gsp演算法
『壹』 時間窗口法英文怎麼寫
時間窗口法
[詞典] time window method;
[例句]GSP的引入是為了發現滿足序列模式中的時間約束、滑動窗口的模式。GSP演算法增加了時間約束、滑動窗口和分類法。
The introcing of GSP is to discover the patterns within the time constrains, sliding windows.
『貳』 手機的GSP定位系統是什麼
全球定位系統(GPS)是本世紀70年代由美國陸海空三軍聯合研製的新一代空間衛星導航定位系統 。其主要目的是為陸、海、空三大領域提供實時、 全天候和全球性的導航服務,並用於情報收集、核爆監測和應急通訊等一些軍事目的,是美國獨霸全球戰略的重要組成。經過20餘年的研究實驗,耗資300億美元,到1994年3月,全球覆蓋率高達98%的24顆GPS衛星星座己布設完成。 全球定位系統由三部分構成:(1)地面控制部分,由主控站(負責管理、協調整個地面控制系統的 工作)、地面天線(在主控站的控制下,向衛星注入尋電文)、監測站(數據自動收集中心)和通訊輔助系統(數據傳輸)組成;(2)空間部分,由24顆衛星組成,分布在6個道平面上;(3)用戶裝置部分, 主要由GPS接收機和衛星天線組成。 全球定位系統的主要特點:(1)全天候;(2) 全球覆蓋;(3)三維定速定時高精度;(4)快速省時高效率:(5)應用廣泛多功能。 全球定位系統的主要用途:(1)陸地應用,主要包括車輛導航、應急反應、大氣物理觀測、地球物理資源勘探、工程測量、變形監測、地殼運動監測、 市政規劃控制等;(2)海洋應用,包括遠洋船最佳航程航線測定、船隻實時調度與導航、海洋救援、海洋探寶、水文地質測量以及海洋平台定位、海平面升降監測等;(3)航空航天應用,包括飛機導航、航空遙 感姿態控制、低軌衛星定軌、導彈制導、航空救援和載人航天器防護探測等。 GPS衛星接收機種類很多,根據型號分為測地型、全站型、定時型、手持型、集成型;根據用途分為車載式、船載式、機載式、星載式、彈載式。 經過20餘年的實踐證明,GPS系統是一個高精度、全天候和全球性的無線電導航、定位和定時的多功能系統。 GPS技術已經發展成為多領域、多模式、多用途、多機型的國際性高新技術產業。 GPS原理 24顆GPS衛星在離地面1萬2千公里的高空上,以12小時的周期環繞地球運行,使得在任意時刻,在地面上的任意一點都可以同時觀測到4顆以上的衛星。 由於衛星的位置精確可知,在GPS觀測中,我們可得到衛星到接收機的距離,利用三維坐標中的距離公式,利用3顆衛星,就可以組成3個方程式,解出觀測點的位置(X,Y,Z)。考慮到衛星的時鍾與接收機時鍾之間的誤差,實際上有4個未知數,X、Y、Z和鍾差,因而需要引入第4顆衛星,形成4個方程式進行求解,從而得到觀測點的經緯度和高程。 事實上,接收機往往可以鎖住4顆以上的衛星,這時,接收機可按衛星的星座分布分成若干組,每組4顆,然後通過演算法挑選出誤差最小的一組用作定位,從而提高精度。 由於衛星運行軌道、衛星時鍾存在誤差,大氣對流層、電離層對信號的影響,以及人為的SA保護政策,使得民用GPS的定位精度只有100米。為提高定位精度,普遍採用差分GPS(DGPS)技術,建立基準站(差分台)進行GPS觀測,利用已知的基準站精確坐標,與觀測值進行比較,從而得出一修正數,並對外發布。接收機收到該修正數後,與自身的觀測值進行比較,消去大部分誤差,得到一個比較准確的位置。實驗表明,利用差分GPS,定位精度可提高到5米。 GPS前景 由於GPS技術所具有的全天候、高精度和自動測量的特點,作為先進的測量手段和新的生產力,已經融入了國民經濟建設、國防建設和社會發展的各個應用領域。 隨著冷戰結束和全球經濟的蓬勃發展,美國政府宣布2000年至2006期間,在保證美國國家安全不受威脅的前提下,取消SA政策,GPS民用信號精度在全球范圍內得到改善,利用C/A碼進行單點定位的精度由100米提高到20米,這將進一步推動GPS技術的應用,提高生產力、作業效率、科學水平以及人們的生活質量,刺激GPS市場的增長。據有關專家預測,在美國,單單是汽車GPS導航系統,2000年後的市場將達到30億美元,而在我國,汽車導航的市場也將達到50億元人民幣。可見,GPS技術市場的應用前景非常可觀。
『叄』 機器學習一般常用的演算法有哪些
機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。
一、線性回歸
一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。
二、Logistic 回歸
它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
三、線性判別分析(LDA)
在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
四、決策樹
決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
五、樸素貝葉斯
其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。
六、K近鄰演算法
K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。
七、Boosting 和 AdaBoost
首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。
八、學習向量量化演算法(簡稱 LVQ)
學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求
『肆』 數據挖掘演算法的演算法分類
C4.5就是一個決策樹演算法,它是決策樹(決策樹也就是做決策的節點間像一棵樹一樣的組織方式,其實是一個倒樹)核心演算法ID3的改進演算法,所以基本上了解了一半決策樹構造方法就能構造它。決策樹構造方法其實就是每次選擇一個好的特徵以及分裂點作為當前節點的分類條件。C4.5比ID3改進的地方時:
ID3選擇屬性用的是子樹的信息增益(這里可以用很多方法來定義信息,ID3使用的是熵(entropy)(熵是一種不純度度量准則)),也就是熵的變化值,而C4.5用的是信息增益率。也就是多了個率嘛。一般來說率就是用來取平衡用的,就像方差起的作用差不多,比如有兩個跑步的人,一個起點是100m/s的人、其1s後為110m/s;另一個人起速是1m/s、其1s後為11m/s。如果僅算差值那麼兩個就是一樣的了;但如果使用速度增加率(加速度)來衡量,2個人差距就很大了。在這里,其克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足。在樹構造過程中進行剪枝,我在構造決策樹的時候好討厭那些掛著幾個元素的節點。對於這種節點,乾脆不考慮最好,不然很容易導致overfitting。對非離散數據都能處理,這個其實就是一個個式,看對於連續型的值在哪裡分裂好。也就是把連續性的數據轉化為離散的值進行處理。能夠對不完整數據進行處理,這個重要也重要,其實也沒那麼重要,缺失數據採用一些方法補上去就是了。 (樸素貝葉斯NB)
NB認為各個特徵是獨立的,誰也不關誰的事。所以一個樣本(特徵值的集合,比如「數據結構」出現2次,「文件」出現1次),可以通過對其所有出現特徵在給定類別的概率相乘。比如「數據結構」出現在類1的概率為0.5,「文件」出現在類1的概率為0.3,則可認為其屬於類1的概率為0.5*0.5*0.3。 (支持向量機SVM)
SVM就是想找一個分類得最」好」的分類線/分類面(最近的一些兩類樣本到這個」線」的距離最遠)。這個沒具體實現過,上次聽課,那位老師自稱自己實現了SVM,敬佩其鑽研精神。常用的工具包是LibSVM、SVMLight、MySVM。 (Mining frequent patterns without candidate generation)
這個也不太清楚。FP-growth演算法(Frequent Pattern-growth)使用了一種緊縮的數據結構來存儲查找頻繁項集所需要的全部信息。採用演算法:將提供頻繁項集的資料庫壓縮到一棵FP-tree來保留項集關聯信息,然後將壓縮後的資料庫分成一組條件資料庫(一種特殊類型的投影資料庫),每個條件資料庫關聯一個頻繁項集。 K-Means是一種最經典也是使用最廣泛的聚類方法,時至今日扔然有很多基於其的改進模型提出。K-Means的思想很簡單,對於一個聚類任務(你需要指明聚成幾個類,當然按照自然想法來說不應該需要指明類數,這個問題也是當前聚類任務的一個值得研究的課題),首先隨機選擇K個簇中心,然後反復計算下面的過程直到所有簇中心不改變(簇集合不改變)為止:步驟1:對於每個對象,計算其與每個簇中心的相似度,把其歸入與其最相似的那個簇中。
步驟2:更新簇中心,新的簇中心通過計算所有屬於該簇的對象的平均值得到。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。 BIRCH也是一種聚類演算法,其全稱是Balanced Iterative Recing and Clustering using Hierarchies。BIRCH也是只是看了理論沒具體實現過。是一個綜合的層次聚類特徵(Clustering Feature, CF)和聚類特徵樹(CF Tree)兩個概念,用於概括聚類描述。聚類特徵樹概括了聚類的有用信息,並且佔用空間較元數據集合小得多,可以存放在內存中,從而可以提高演算法在大型數據集合上的聚類速度及可伸縮性。
BIRCH演算法包括以下兩個階段:
1)掃描資料庫,建立動態的一棵存放在內存的CF Tree。如果內存不夠,則增大閾值,在原樹基礎上構造一棵較小的樹。
2)對葉節點進一步利用一個全局性的聚類演算法,改進聚類質量。
由於CF Tree的葉節點代表的聚類可能不是自然的聚類結果,原因是給定的閾值限制了簇的大小,並且數據的輸入順序也會影響到聚類結果。因此需要對葉節點進一步利用一個全局性的聚類演算法,改進聚類質量。 AdaBoost做分類的一般知道,它是一種boosting方法。這個不能說是一種演算法,應該是一種方法,因為它可以建立在任何一種分類演算法上,可以是決策樹,NB,SVM等。
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器(強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。使用adaboost分類器可以排除一些不必要的訓練數據,並將關鍵放在關鍵的訓練數據上面。 GSP,全稱為Generalized Sequential Pattern(廣義序貫模式),是一種序列挖掘演算法。對於序列挖掘沒有仔細看過,應該是基於關聯規則的吧!網上是這樣說的:
GSP類似於Apriori演算法,採用冗餘候選模式的剪除策略和特殊的數據結構-----哈希樹來實現候選模式的快速訪存。
GSP演算法描述:
1)掃描序列資料庫,得到長度為1的序列模式L1,作為初始的種子集。
2)根據長度為i 的種子集Li ,通過連接操作和修剪操作生成長度為i+1的候選序列模式Ci+1;然後掃描序列資料庫,計算每個候選序列模式的支持度,產生長度為i+1的序列模式Li+1,並將Li+1作為新的種子集。
3)重復第二步,直到沒有新的序列模式或新的候選序列模式產生為止。
產生候選序列模式主要分兩步:
連接階段:如果去掉序列模式s1的第一個項目與去掉序列模式s2的最後一個項目所得到的序列相同,則可以將s1與s2進行連接,即將s2的最後一個項目添加到s1中。
修切階段:若某候選序列模式的某個子序列不是序列模式,則此候選序列模式不可能是序列模式,將它從候選序列模式中刪除。
候選序列模式的支持度計算:對於給定的候選序列模式集合C,掃描序列資料庫,對於其中的每一條序列s,找出集合C中被s所包含的所有候選序列模式,並增加其支持度計數。 又是一個類似Apriori的序列挖掘。
其中經典十大演算法為:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。
『伍』 用戶行為分析系統建立所需步驟和所需軟體
Web日誌挖掘分析的方法
日誌文件的格式及其包含的信息
①2006-10-17 00:00:00②202.200.44.43 ③218.77.130.24 80 ④GET ⑤/favicon.ico
⑥Mozilla/5.0+(Windows;+U;+Windows+NT+5.1;+zh-CN;+rv:1.8.0.3)+Gecko/20060426
+Firefox/1.5.0.3。
①訪問時間;②用戶IP地址;③訪問的URL,埠;④請求方法(「GET」、「POST」等);
⑤訪問模式;⑥agent,即用戶使用的操作系統類型和瀏覽器軟體。
一、日誌的簡單分析
1、注意那些被頻繁訪問的資源
2、注意那些你網站上不存在資源的請求。常見的掃描式攻擊還包括傳遞惡意參數等:
3、觀察搜索引擎蜘蛛的來訪情況
4、觀察訪客行為
應敵之策:
1、封殺某個IP
2、封殺某個瀏覽器類型(Agent)
3、封殺某個來源(Referer)
4、防盜鏈
5、文件重命名
作用:
1.對訪問時間進行統計,可以得到伺服器在某些時間段的訪問情況。
2.對IP進行統計,可以得到用戶的分布情況。
3.對請求URL的統計,可以得到網站頁面關注情況。
4.對錯誤請求的統計,可以更正有問題的頁面。
二、Web挖掘
根據所挖掘的Web 數據的類型,可以將Web 數據挖掘分為以下三類:Web 內容挖掘(Web Content Mining)、Web 結構挖掘(Web Structure Mining)、Web 使用挖掘(Web Usage Mining)(也稱為Web日誌挖掘)。
①Web內容挖掘。Web內容挖掘是指從文檔的內容中提取知識。Web內容挖掘又分為文本挖掘和多媒體挖掘。目前多媒體數據的挖掘研究還處於探索階段,Web文本挖掘已經有了比較實用的功能。Web文本挖掘可以對Web上大量文檔集合的內容進行總結、分類、聚類、關聯分析,以及利用Web文檔進行趨勢預測等。Web文檔中的標記,例如<Title>和<Heading>等蘊含了額外的信息,可以利用這些信息來加強Web文本挖掘的作用。
②Web結構挖掘。Web結構挖掘是從Web的組織結構和鏈接關系中推導知識。它不僅僅局限於文檔之間的超鏈接結構,還包括文檔內部的結構。文檔中的URL目錄路徑的結構等。Web結構挖掘能夠利用網頁間的超鏈接信息對搜索引擎的檢索結果進行相關度排序,尋找個人主頁和相似網頁,提高Web搜索蜘蛛在網上的爬行效率,沿著超鏈接優先爬行。Web結構挖掘還可以用於對Web頁進行分類、預測用戶的Web鏈接使用及Web鏈接屬性的可視化。對各個商業搜索引擎索引用的頁數量進行統計分析等。
③Web使用記錄挖掘。Web使用記錄挖掘是指從Web的使用記錄中提取感興趣的模式,目前Web使用記錄挖掘方面的研究較多,WWW中的每個伺服器都保留了訪問日誌,記錄了關於用戶訪問和交互的信息,可以通過分析和研究Web日誌記錄中的規律,來識別網站的潛在用戶;可以用基於擴展有向樹模型來識別用戶瀏覽序列模式,從而進行Web日誌挖掘;可以根據用戶訪問的Web記錄挖掘用戶的興趣關聯規則,存放在興趣關聯知識庫中,作為對用戶行為進行預測的依據,從而為用戶預取一些Web頁面,加快用戶獲取頁面的速度,分析這些數據還可以幫助理解用戶的行為,從而改進站點的結構,或為用戶提供個性化的服務。
通過對Web伺服器日誌中大量的用戶訪問記錄深入分析,發現用戶的訪問模式和興趣愛好等有趣、新穎、潛在有用的以及可理解的未知信息和知識,用於分析站點的使用情況,從而輔助管理和支持決策。當前,web日誌挖掘主要被用於個性化服務與定製、改進系統性能和結構、站點修改、商業智能以及web特徵描述等諸多領域。
三、Web日誌挖掘的方法
(一)首先,進行數據的預處理。
從學習者的訪問日誌中得到的原始日誌記錄並不適於挖掘,必須進行適當的處理才能進行挖掘。因此,需要通過日誌清理,去除無用的記錄;對於某些記錄,我們還需要通過站點結構信息,把URL路徑補充成完整的訪問序列;然後劃分學習者,並把學習者的會話劃分成多個事務。
(二)其次,進行模式發現
一旦學習者會話和事務識別完成,就可以採用下面的技術進行模式發現。模式發現, 是對預處理後的數據用數據挖掘演算法來分析數據。分有統計、分類、聚類、關等多種方法。
① 路徑分析。它可以被用於判定在一個站點中最頻繁訪問的路徑,還有一些其它的有關路徑的信息通過路徑分析可以得出。路徑分析可以用來確定網站上的頻繁訪問路徑, 從而調整和優化網站結構, 使得用戶訪問所需網頁更加簡單快捷, 還可以根據用戶典型的瀏覽模式用於智能推薦和有針對性的電子商務活動。例如:70% 的學習者在訪問/ E-Business /M2時,是從/EB開始,經過/ E-Business /SimpleDescription,/ E-Business /M1;65%的學習者在瀏覽4個或更少的頁面內容後就離開了。利用這些信息就可以改進站點的設計結構。
② 關聯規則。 使用關聯規則發現方法,可以從Web的訪問事務中找到的相關性。關聯規則是尋找在同一個事件中出現的不同項的相關性,用數學模型來描述關聯規則發現的問題:x=>y的蘊含式,其中x,y為屬性——值對集(或稱為項目集),且X∩Y空集。在資料庫中若S%的包含屬性——值對集X的事務也包含屬性——值集Y,則關聯規則X=>Y的置信度為C%。
③ 序列模式。在時間戳有序的事務集中,序列模式的發現就是指那些如「一些項跟隨另一個項」這樣的內部事務模式。它能發現資料庫中如「在某一段時間內,客戶購買商品A,接著會購買商品B,爾後又購買商品C,即序列A→B→C出現的頻率高」之類的信息。序列模式描述的問題是:在給定的交易序列資料庫中,每個序列按照交易的時間排列的一組交易集,挖掘序列函數作用是返回該資料庫中高頻率出現有序列。
④ 分類分析。發現分類規則可以給出識別一個特殊群體的公共屬性的描述,這種描述可以用於分類學習者。分類包括的挖掘技術將找出定義了一個項或事件是否屬於數據中某特定子集或類的規則。該類技術是最廣泛應用於各類業務問題的一類挖掘技術。分類演算法最知名的是決策樹方法,此外還有神經元網路、Bayesian分類等。例如:在/ E-Business /M4學習過的學習者中有40%是20左右的女大學生。
⑤聚類分析。可以從Web訪問信息數據中聚類出具有相似特性的學習者。在Web事務日誌中,聚類學習者信息或數據項能夠便於開發和設計未來的教學模式和學習群體。聚類是將數據集劃分為多個類,使得在同一類中的數據之間有較高的相似度,而在不同類中的數據差別盡可能大。在聚類技術中,沒有預先定義好的類別和訓練樣本存在,所有記錄都根據彼此相似程度來加以歸類。主要演算法有k—means、DBSCAN等。聚類分析是把具有相似特徵的用戶或數據項歸類,在網站管理中通過聚類具有相似瀏覽行為的用戶。基於模糊理論的Web頁面聚類演算法與客戶群體聚類演算法的模糊聚類定義相同,客戶訪問情況可用URL(Uj)表示。有Suj={(Ci,fSuj(Ci))|Ci∈C},其中fSuj(Ci)→[0,1]是客戶Ci和URL(Uj)間的關聯度:式中m為客戶的數量,hits(Ci)表示客戶Ci訪問URL(Uj)的次數。利用Suj和模糊理論中的相似度度量Sfij定義建立模糊相似矩陣,再根據相似類[Xi]R的定義構造相似類,合並相似類中的公共元素得到的等價類即為相關Web頁面。
⑥統計。統計方法是從Web 站點中抽取知識的最常用方法, 它通過分析會話文件, 對瀏覽時間、瀏覽路徑等進行頻度、平均值等統計分析。雖然缺乏深度, 但仍可用於改進網站結構, 增強系統安全性, 提高網站訪問的效率等。
⑦協同過濾。協同過濾技術採用最近鄰技術,利用客戶的歷史、喜好信息計算用戶之間的距離,目標客戶對特點商品的喜好程度由最近鄰居對商品的評價的加權平均值來計算。
(三)最後,進行模式分析。
模式分析。基於以上的所有過程,對原始數據進行進一步分析,找出用戶的瀏覽模式規律,即用戶的興趣愛好及習慣,並使其可視化,為網頁的規劃及網站建設的決策提供具體理論依據。其主要方法有:採用SQL查詢語句進行分析;將數據導入多維數據立方體中,用OLAP工具進行分析並給出可視化的結果輸出。(分類模式挖掘、聚類模式挖掘、時間序列模式挖掘、序列模式挖掘、關聯規則等)
四、關聯規則
(一)關聯規則
顧名思義,關聯規則(association rule)挖掘技術用於於發現資料庫中屬性之間的有趣聯系。一般使用支持度(support)和置信度(confidence)兩個參數來描述關聯規則的屬性。
1.支持度。規則 在資料庫 中的支持度 是交易集中同時包含 , 的事務數與所有事務數之比,記為 。支持度描述了 , 這兩個項集在所有事務中同時出現的概率。
2.置信度。規則 在事務集中的置信度(confidence)是指同時包含 , 的事務數與包含 的事務數之比,它用來衡量關聯規則的可信程度。記為
規則 A Þ C:支持度= support({A}È{C}) = 50%,置信度= support({A}È{C})/support({A}) = 66.6%
(二)Apriori方法簡介
Apriori演算法最先是由Agrawal等人於1993年提出的,它的基本思想是:首先找出所有具有超出最小支持度的支持度項集,用頻繁的(k—1)-項集生成候選的頻繁k-項集;其次利用大項集產生所需的規則;任何頻繁項集的所有子集一定是頻繁項集是其核心。
Apriori演算法需要兩個步驟:第一個是生成條目集;第二個是使用生成的條目集創建一組關聯規則。當我們把最小置信度設為85%,通過關聯規則的形成以及對應置信度的計算,我們可以從中得到以下有用的信息:
1.置信度大於最小置信度時:我們可以這樣認為,用戶群體在瀏覽相關網頁時,所呈列的鏈接之間是有很大關聯的,他們是用戶群的共同愛好,通過網頁布局的調整,從某種意義上,可以帶來更高的點擊率及潛在客戶;
2.置信度小於最小置信度時:我們可以這樣認為,用戶群體對所呈列鏈接之間沒太多的關聯,亦或關聯規則中的鏈接在爭奪用戶。
五、網站中Web日誌挖掘內容
(1)網站的概要統計。網站的概要統計包括分析覆蓋的時間、總的頁面數、訪問數、會話數、惟一訪問者、以及平均訪問、最高訪問、上周訪問、昨日訪問等結果集。
(2)內容訪問分析。內容訪問分析包括最多及最少被訪問的頁面、最多訪問路徑、最多訪問的新聞、最高訪問的時間等。
(3)客戶信息分析。客戶信息分析包括訪問者的來源省份統計、訪問者使用的瀏覽器及操作系統分析、訪問來自的頁面或者網站、來自的IP地址以及訪問者使用的搜索引擎。
(4)訪問者活動周期行為分析。訪問者活動周期行為分析包括一周7天的訪問行為、一天24小時的訪問行為、每周的最多的訪問日、每天的最多訪問時段等。
(5)主要訪問錯誤分析。主要訪問錯誤分析包括服務端錯誤、頁面找不到錯誤等。
(6)網站欄目分析。網站欄目分析包括定製的頻道和欄目設定,統計出各個欄目的訪問情況,並進行分析。
(7)商務網站擴展分析。商務網站擴展分析是專門針對專題或多媒體文件或下載等內容的訪問分析。
(8)有4個方向可以選擇:①對用戶點擊行為的追蹤,click stream研究;②對網頁之間的關聯規則的研究;③對網站中各個頻道的瀏覽模式的研究;④根據用戶瀏覽行為,對用戶進行聚類,細分研究;(如果你能夠結合現有的互聯網產品和應用提出一些自己的建議和意見,那就更有價值了。)
(9)發現用戶訪問模式。通過分析和探究Web日誌記錄中的規律,可以識別電子商務的潛在客戶,提高對最終用戶的服務質量,並改進Web伺服器系統的性能。
(10)反競爭情報活動。反競爭情報是企業競爭情報活動的重要組成部分。
六、相關軟體及演算法
(一)相關軟體:
1.數據挖掘的專用軟體wake。
2.用OLAP工具
3.已經有部分公司開發出了商用的網站用戶訪問分析系統,如WebTrends公司的CommerceTrends 3.0,它能夠讓電子商務網站更好地理解其網站訪問者的行為,幫助網站採取一些行動來將這些訪問者變為顧客。CommerceTrends主要由3部分組成:Report Generation Server、Campain Analyzer和Webhouse Builder。
4.Accrue公司的Accrue Insight,它是一個綜合性的Web分析工具,它能夠對網站的運行狀況有個深入、細致和准確的分析,通過分析顧客的行為模式,幫助網站採取措施來提高顧客對於網站的忠誠度,從而建立長期的顧客關系。
(二)相關演算法:
1.運用各種演算法進行數據挖掘:GSP演算法, Prefixspana演算法,
2.關聯規則分析:Apriori、FP-growth演算法等。
3.Apriori演算法及其變種演算法
4.基於資料庫投影的序列模式生長技術(database project based sequential pattern growth)
5. Wake演算法、MLC++等
6. PageRank演算法和HITS演算法利用Web頁面間的超鏈接信息計算「權威型」(Authorities)網頁和「目錄型」(Hubs)網頁的權值。Web結構挖掘通常需要整個Web的全局數據,因此在個性化搜索引擎或主題搜索引擎研究領域得到了廣泛的應用。
7.參考檢索引擎的挖掘演算法,比如Apache的lucene等。
『陸』 關於GSP and VCG 演算法
[編輯本段]GSP演算法描述
1)掃描序列資料庫,得到長度為1的序列模式L1,作為初始的種子集 2)根據長度為i 的種子集Li ,通過連接操作和修剪操作生成長度為i+1的候選序列模式Ci+1;然後掃描序列資料庫,計算每個候選序列模式的支持度,產生長度為i+1的序列模式Li+1,並將Li+1作為新的種子集 3)重復第二步,直到沒有新的序列模式或新的候選序列模式產生為止 產生候選序列模式主要分兩步: 連接階段:如果去掉序列模式s1的第一個項目與去掉序列模式s2的最後一個項目所得到的序列相同,則可以將s1與s2進行連接,即將s2的最後一個項目添加到s1中 修切階段:若某候選序列模式的某個子序列不是序列模式,則此候選序列模式不可能是序列模式,將它從候選序列模式中刪除 候選序列模式的支持度計算:對於給定的候選序列模式集合C,掃描序列資料庫,對於其中的每一條序列s,找出集合C中被s所包含的所有候選序列模式,並增加其支持度計數。
GSP演算法存在的主要問題
如果序列資料庫的規模比較大,則有可能會產生大量的候選序列模式 需要對序列資料庫進行循環掃描 對於序列模式的長度比較長的情況,由於其對應的短的序列模式規模太大,本演算法很難處理
只知道一種。。。希望能幫上忙。。。。
『柒』 汽車音響gsp是什麼意思
數字音頻處理器。
數字音頻處理器是一種數字化的音頻信號處理設備,它先將多通道輸入的模擬信號轉化為數字信號,然後對數字信號進行一系列可調諧的演算法處理,滿足改善音質、矩陣混音、消噪、消迴音、消反饋等應用需求。
一般的數字處理器,內部的架構普遍是由輸入部分和輸出部分組成,其中屬於音頻處理部分的功能一般如下:輸入部分一般會包括,輸入增益控制(INPUTGAIN),輸入均衡(若干段參數均衡)調節(INPUTEQ),輸入端延時調節(INPUTDELAY),輸入極性(也就是大家說的相位)轉換(inputpolarity)等功能。
『捌』 序列模式的序列挖掘演算法步驟
1) 排序階段。資料庫D以客戶號為主鍵交易時間為次鍵進行排序。這個階段將原來的事務資料庫轉換成由客戶序列組成的資料庫。
2) 頻繁項集階段。找出所有頻繁項集組成的集合L。也同步得到所有頻繁1-序列組成的集合。
3) 轉換階段。在找序列模式的過程中要不斷地進行檢測一個給定的頻繁集是否包含於一個客戶序列中。
4) 序列階段利用已知的頻繁集的集合來找到所需的序列。類似於關聯的Apriori演算法。 AprioriAll演算法與Apriori演算法的執行過程是一樣的,不同點在於候選集的產生,具體候選者的產生如下:
候選集生成的時候需要區分最後兩個元素的前後,因此就有<p.item1,p.item2,…,p.,q.>和<p.item1,p.item2,…, q.,p.>兩個元素。 AprioriSome演算法可以看做是AprioriAll演算法的改進,具體可以分為兩個階段:
(1)Forward階段:找出置頂長度的所有大序列,在產生Li後,根據判斷函數j=next(last),此時last=i,j>i,下個階段不產生i+1的候選項,而是產生j的候選項,如果j=i+1,那麼就根據Li生成Cj,如果j>i+1,那麼Cj就有Cj-1產生。然後掃描資料庫計算Cj的支持度。
(2)Backward階段:根據Lj中的大項集,去掉Ci(i<j)中出現的Lj項,然後計算Ci中的支持度,判斷那些在Forward階段被漏判的項集。
AprioriAll演算法和AprioriSome演算法的比較:
(1)AprioriAll用去計算出所有的候選Ck,而AprioriSome會直接用去計算所有的候選,因為包含,所以AprioriSome會產生比較多的候選。
(2)雖然AprioriSome跳躍式計算候選,但因為它所產生的候選比較多,可能在回溯階段前就占滿內存。
(3)如果內存占滿了,AprioriSome就會被迫去計算最後一組的候選。
(4)對於較低的支持度,有較長的大序列,AprioriSome演算法要好些。 GSP(Generalized Sequential Patterns)演算法,類似於Apriori演算法大體分為候選集產生、候選集計數以及擴展分類三個階段。與AprioriAll演算法相比,GSP演算法統計較少的候選集,並且在數據轉換過程中不需要事先計算頻繁集。
GSP的計算步驟與Apriori類似,但是主要不同在於產生候選序列模式,GSP產生候選序列模式可以分成如下兩個步驟:
(1)連接階段:如果去掉序列模式S1的第一個項目與去掉序列模式S2的最後一個項目所得到的序列相同,則可以將S1和S2進行連接,即將S2的最後一個項目添加到S1中去。
(2)剪枝階段:若某候選序列模式的某個子集不是序列模式,則此候選序列模式不可能是序列模式,將它從候選序列模式中刪除。