-192, 332.55)=-0.5236,
結果是弧度,換算為角度就是180*(-0.5236)/pi=-30.0001。再
計算75Hz信號的相位,atan2(192, 3.4315E-12)=1.5708弧度,
換算成角度就是180*1.5708/pi=90.0002。可見,相位也是對的。
根據FFT結果以及上面的分析計算,我們就可以寫出信號的表達
式了,它就是我們開始提供的信號。

總結:假設采樣頻率為Fs,采樣點數為N,做FFT之後,某
一點n(n從1開始)表示的頻率為:Fn=(n-1)*Fs/N;該點的模值
除以N/2就是對應該頻率下的信號的幅度(對於直流信號是除以
N);該點的相位即是對應該頻率下的信號的相位。相位的計算
可用函數atan2(b,a)計算。atan2(b,a)是求坐標為(a,b)點的角
度值,范圍從-pi到pi。要精確到xHz,則需要采樣長度為1/x秒
的信號,並做FFT。要提高頻率解析度,就需要增加采樣點數,
這在一些實際的應用中是不現實的,需要在較短的時間內完成
分析。解決這個問題的方法有頻率細分法,比較簡單的方法是
采樣比較短時間的信號,然後在後面補充一定數量的0,使其長度
達到需要的點數,再做FFT,這在一定程度上能夠提高頻率分辨力。
具體的頻率細分法可參考相關文獻。

[附錄:本測試數據使用的matlab程序]
close all; %先關閉所有圖片
Adc=2; %直流分量幅度
A1=3; %頻率F1信號的幅度
A2=1.5; %頻率F2信號的幅度
F1=50; %信號1頻率(Hz)
F2=75; %信號2頻率(Hz)
Fs=256; %采樣頻率(Hz)
P1=-30; %信號1相位(度)
P2=90; %信號相位(度)
N=256; %采樣點數
t=[0:1/Fs:N/Fs]; %采樣時刻

%信號
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%顯示原始信號
plot(S);
title('原始信號');

figure;
Y = fft(S,N); %做FFT變換
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %顯示原始的FFT模值結果
title('FFT 模值');

figure;
Ayy=Ayy/(N/2); %換算成實際的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %換算成實際的頻率值
plot(F(1:N/2),Ayy(1:N/2)); %顯示換算後的FFT模值結果
title('幅度-頻率曲線圖');

figure;
Pyy=[1:N/2];
for i="1:N/2"
Pyy(i)=phase(Y(i)); %計算相位
Pyy(i)=Pyy(i)*180/pi; %換算為角度
end;
plot(F(1:N/2),Pyy(1:N/2)); %顯示相點陣圖
title('相位-頻率曲線圖');

看完這個你就明白諧波分析了。

⑸ matlab 如何進行復數的 fft運算

默認,剛剛開始,在沒有給i定義情況下,
i代表虛數的。
比如 5-i4
matlab里輸入,5+(-i*4)或者5-i*4
matlab里FFT函數可以直接運用,如,b=fft(a);
如果,想看代碼,打開fft.m文件看看。

⑹ Matlab的時間抽取基2FFT演算法

基於Matlab的時間抽取基2FFT演算法
function y=myditfft(x)
%本程序對輸入序列實現DIT-FFT基2演算法,點數取大於等於長度的2的冪次
%------------------------------------
% Leo's fft program(改編網上的一個程序)
%------------------------------------
m=log2(2^nextpow2(length(x))); %求的x長度對應的2的最低冪次m
N=2^m;
if length(x)<N
x=[x,zeros(1,N-length(x))]; %若長度不是2的冪,補0到2的整數冪
end
x;
%--------------------------------------------------------------------------
%對輸入序列進行倒序
%如果輸入序列的自然順序號I用二進制數(例如n2n1n0)表示
%則其倒位序J對應的二進制數就是(n0n1n2),這樣,在原來自然順序時應該放x(I)的
%單元,現在倒位序後應放x(J)。
%--------------------------------------------------------------------------
%以下程序相當於以下程序:
%nxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1; %求1:2^m數列的倒序
%y=x(nxd); %將倒序排列作為初始值
%--------------------------------------------------------------------------
NV2=N/2;
NM1=N-1;
I=0;
J=0;
while I<NM1
if I<J
T=x(J+1);
x(J+1)=x(I+1);
x(I+1)=T;
end
K=NV2;

while K<=J
J=J-K;
K=K/2;
end
J=J+K;
I=I+1;
end
x;
%--------------------------------------------------------------------------
%以下程序解釋:
%第一級從x(0)開始,跨接一階蝶形,再取每條對稱
%第二級從x(0)開始,跨接兩階蝶形,再取每條對稱
%第m級從x(0)開始,跨接2^(m-1)階蝶形,再取每條對稱....
%--------------------------------------------------------------------------
for mm=1:m %將DFT做m次基2分解,從左到右,對每次分解作DFT運算
Nmr=2^mm;
u=1; %旋轉因子u初始化
WN=exp(-j*2*pi/Nmr); %本次分解的基本DFT因子WN=exp(-i*2*pi/Nmr)
for n=1:Nmr/2 %本次跨越間隔內的各次碟形運算
for k=n:Nmr:N %本次碟形運算的跨越間隔為Nmr=2^mm
kp=k+Nmr/2; %確定碟形運算的對應單元下標(對稱性)
t=x(kp)*u; %碟形運算的乘積項
x(kp)=x(k)-t; %碟形運算的加法項
x(k)=x(k)+t;
end
u=u*WN; %修改旋轉因子,多乘一個基本DFT因子WN
end
end
y=x; %輸出

⑺ 用matlab如何實現fft變換

Matlab中FFT有1D和2D的,FFT得到的是信號的頻譜即t-》f

clear
%編寫駱遙
fs=1000
t=0:1/fs:0.6;
f1=100;
f2=300;
x=sin(2*pi*f1*t)+sin(2*pi*f2*t);
subplot(711)
plot(x);
title('f1(100Hz)\f2(300Hz)的正弦信號,初相0')
xlabel('序列(n)')
gridon
number=512
y=fft(x,number);
n=0:length(y)-1;
f=fs*n/length(y);
subplot(713)
plot(f,abs(y));
title('f1\f2的正弦信號的FFT(512點)')
xlabel('頻率Hz')
gridon
x=x+randn(1,length(x));
subplot(715)
plot(x);
title('原f1\f2的正弦信號(含隨機雜訊)')
xlabel('序列(n)')
gridon
y=fft(x,number);
n=0:length(y)-1;
f=fs*n/length(y);
subplot(717)
plot(f,abs(y));
title('原f1\f2的正弦信號(含隨機雜訊)的FFT(512點)')
xlabel('頻率Hz')
gridon

⑻ matlab如何用fft

matlab自帶的fft函數是快速傅里葉變換函數。主要用於降噪處理,通過使用傅里葉變換求雜訊中隱藏的信號的頻率分量。

該函數使用方法:

方法一:

Y= fft(X)用快速傅里葉變換 (FFT) 演算法計算X的離散傅里葉變換(DFT)。

  • 如果X是向量,則fft(X)返回該向量的傅里葉變換。

  • 如果X是矩陣,則fft(X)將X的各列視為向量,並返回每列的傅里葉變換。

  • 如果X是一個多維數組,則fft(X)將沿大小不等於 1 的第一個數組維度的值視為向量,並返回每個向量的傅里葉變換。

  • 方法二:

  • Y= fft(X,n)返回n點 DFT。如果未指定任何值,則Y的大小與X相同。

  • 如果X是向量且X的長度小於n,則為X補上尾零以達到長度n。

  • 如果X是向量且X的長度大於n,則對X進行截斷以達到長度n。

  • 如果X是矩陣,則每列的處理與在向量情況下相同。

  • 如果X為多維數組,則大小不等於 1 的第一個數組維度的處理與在向量情況下相同。

我們通過下例,來了解fft函數使用過程:

第一步、指定信號的參數,采樣頻率為 1 kHz,信號持續時間為 1.5 秒。

Fs=1000;%采樣頻率

T=1/Fs;%采樣周期

L=1500;%信號長度

t=(0:L-1)*T;%時間向量

第二步、構造一個信號,其中包含幅值為 0.7 的 50 Hz 正弦量和幅值為 1 的 120 Hz 正弦量。

S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

第三步、用均值為零、方差為 4 的白雜訊擾亂該信號。

X = S + 2*randn(size(t));

第四步、在時域中繪制含噪信號。通過查看信號 X(t) 很難確定頻率分量。

plot(1000*t(1:50),X(1:50))

title('Signal Corrupted with Zero-Mean Random Noise')

xlabel('t (milliseconds)'),ylabel('X(t)')

第五步、計算信號的傅里葉變換。

Y = fft(X);

第六步、計算雙側頻譜 P2, 計算單側頻譜 P1。

P2 = abs(Y/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1)

第七步、定義頻域 f 並繪制單側幅值頻譜 P1

f = Fs*(0:(L/2))/L;

plot(f,P1)

title('Single-Sided Amplitude Spectrum of X(t)')

xlabel('f (Hz)'),ylabel('|P1(f)|')

運行結果。

⑼ 用matlab編寫實現fft的程序。

function y=myditfft(x)
%本程序對輸入序列實現DIT-FFT基2演算法,點數取大於等於長度的2的冪次
%------------------------------------
%

myditfft.c
%------------------------------------
m=nextpow2(x);

%求的x長度對應的2的最低冪次m
N=2^m;
if length(x)<N

x=[x,zeros(1,N-length(x))];

%若的長度不是2的冪,補0到2的整數冪
end
nxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1;
%求1:2^m數列的倒序
y=x(nxd);

%將倒序排列作為的初始值
for mm=1:m

%將DFT做m次基2分解,從左到右,對每次分解作DFT運算

Nmr=2^mm;

u=1;

%旋轉因子u初始化

WN=exp(-i*2*pi/Nmr);

%本次分解的基本DFT因子WN=exp(-i*2*pi/Nmr)

for j=1:Nmr/2

%本次跨越間隔內的各次碟形運算

for k=j:Nmr:N

%本次碟形運算的跨越間隔為Nmr=2^mm

kp=k+Nmr/2;

%確定碟形運算的對應單元下標

t=y(kp)*u;

%碟形運算的乘積項

y(kp)=y(k)-t;

%碟形運算的加法項

y(k)=y(k)+t;

end

u=u*WN;

%修改旋轉因子,多乘一個基本DFT因子WN

end
end

⑽ FFT測量相位具體演算法。在matlab中如何使用進行編程

% 下面的程序里Pn 存的就是基波相位 如果求的是諧波相位,稍微修改即可
x = load('data.dat'); %load 數據
fs=10000; % 采樣頻率,自己根據實際情況設置
N=length(x); % x 是待分析的數據
n=1:N;
%1-FFT
X=fft(x); % FFT
X=X(1:N/2);
Xabs=abs(X);
Xabs(1) = 0; %直流分量置0
[Amax,index]=max(Xabs);
if(Xabs(index-1) > Xabs(index+1))
a1 = Xabs(index-1) / Xabs(index);
r1 = 1/(1+a1);
k01 = index -1;
else
a1 = Xabs(index) / Xabs(index+1);
r1 = 1/(1+a1);
k01 = index;
end
Fn = (k01+r1-1)*fs/N; %基波頻率
An = 2*pi*r1*Xabs(k01)/(N*sin(r1*pi)); %基波幅值
Pn = phase(X(k01))-pi*r1; %基波相位 單位弧度
Pn = mod(Pn(1),pi);

熱點內容
c語言學生成績查詢系統 發布:2025-05-14 22:58:30 瀏覽:4
怎麼進別人的伺服器 發布:2025-05-14 22:45:55 瀏覽:772
用編程寫音樂 發布:2025-05-14 22:45:08 瀏覽:782
如何識別電腦的網路配置 發布:2025-05-14 22:38:46 瀏覽:847
pipforpython3 發布:2025-05-14 22:38:34 瀏覽:350
如何把迷你世界的伺服器搞崩 發布:2025-05-14 22:37:15 瀏覽:94
如何讓安卓卡死機 發布:2025-05-14 22:36:27 瀏覽:634
wemall微商城源碼 發布:2025-05-14 22:15:20 瀏覽:804
隆地優選交易密碼是什麼 發布:2025-05-14 21:53:23 瀏覽:97
強酸強鹼存儲櫃 發布:2025-05-14 21:45:16 瀏覽:565