當前位置:首頁 » 操作系統 » 演算法部門命名

演算法部門命名

發布時間: 2022-11-06 22:55:33

① des和rsa屬於什麼加密技術

RAS:不對稱加密演算法

不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加

② 加密基礎知識二 非對稱加密RSA演算法和對稱加密

上述過程中,出現了公鑰(3233,17)和私鑰(3233,2753),這兩組數字是怎麼找出來的呢?參考 RSA演算法原理(二)
首字母縮寫說明:E是加密(Encryption)D是解密(Decryption)N是數字(Number)。

1.隨機選擇兩個不相等的質數p和q。
alice選擇了61和53。(實際應用中,這兩個質數越大,就越難破解。)

2.計算p和q的乘積n。
n = 61×53 = 3233
n的長度就是密鑰長度。3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。實際應用中,RSA密鑰一般是1024位,重要場合則為2048位。

3.計算n的歐拉函數φ(n)。稱作L
根據公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等於60×52,即3120。

4.隨機選擇一個整數e,也就是公鑰當中用來加密的那個數字
條件是1< e < φ(n),且e與φ(n) 互質。
alice就在1到3120之間,隨機選擇了17。(實際應用中,常常選擇65537。)

5.計算e對於φ(n)的模反元素d。也就是密鑰當中用來解密的那個數字
所謂"模反元素"就是指有一個整數d,可以使得ed被φ(n)除的余數為1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1

6.將n和e封裝成公鑰,n和d封裝成私鑰。
在alice的例子中,n=3233,e=17,d=2753,所以公鑰就是 (3233,17),私鑰就是(3233, 2753)。

上述故事中,blob為了偷偷地傳輸移動位數6,使用了公鑰做加密,即6^17 mode 3233 = 824。alice收到824之後,進行解密,即824^2753 mod 3233 = 6。也就是說,alice成功收到了blob使用的移動位數。

再來復習一下整個流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要滿足以下兩個條件:1<E<144,E和144互質)
D = 29(D要滿足兩個條件,1<D<144,D mode 144 = 1)
假設某個需要傳遞123,則加密後:123^5 mode 323 = 225
接收者收到225後,進行解密,225^ 29 mode 323 = 123

回顧上面的密鑰生成步驟,一共出現六個數字:
p
q
n
L即φ(n)
e
d
這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。那麼,有無可能在已知n和e的情況下,推導出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有將n因數分解,才能算出p和q。
結論:如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。
可是,大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。維基網路這樣寫道:"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有短的RSA密鑰才可能被暴力破解。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"

然而,雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何。此外,RSA的缺點還有:
A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。
B)分組長度太大,為保證安全性,n 至少也要 600bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。因此, 使用RSA只能加密少量數據,大量的數據加密還要靠對稱密碼演算法

加密和解密是自古就有技術了。經常看到偵探電影的橋段,勇敢又機智的主角,拿著一長串毫無意義的數字苦惱,忽然靈光一閃,翻出一本厚書,將第一個數字對應頁碼數,第二個數字對應行數,第三個數字對應那一行的某個詞。數字變成了一串非常有意義的話:
Eat the beancurd with the peanut. Taste like the ham.

這種加密方法是將原來的某種信息按照某個規律打亂。某種打亂的方式就叫做密鑰(cipher code)。發出信息的人根據密鑰來給信息加密,而接收信息的人利用相同的密鑰,來給信息解密。 就好像一個帶鎖的盒子。發送信息的人將信息放到盒子里,用鑰匙鎖上。而接受信息的人則用相同的鑰匙打開。加密和解密用的是同一個密鑰,這種加密稱為對稱加密(symmetric encryption)。

如果一對一的話,那麼兩人需要交換一個密鑰。一對多的話,比如總部和多個特工的通信,依然可以使用同一套密鑰。 但這種情況下,對手偷到一個密鑰的話,就知道所有交流的信息了。 二戰中盟軍的情報戰成果,很多都來自於破獲這種對稱加密的密鑰。

為了更安全,總部需要給每個特工都設計一個不同的密鑰。如果是FBI這樣龐大的機構,恐怕很難維護這么多的密鑰。在現代社會,每個人的信用卡信息都需要加密。一一設計密鑰的話,銀行怕是要跪了。

對稱加密的薄弱之處在於給了太多人的鑰匙。如果只給特工鎖,而總部保有鑰匙,那就容易了。特工將信息用鎖鎖到盒子里,誰也打不開,除非到總部用唯一的一把鑰匙打開。只是這樣的話,特工每次出門都要帶上許多鎖,太容易被識破身份了。總部老大想了想,乾脆就把造鎖的技術公開了。特工,或者任何其它人,可以就地取材,按照圖紙造鎖,但無法根據圖紙造出鑰匙。鑰匙只有總部的那一把。

上面的關鍵是鎖和鑰匙工藝不同。知道了鎖,並不能知道鑰匙。這樣,銀行可以將「造鎖」的方法公布給所有用戶。 每個用戶可以用鎖來加密自己的信用卡信息。即使被別人竊聽到,也不用擔心:只有銀行才有鑰匙呢!這樣一種加密演算法叫做非對稱加密(asymmetric encryption)。非對稱加密的經典演算法是RSA演算法。它來自於數論與計算機計數的奇妙結合。

1976年,兩位美國計算機學家Whitfield Diffie 和 Martin Hellman,提出了一種嶄新構思,可以在不直接傳遞密鑰的情況下,完成解密。這被稱為"Diffie-Hellman密鑰交換演算法"。這個演算法啟發了其他科學家。人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式被稱為"非對稱加密演算法"。

1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。

1.能「撞」上的保險箱(非對稱/公鑰加密體制,Asymmetric / Public Key Encryption)

數據加密解密和門鎖很像。最開始的時候,人們只想到了那種只能用鑰匙「鎖」數據的鎖。如果在自己的電腦上自己加密數據,當然可以用最開始這種門鎖的形式啦,方便快捷,簡單易用有木有。

但是我們現在是通信時代啊,雙方都想做安全的通信怎麼辦呢?如果也用這種方法,通信就好像互相發送密碼保險箱一樣…而且雙方必須都有鑰匙才能進行加密和解密。也就是說,兩個人都拿著保險箱的鑰匙,你把數據放進去,用鑰匙鎖上發給我。我用同樣的鑰匙把保險箱打開,再把我的數據鎖進保險箱,發送給你。

這樣看起來好像沒什麼問題。但是,這裡面 最大的問題是:我們兩個怎麼弄到同一個保險箱的同一個鑰匙呢? 好像僅有的辦法就是我們兩個一起去買個保險箱,然後一人拿一把鑰匙,以後就用這個保險箱了。可是,現代通信社會,絕大多數情況下別說一起去買保險箱了,連見個面都難,這怎麼辦啊?

於是,人們想到了「撞門」的方法。我這有個可以「撞上」的保險箱,你那裡自己也買一個這樣的保險箱。通信最開始,我把保險箱打開,就這么開著把保險箱發給你。你把數據放進去以後,把保險箱「撞」上發給我。撞上以後,除了我以外,誰都打不開保險箱了。這就是RSA了,公開的保險箱就是公鑰,但是我有私鑰,我才能打開。

2.數字簽名
這種鎖看起來好像很不錯,但是鎖在運輸的過程中有這么一個嚴重的問題:你怎麼確定你收到的開著的保險箱就是我發來的呢?對於一個聰明人,他完全可以這么干:
(a)裝作運輸工人。我現在把我開著的保險箱運給對方。運輸工人自己也弄這么一個保險箱,運輸的時候把保險箱換成他做的。
(b)對方收到保險箱後,沒法知道這個保險箱是我最初發過去的,還是運輸工人替換的。對方把數據放進去,把保險箱撞上。
(c)運輸工人往回運的時候,用自己的鑰匙打開自己的保險箱,把數據拿走。然後復印也好,偽造也好,弄出一份數據,把這份數據放進我的保險箱,撞上,然後發給我。
從我的角度,從對方的角度,都會覺得這數據傳輸過程沒問題。但是,運輸工人成功拿到了數據,整個過程還是不安全的,大概的過程是這樣:

這怎麼辦啊?這個問題的本質原因是,人們沒辦法獲知,保險箱到底是「我」做的,還是運輸工人做的。那乾脆,我們都別做保險箱了,讓權威機構做保險箱,然後在每個保險箱上用特殊的工具刻上一個編號。對方收到保險箱的時候,在權威機構的「公告欄」上查一下編號,要是和保險箱上的編號一樣,我就知道這個保險箱是「我」的,就安心把數據放進去。大概過程是這樣的:

如何做出刻上編號,而且編號沒法修改的保險箱呢?這涉及到了公鑰體制中的另一個問題:數字簽名。
要知道,刻字這種事情吧,誰都能幹,所以想做出只能自己刻字,還沒法讓別人修改的保險箱確實有點難度。那麼怎麼辦呢?這其實困擾了人們很長的時間。直到有一天,人們發現:我們不一定非要在保險箱上刻規規矩矩的字,我們乾脆在保險箱上刻手寫名字好了。而且,刻字有點麻煩,乾脆我們在上面弄張紙,讓人直接在上面寫,簡單不費事。具體做法是,我們在保險箱上嵌進去一張紙,然後每個出產的保險箱都讓權威機構的CEO簽上自己的名字。然後,CEO把自己的簽名公開在權威機構的「公告欄」上面。比如這個CEO就叫「學酥」,那麼整個流程差不多是這個樣子:

這個方法的本質原理是,每個人都能夠通過筆跡看出保險箱上的字是不是學酥CEO簽的。但是呢,這個字體是學酥CEO唯一的字體。別人很難模仿。如果模仿我們就能自己分辨出來了。要是實在分辨不出來呢,我們就請一個筆跡專家來分辨。這不是很好嘛。這個在密碼學上就是數字簽名。

上面這個簽字的方法雖然好,但是還有一個比較蛋疼的問題。因為簽字的樣子是公開的,一個聰明人可以把公開的簽字影印一份,自己造個保險箱,然後把這個影印的字也嵌進去。這樣一來,這個聰明人也可以造一個相同簽字的保險箱了。解決這個問題一個非常簡單的方法就是在看保險箱上的簽名時,不光看字體本身,還要看字體是不是和公開的字體完全一樣。要是完全一樣,就可以考慮這個簽名可能是影印出來的。甚至,還要考察字體是不是和其他保險櫃上的字體一模一樣。因為聰明人為了欺騙大家,可能不影印公開的簽名,而影印其他保險箱上的簽名。這種解決方法雖然簡單,但是驗證簽名的時候麻煩了一些。麻煩的地方在於我不僅需要對比保險箱上的簽名是否與公開的筆跡一樣,還需要對比得到的簽名是否與公開的筆跡完全一樣,乃至是否和所有發布的保險箱上的簽名完全一樣。有沒有什麼更好的方法呢?

當然有,人們想到了一個比較好的方法。那就是,學酥CEO簽字的時候吧,不光把名字簽上,還得帶上簽字得日期,或者帶上這個保險箱的編號。這樣一來,每一個保險箱上的簽字就唯一了,這個簽字是學酥CEO的簽名+學酥CEO寫上的時間或者編號。這樣一來,就算有人偽造,也只能偽造用過的保險箱。這個問題就徹底解決了。這個過程大概是這么個樣子:

3 造價問題(密鑰封裝機制,Key Encapsulation Mechanism)
解決了上面的各種問題,我們要考慮考慮成本了… 這種能「撞」門的保險箱雖然好,但是這種鎖造價一般來說要比普通的鎖要高,而且鎖生產時間也會變長。在密碼學中,對於同樣「結實」的鎖,能「撞」門的鎖的造價一般來說是普通鎖的上千倍。同時,能「撞」門的鎖一般來說只能安裝在小的保險櫃裡面。畢竟,這么復雜的鎖,裝起來很費事啊!而普通鎖安裝在多大的保險櫃上面都可以呢。如果兩個人想傳輸大量數據的話,用一個大的保險櫃比用一堆小的保險櫃慢慢傳要好的多呀。怎麼解決這個問題呢?人們又想出了一個非常棒的方法:我們把兩種鎖結合起來。能「撞」上的保險櫃裡面放一個普通鎖的鑰匙。然後造一個用普通的保險櫃來鎖大量的數據。這樣一來,我們相當於用能「撞」上的保險櫃發一個鑰匙過去。對方收到兩個保險櫃後,先用自己的鑰匙把小保險櫃打開,取出鑰匙。然後在用這個鑰匙開大的保險櫃。這樣做更棒的一個地方在於,既然對方得到了一個鑰匙,後續再通信的時候,我們就不再需要能「撞」上的保險櫃了啊,在以後一定時間內就用普通保險櫃就好了,方便快捷嘛。

以下參考 數字簽名、數字證書、SSL、https是什麼關系?
4.數字簽名(Digital Signature)
數據在瀏覽器和伺服器之間傳輸時,有可能在傳輸過程中被冒充的盜賊把內容替換了,那麼如何保證數據是真實伺服器發送的而不被調包呢,同時如何保證傳輸的數據沒有被人篡改呢,要解決這兩個問題就必須用到數字簽名,數字簽名就如同日常生活的中的簽名一樣,一旦在合同書上落下了你的大名,從法律意義上就確定是你本人簽的字兒,這是任何人都沒法仿造的,因為這是你專有的手跡,任何人是造不出來的。那麼在計算機中的數字簽名怎麼回事呢?數字簽名就是用於驗證傳輸的內容是不是真實伺服器發送的數據,發送的數據有沒有被篡改過,它就干這兩件事,是非對稱加密的一種應用場景。不過他是反過來用私鑰來加密,通過與之配對的公鑰來解密。
第一步:服務端把報文經過Hash處理後生成摘要信息Digest,摘要信息使用私鑰private-key加密之後就生成簽名,伺服器把簽名連同報文一起發送給客戶端。
第二步:客戶端接收到數據後,把簽名提取出來用public-key解密,如果能正常的解密出來Digest2,那麼就能確認是對方發的。
第三步:客戶端把報文Text提取出來做同樣的Hash處理,得到的摘要信息Digest1,再與之前解密出來的Digist2對比,如果兩者相等,就表示內容沒有被篡改,否則內容就是被人改過了。因為只要文本內容哪怕有任何一點點改動都會Hash出一個完全不一樣的摘要信息出來。

5.數字證書(Certificate Authority)
數字證書簡稱CA,它由權威機構給某網站頒發的一種認可憑證,這個憑證是被大家(瀏覽器)所認可的,為什麼需要用數字證書呢,難道有了數字簽名還不夠安全嗎?有這樣一種情況,就是瀏覽器無法確定所有的真實伺服器是不是真的是真實的,舉一個簡單的例子:A廠家給你們家安裝鎖,同時把鑰匙也交給你,只要鑰匙能打開鎖,你就可以確定鑰匙和鎖是配對的,如果有人把鑰匙換了或者把鎖換了,你是打不開門的,你就知道肯定被竊取了,但是如果有人把鎖和鑰匙替換成另一套表面看起來差不多的,但質量差很多的,雖然鑰匙和鎖配套,但是你卻不能確定這是否真的是A廠家給你的,那麼這時候,你可以找質檢部門來檢驗一下,這套鎖是不是真的來自於A廠家,質檢部門是權威機構,他說的話是可以被公眾認可的(呵呵)。
同樣的, 因為如果有人(張三)用自己的公鑰把真實伺服器發送給瀏覽器的公鑰替換了,於是張三用自己的私鑰執行相同的步驟對文本Hash、數字簽名,最後得到的結果都沒什麼問題,但事實上瀏覽器看到的東西卻不是真實伺服器給的,而是被張三從里到外(公鑰到私鑰)換了一通。那麼如何保證你現在使用的公鑰就是真實伺服器發給你的呢?我們就用數字證書來解決這個問題。數字證書一般由數字證書認證機構(Certificate Authority)頒發,證書裡麵包含了真實伺服器的公鑰和網站的一些其他信息,數字證書機構用自己的私鑰加密後發給瀏覽器,瀏覽器使用數字證書機構的公鑰解密後得到真實伺服器的公鑰。這個過程是建立在被大家所認可的證書機構之上得到的公鑰,所以這是一種安全的方式。

常見的對稱加密演算法有DES、3DES、AES、RC5、RC6。非對稱加密演算法應用非常廣泛,如SSH,
HTTPS, TLS,電子證書,電子簽名,電子身份證等等。
參考 DES/3DES/AES區別

③ 熊貓演算法的命名

是一位名叫Navneet Panda的工程師主導了這次解決方案的設計,故以Panda(熊貓)來命名。

④ 起名字演算法詳解

繁體 拼音 康熙筆劃 五行 凶吉
閆 閆 yan 11 金 吉
佳 佳 jia 8 木 吉
琦 琦 qi 13 木 吉
天格-> 12(木)
人格-> 19(水)
地格-> 21(木) 外格-> 14(火)

總格-> 32(木)

說明:字的筆劃以《康熙字典》為准,康熙筆劃計算方法與簡體筆劃有所區別,不能以現在計算筆劃的方法去計算。為保證本站提供的測算內容精準,編輯人員花費了大量時間和精力與《康熙字典》原版進行核對。如果您發現錯誤,敬請及時與我們聯系,謝謝!
天格12的解析:天格數是先祖留傳下來的,其數理對人影響不大。 什麼是天格?
什麼是天格:天格是由您的姓決定的,姓是祖輩流傳下來的。它的數理對人生並無直接的影響。所以,天格的吉凶數理不用重視。在測名字的時候,也會有天格的數理吉凶解釋,那是對這個數字的解釋,本身無太大意義。
(掘井無泉)無理之數,發展薄弱,雖生不足,難酬志向。
含義:無理伸張之象。妄顧自身薄弱無力,企圖做力不從心的事,反致失敗。遇事易生不足之心。家庭緣薄,孤苦無依, 一生寂寞。陷於孤獨、遭難、逆境、病弱、不如意等困境中,或因其他運的配合不善而導致意外的失敗,甚至有不能完壽的悲運。(凶 )

人格19的解析:人格數又稱主運,是姓名的中心點,影響人一生的命運。 什麼是人格?
什麼是人格:人格非常重要,是這個名字的中心、精髓!人格的吉凶,對人的影響很大,就如四柱當中的日柱一樣,是判斷名字好壞吉凶的一個標准。
(多難) 風雲蔽日,辛苦重來,雖有智謀,萬事挫折。
含義:風雲蔽月之象,有才智多謀略。雖有成就大業,博得名利的實力,但因其過剛而頻生意外的災患,內外不和,一敗塗地,困難苦慘不絕。若主運有此數,又乏其他吉數以助,多陷病弱、廢疾、孤寡甚至夭折,妻子死別、刑罰、殺傷等災。為萬事挫折非命至極,故也叫短命數。若先天有金水者,可成巨富、怪傑、偉人。(凶 )

地格21的解析:地格數又稱前運,影響人中年(36歲)以前的活動力。 什麼是地格?
什麼是地格:地格和人格有密切的關系,主要影響人年輕時的命運,地格也比較重要。其數理吉凶,也代表與子女、部屬、晚輩的關系。
(明月中天)光風霽月,萬物確立,官運亨通,大搏名利。
含義:光風霽月之象,萬物形成自立之勢。獨立權威,能為首領之運。為人尊仰,享受富貴榮華。路徑屬邁進發展,中途難免相當苦心步步而進,宛如登梯。立業興家,大博名利,壽祿豐厚,乃貴重的吉數。女性得此數者,易招災害,故不宜之。(吉 )

外格14的解析:外格又稱變格,影響人的社交能力、智慧等。 什麼是外格?
什麼是外格:外格通常指和社會上的關系的融洽程度,在實際預測中其准確度較低,對人生的作用不是很大,在專業預測當中也很少去用。外格的數理不用重視。
(破兆) 家庭緣薄,孤獨遭難,謀事不達,悲慘不測。
含義:浮沉不定,多破兆。家屬緣薄,六親無靠, 骨肉分離,喪親亡子、孤獨、不如意、煩悶、危難、遭厄、災禍迭至。為人慷慨,施恩招怨,勞而無功,辛苦凄慘。若其他運數配合不宜者,有傷天壽。然此數之人穎悟非凡,若「三才」配置善良者也會有極少數的怪傑、偉人成就大業。(凶 )

總格32的解析:總格又稱後運,影響人中年(36歲)以後的命運。 什麼是總格?
什麼是總格:判斷名字的吉凶,一般先看總格,再看人格。總格對人的晚運和一生運勢均有影響。總格就如植物的根,根好則枝繁葉茂。因此,名字吉凶一定要看總格。
(寶馬金鞍)僥幸多望,貴人得助,財帛如裕,繁榮至上。
含義:僥幸多望之格,常得長上之庇護。若能得長輩提掖,其成功將勢如破竹。且此數理者品性溫良,大有愛護他人之德。家門隆昌繁榮,為至上的吉數,最適合女性用。(吉 )

對三才數理的影響
什麼是三才? 成功運被壓抑,不能有所伸張,徒勞無功,身心過勞而病弱,尤其易患腦溢血、心臟麻痹等疾病。(凶)
什麼是三才:三才代表天地人,三才的吉凶,嚴重影響一個名字的好壞。三才也說明了父母和自己,自己和子女之間的相處關系和緣份。「一生二,二生三,三生萬物」,從一到三都是依照次序,一個一個生出來的,為什麼到了三就一下子生到萬物了呢,原來二代表的是天地陰陽也就是乾坤的生成,天地陰陽相交又生出了人,人就是三的代表數,所以三就代表了天地人,又別稱三才。但如果人格地格總格三格的數理和三才配置發生矛盾時,建議應首選三格數理,三格吉在前,三才配置在後。
對基礎運的影響 境遇雖安定,數理難免凶災,易患肝臟或者腎臟疾病。(凶)
對成功運的影響 一方面成功順利,一方面家庭內部不和不幸,屬於半福半禍格。(凶)
對人際關系的影響 是非判斷力強,富於活動能力,但過於逞強好勝,較能寬容他人,有濟困救貧之俠義氣概。易患皮膚病、腹疾、胃病。(平 )

人格19有以下數理暗示 敗財運
地格21有以下數理暗示 敗財運、女有孤獨運
外格14有以下數理暗示 敗財運、孤獨運、藝能運、美貌
總格32有以下數理暗示 女德運

總評及建議:
你的名字還算可以。雖然人生路途中會遇到一些困難,但只要努力,還是會有很多收獲的。
需謹慎處理財富 姓名評分:84

⑤ 八大演算法

演算法中比較常用的有八種演算法,基本演算法的題,都是依靠這些基礎演算法或者結合使用出題的,所以要學會基礎演算法,才有可能去更好的掌握演算法題。

插入排序,又叫直接插入排序。實際中,我們玩撲克牌的時候,就用了插入排序的思想。

基本思想:在待排序的元素中,假設前n-1個元素已有序,現將第n個元素插入到前面已經排好的序列中,使得前n個元素有序。按照此法對所有元素進行插入,直到整個序列有序。但我們並不能確定待排元素中究竟哪一部分是有序的,所以我們一開始只能認為第一個元素是有序的,依次將其後面的元素插入到這個有序序列中來,直到整個序列有序為止。

希爾排序,又稱縮小增量法。其基本思想是:

 1>先選定一個小於N的整數gap作為第一增量,然後將所有距離為gap的元素分在同一組,並對每一組的元素進行直接插入排序。然後再取一個比第一增量小的整數作為第二增量,重復上述操作…

    2>當增量的大小減到1時,就相當於整個序列被分到一組,進行一次直接插入排序,排序完成。

選擇排序,即每次從待排序列中選出一個最小值,然後放在序列的起始位置,直到全部待排數據排完即可。

如何進行堆排序呢?

步驟如下:

 1、將堆頂數據與堆的最後一個數據交換,然後對根位置進行一次堆的向下調整,但是調整時被交換到最後的那個最大的數不參與向下調整。

 2、完成步驟1後,這棵樹除最後一個數之外,其餘數又成一個大堆,然後又將堆頂數據與堆的最後一個數據交換,這樣一來,第二大的數就被放到了倒數第二個位置上,然後該數又不參與堆的向下調整…反復執行下去,直到堆中只有一個數據時便結束。此時該序列就是一個升序。

冒泡排序,該排序的命名非常形象,即一個個將氣泡冒出。冒泡排序一趟冒出一個最大(或最小)值。

快速排序是公認的排序之王,快速排序是Hoare於1962年提出的一種二叉樹結構的交換排序演算法,其基本思想為:

 任取待排序元素序列中的某元素作為基準值,按照該基準值將待排序列分為兩子序列,左子序列中所有元素均小於基準值,右子序列中所有元素均大於基準值,然後左右序列重復該過程,直到所有元素都排列在相應位置上為止。

歸並排序是採用分治法的一個非常典型的應用。其基本思想是:將已有序的子序合並,從而得到完全有序的序列,即先使每個子序有序,再使子序列段間有序。

計數排序,又叫非比較排序。顧名思義,該演算法不是通過比較數據的大小來進行排序的,而是通過統計數組中相同元素出現的次數,然後通過統計的結果將序列回收到原來的序列中。

⑥ RSA演算法介紹

它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。它經歷了各種攻擊,至今未被完全攻破。

一、RSA演算法 :

首先, 找出三個數, p, q, r,
其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數......
p, q, r 這三個數便是 private key

接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1).....
這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了.....
再來, 計算 n = pq.......
m, n 這兩個數便是 public key

編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n....
如果 a >= n 的話, 就將 a 表成 s 進位 (s <= n, 通常取 s = 2^t),
則每一位數均小於 n, 然後分段編碼......
接下來, 計算 b == a^m mod n, (0 <= b < n),
b 就是編碼後的資料......

解碼的過程是, 計算 c == b^r mod pq (0 <= c < pq),
於是乎, 解碼完畢...... 等會會證明 c 和 a 其實是相等的 :)

如果第三者進行竊聽時, 他會得到幾個數: m, n(=pq), b......
他如果要解碼的話, 必須想辦法得到 r......
所以, 他必須先對 n 作質因數分解.........
要防止他分解, 最有效的方法是找兩個非常的大質數 p, q,
使第三者作因數分解時發生困難.........

<定理>
若 p, q 是相異質數, rm == 1 mod (p-1) (q-1),
a 是任意一個正整數, b == a^m mod pq, c == b^r mod pq,
則 c == a mod pq

證明的過程, 會用到費馬小定理, 敘述如下:
m 是任一質數, n 是任一整數, 則 n^m == n mod m
(換另一句話說, 如果 n 和 m 互質, 則 n^(m-1) == 1 mod m)
運用一些基本的群論的知識, 就可以很容易地證出費馬小定理的........

<證明>
因為 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整數
因為在 molo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍數, 也不是 q 的倍數時,
則 a^(p-1) == 1 mod p (費馬小定理) =& gt; a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (費馬小定理) =& gt; a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q- 1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q- 1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍數, 但不是 q 的倍數時,
則 a^(q-1) == 1 mod q (費馬小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq

3. 如果 a 是 q 的倍數, 但不是 p 的倍數時, 證明同上

4. 如果 a 同時是 p 和 q 的倍數時,
則 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.

這個定理說明 a 經過編碼為 b 再經過解碼為 c 時, a == c mod n (n = pq)....
但我們在做編碼解碼時, 限制 0 <= a < n, 0 <= c < n,
所以這就是說 a 等於 c, 所以這個過程確實能做到編碼解碼的功能.....

二、RSA 的安全性

RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解 RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA 的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解多個十進制位的大素數。因此,模數n 必須選大一些,因具體適用情況而定。

三、 RSA的速度

由於進行的都是大數計算,使得RSA最快的情況也比DES慢上倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。

四、 RSA的選擇密文攻擊

RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝( Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構:

( XM )^d = X^d *M^d mod n

前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用 One-Way HashFunction 對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法。

五、RSA的公共模數攻擊

若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則:

C1 = P^e1 mod n

C2 = P^e2 mod n

密碼分析者知道n、e1、e2、C1和C2,就能得到P。

因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:

r * e1 + s * e2 = 1

假設r為負數,需再用Euclidean演算法計算C1^(-1),則

( C1^(-1) )^(-r) * C2^s = P mod n

另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和 d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。

RSA的小指數攻擊。 有一種提高 RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有
所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。

RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。 RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。B)分組長度太大,為保證安全性,n 至少也要 600 bits 以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目前,SET( Secure Electronic Transaction )協議中要求CA採用比特長的密鑰,其他實體使用比特的密鑰。

⑦ 數據挖掘軟體 Weka 中將 C4.5 演算法命名為 J48,C4.5 和 J48 名稱的含義和來由是什麼

C4.5的作者把演算法升級到C4.8,然後Weka的作者用Java 語言實現了C4.8,並把它命名為J4.8

最新的版本已經是 C5.0

⑧ 互聯網行業的演算法涉及的具體技術名稱或者對應的學術學科名稱是什麼

計算機科學與技術、數據挖掘、大數據、人工智慧等
希望可以幫到你,謝謝!

⑨ 求助各位大神,我們是互聯網公司,想要給各個部門起幾個新穎個性,符合公司行業的名稱。

忽米學院對於任何一個互聯網公司,一定有幾種類型的人才。必須有的類型包括:產品 - 研發 - 設計 - 測試 - 運維 - 運營 。

產品人員應該是公司最開始有的角色,基於市場和用戶定義一款產品的雛形;

有了產品的雛形,由研發人員將各個功能模塊實現,產品就基本形成了;

產品正式上線之前,由測試人員進行各種測試,確保產品可以穩定使用;

上線發布之前由運維人員部署機房等功能,等待正式發布;

正式發布之後,有了用戶進來,由運營人員持續留住用戶以及吸引更多的用戶,滿足更多用戶新的需求,將用戶的需求提交給產品,由產品提交給研發進行需求的實現;

以上各個部分,形成了一個互聯網產品的閉環~


擴展質料

對於研發人員分類。大致統分為兩類:前端和後端。

大前端的概念包括:前端頁面開發、前端設計、客戶端開發;

大後端的概念包括:後台伺服器研發、大數據研發、大AI(人工智慧)范疇研發。

前端頁面開發包括:web前端和H5前端;

前端設計包括:視覺設計、交互設計;

客戶端開發包括: 移動客戶端(Android、ios) 、 PC客戶端(Windows C++) ;

後台伺服器研發包括:Java 、C++ 、Python 、GO;

大數據研發(工程): Hadoop 、 Storm 、 Spark ;

大AI范疇: 推薦演算法、圖像演算法、視覺演算法 、控制演算法 、 機器學習 、 深度學習 等...

⑩ 秦九韶演算法在西方叫什麼

秦九韶演算法在西方被稱作霍納演算法(Horner algorithm或Horner scheme),是以英國數學家威廉·喬治·霍納命名的.
把一個n次多項式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改寫成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多項式的值時,首先計算最內層括弧內一次多項式的值,即
v[1]=a[n]x+a[n-1]
然後由內向外逐層計算一次多項式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
這樣,求n次多項式f(x)的值就轉化為求n個一次多項式的值。
(註:中括弧里的數表示下標)
結論:對於一個n次多項式,至多做n次乘法和n次加法。 [編輯本段]意義該演算法看似簡單,其最大的意義在於將求n次多項式的值轉化為求n個一次多項式的值。在人工計算時,利用秦九韶演算法和其中的系數表可以大幅簡化運算;對於計算機程序演算法而言,加法比乘法的計算效率要高很多,因此該演算法仍有極大的意義,對於計算機來說,做一次乘法運算所用的時間比作一次加法運算要長得多,所以此演算法極大地縮短了CPU運算時間。
(附:計算機程序)
INPUT 「n=」;n
INPUT 「an=」;a
INPUT 「x=」;x
v=a
i=n-1
WHILE i>=0
PRINT 「i=」;i
INPUT 「ai=」;a
v=v*x+a
i=i-1
WEND
PRINT v
END [編輯本段]PASCAL演算法實現v[1]:=a[n]*k+a[n-1];
for i:=2 to n do
v[i]:=v[i-1]*k+a[n-i];
writeln(v[n]);

熱點內容
三國志戰略版打9級礦什麼配置 發布:2025-05-15 11:41:29 瀏覽:951
安卓加速器怎麼關 發布:2025-05-15 11:38:16 瀏覽:464
密碼鎖壞了如何打開 發布:2025-05-15 11:30:19 瀏覽:837
怎樣增加共享文件夾連接數量 發布:2025-05-15 11:24:50 瀏覽:961
安卓如何關閉單應用音量 發布:2025-05-15 11:22:31 瀏覽:351
抖音電腦後台伺服器中斷 發布:2025-05-15 11:11:59 瀏覽:307
sql2008伺服器 發布:2025-05-15 11:03:27 瀏覽:306
我的世界pe伺服器創造 發布:2025-05-15 10:51:17 瀏覽:608
移動端打吃雞要什麼配置 發布:2025-05-15 10:48:16 瀏覽:756
我的世界哪五個伺服器被炸了 發布:2025-05-15 10:36:16 瀏覽:994