當前位置:首頁 » 操作系統 » 線性查找演算法

線性查找演算法

發布時間: 2022-11-29 18:57:16

1. 【數據結構】求線性表的長度和線性表上的查找演算法

/* 順序存儲類型*/
typedef struct
{ ElemType data[MAXSIZE]; /*存放線性表的數組*/
int length; /* length是順序表的長度*/
}sqlist; SqList L;
/* 求順序表長度*/
int ListLength(SqList L)
{return(L.length);}
/* 給定序號從順序表中查找元素*/
void ListGet(SqList L ,int i)
{ if(L.length==0) printf("順序表空\n");
else if(i<1||i>L.length) printf("查找的位置不正確\n");
else printf("順序表中第%d個元素的值為:%d\n",i,L.data[i-1]);
}
/* 從順序表中查找與給定元素值相同的元素在順序表中的位置*/
int ListLocate(SqList L, ElemType x)
{int i=0;
while(i<L.length && L.data[i]!=x)
i++;
if (i<L.length) return (i+1);
else return 0;
}

2. C語言編寫數據結構查找演算法

實驗五 查找的實現
一、 實驗目的
1.通過實驗掌握查找的基本概念;
2.掌握順序查找演算法與實現;
3.掌握折半查找演算法與實現。
二、 實驗要求
1. 認真閱讀和掌握本實驗的參考程序。
2. 保存程序的運行結果,並結合程序進行分析。
三、 實驗內容
1、建立一個線性表,對表中數據元素存放的先後次序沒有任何要求。輸入待查數據元素的關鍵字進行查找。為了簡化演算法,數據元素只含一個整型關鍵字欄位,數據元素的其餘數據部分忽略不考慮。建議採用前哨的作用,以提高查找效率。
2、查找表的存儲結構為有序表,輸入待查數據元素的關鍵字利用折半查找方法進行查找。此程序中要求對整型量關鍵字數據的輸入按從小到大排序輸入。
一、順序查找
順序查找代碼:
#include"stdio.h"
#include"stdlib.h"
typedef struct node{
intkey;
}keynode;
typedef struct Node{
keynoder[50];
intlength;
}list,*sqlist;
int Createsqlist(sqlist s)
{
inti;
printf("請輸入您要輸入的數據的個數:\n");
scanf("%d",&(s->length));
printf("請輸入您想輸入的%d個數據;\n\n",s->length);
for(i=0;i<s->length;i++)
scanf("%d",&(s->r[i].key));
printf("\n");
printf("您所輸入的數據為:\n\n");
for(i=0;i<s->length;i++)
printf("%-5d",s->r[i].key);
printf("\n\n");
return1;
}
int searchsqlist(sqlist s,int k)
{
inti=0;
s->r[s->length].key=k;
while(s->r[i].key!=k)
{

i++;
}
if(i==s->length)
{
printf("該表中沒有您要查找的數據!\n");
return-1;
}
else
returni+1;
}
sqlist Initlist(void)
{
sqlistp;
p=(sqlist)malloc(sizeof(list));
if(p)
returnp;
else
returnNULL;
}
main()
{
intkeyplace,keynum;//
sqlistT;//
T=Initlist();
Createsqlist(T);
printf("請輸入您想要查找的數據的關鍵字:\n\n");
scanf("%d",&keynum);
printf("\n");
keyplace=searchsqlist(T,keynum);
printf("您要查找的數據的位置為:\n\n%d\n\n",keyplace);
return2;
}
順序查找的運行結果:
二、折半查找
折半查找代碼:
#include"stdio.h"
#include"stdlib.h"
typedef struct node{
intkey;
}keynode;
typedef struct Node{
keynoder[50];
intlength;
}list,*sqlist;
int Createsqlist(sqlist s)
{
inti;
printf("請輸入您要輸入的數據的個數:\n");
scanf("%d",&(s->length));
printf("請由大到小輸入%d個您想輸入的個數據;\n\n",s->length);
for(i=0;i<s->length;i++)
scanf("%d",&(s->r[i].key));
printf("\n");
printf("您所輸入的數據為:\n\n");
for(i=0;i<s->length;i++)
printf("%-5d",s->r[i].key);
printf("\n\n");
return1;
}
int searchsqlist(sqlist s,int k)
{
intlow,mid,high;
low=0;
high=s->length-1;
while(low<=high)
{
mid=(low+high)/2;
if(s->r[mid].key==k)
returnmid+1;
elseif(s->r[mid].key>k)
high=mid-1;
else
low=mid+1;
}
printf("該表中沒有您要查找的數據!\n");
return-1;
}
sqlist Initlist(void)
{
sqlistp;
p=(sqlist)malloc(sizeof(list));
if(p)
returnp;
else
returnNULL;
}
main()
{
intkeyplace,keynum;//
sqlistT;//
T=Initlist();
Createsqlist(T);
printf("請輸入您想要查找的數據的關鍵字:\n\n");
scanf("%d",&keynum);
printf("\n");
keyplace=searchsqlist(T,keynum);
printf("您要查找的數據的位置為:\n\n%d\n\n",keyplace);
return2;
}
折半查找運行結果:
三、實驗總結:
該實驗使用了兩種查找數據的方法(順序查找和折半查找),這兩種方法的不同之處在於查找方式和過程不同,線性表的創建完全相同,程序較短,結果也一目瞭然。

3. java線性查找演算法的平均次數為什麼是n/2

平均次數是(n+1)/2,不是n/2。
被查找的數是第1個數,則需用第1個數和被查找的數比較,要比較1次。
被查找的數是第2個數,則需用第1個數、第2個數和被查找的數比較,要比較2次。
...
被查找的數是第n個數,則需用第1個數、第2個數、...、第n個數和被查找的數比較,要比較n次。
平均次數為(1+2+...+n)/n=(n+1)/2。

4. 在有序順序存儲的線性表中查找一個元素

線性表順序查找演算法分析:
查找與數據的存儲有關,線性表{a1,a2,....,an}有順序和鏈式兩種存儲結構.作為順序表存儲時實現順序查找演算法.順序查找是一種最簡單的查找方法.它的基本思路是:從表的一端開始,順序掃描線性表,依次將掃描到的關鍵字和給定值k相比較,若當前掃描到的關鍵字與k值相等,則查找成功;若掃描結束,扔未找到關鍵字等於k的元素,則查找失敗。順序查找演算法(在順序表R[0..n-1]中查找關鍵字為k的元素,成功是返回找到的元素的邏輯序號,失敗時返回。
首先定義順序表的類型,再定義一個SeqSearch()函數實現順序查找.在SeqSearch(SeqListR,intn,KeyTypek)中,其中是在具有n個數據元素R的SeqList中查找值為k的過程.在函數進行運算過程中,首先是通過while判斷,當i=n的時候,返回0,失敗;當i

5. 查找演算法的作用

查找就是在一個數據集合里查找到你需要的數據,查找演算法就是在查找過程中使用的演算法。查找演算法有好多,最基礎的就是線性表查找。
因為提到了演算法,所以需要注意的是時間復雜度跟空間復雜度,進而涉及到數據的存儲方式,比如數組,鏈表,矩陣,樹,圖等等數據結構,這些數據結構可以幫助你降低演算法的復雜度。
如果有興趣,隨便找本數據結構書翻翻,裡面或多或少都會有講解。用關鍵字標識一個數據元素,查找時根據給定的某個值,在表中確定一個關鍵字的值等於給定值的記錄或數據元素。在計算機中進行查找的方法是根據表中的記錄的組織結構確定的。順序查找也稱為線形查找,從數據結構線形表的一端開始,順序掃描,依次將掃描到的結點關鍵字與給定值k相比較,若相等則表示查找成功;若掃描結束仍沒有找到關鍵字等於k的結點,表示查找失敗。二分查找要求線形表中的結點按關鍵字值升序或降序排列,用給定值k先與中間結點的關鍵字比較,中間結點把線形表分成兩個子表,若相等則查找成功;若不相等,再根據k與該中間結點關鍵字的比較結果確定下一步查找哪個子表,這樣遞歸進行,直到查找到或查找結束發現表中沒有這樣的結點。分塊查找也稱為索引查找,把線形分成若干塊,在每一塊中的數據元素的存儲順序是任意的,但要求塊與塊之間須按關鍵字值的大小有序排列,還要建立一個按關鍵字值遞增順序排列的索引表,索引表中的一項對應線形表中的一塊,

6. 如果要求一個線性表既能較快的查找,又能適應動態變化的要求,則可採用的方法是

應該是散列法~~散列法的演算法代表是哈希表,通過哈希函數將值轉化成存放該值的目標地址~~這種查找的性能是O(1),對於其動態變化要求,可以進行再次散列,時間復雜度是O(1)~~
二分法是基於順序表的一種查找方式,體現的是折半思想,查找的時間復雜度為O(logn),不過要是動態變化的情況,移動次數還是O(n),所以不適合要求
順序法是挨個查找,這種方法最容易實現,不過查找時間復雜度都是O(n),動態變化時可將保存值放入線性表尾部,則時間復雜度為O(1),所以不滿足要求
分塊法應該是將整個線性表分成若干塊進行保存,若動態變化則可以添加在表的尾部(非順序結構),時間復雜度是O(1),查找復雜度為O(n);若每個表內部為順序結構,則可用二分法將查找時間復雜度降至O(logn),但同時動態變化復雜度則變成O(n)

7. 梯度下降中的線性搜索計算學習率是怎麼理解

梯度下降法是一個最優化演算法,通常也稱為最速下降法。最速下降法是求解無約束優化問題最簡單和最古老的方法之一,雖然現在已經不具有實用性,但是許多有效演算法都是以它為基礎進行改進和修正而得到的。最速下降法是用負梯度方向為搜索方向的,最速下降法越接近目標值,步長越小,前進越慢。
梯度下降法可以用於求解非線性方程組。
顧名思義,梯度下降法的計算過程就是沿梯度下降的方向求解極小值(也可以沿梯度上升方向求解極大值)。

表示梯度方向上的搜索步長。梯度方向我們可以通過對函數求導得到,步長的確定比較麻煩,太大了的話可能會發散,太小收斂速度又太慢。一般確定步長的方法是由線性搜索演算法來確定,即把下一個點的坐標看做是ak+1的函數,然後求滿足f(ak+1)的最小值即可。
因為一般情況下,梯度向量為0的話說明是到了一個極值點,此時梯度的幅值也為0.而採用梯度下降演算法進行最優化求解時,演算法迭代的終止條件是梯度向量的幅值接近0即可,可以設置個非常小的常數閾值。

8. 程序員開發用到的十大基本演算法

演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。

演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。

演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1

演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

演算法步驟:

演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。

演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。

演算法步驟:

終止條件:n=1時,返回的即是i小元素。

演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。

深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。

演算法步驟:

上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。

接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。

演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。

演算法步驟:

演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。

該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。

演算法步驟:

重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止

演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。

動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。

關於動態規劃最經典的問題當屬背包問題。

演算法步驟:

演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。

樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。

盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。

9. 線性規劃(LP)基本概念和搜索演算法

可以用一個符號描述一系列類似的數量值

一個方程,如果他是關於決策變數的常熟加權求和形式,則該方程式 線性方程(liner) ,佛則該方程為 非線性方程(non-linear)

目標函數 以及約束方程 中均為關於決策變數的線性方程,則該優化模型為 線性規劃(linear program, LP) ,其中目標函數可以為滿足約束的任意整數或者分數

目標函數 以及約束方程 中存在關於決策變數的線性方程,則該優化模型為 非線性規劃(nonlinear program, LP) ,其中目標函數可以為滿足約束的任意整數或者分數

一個優化模型,如果他的決策變數中存在離散變數,則該優化模型位 整數規劃(integer program, IP) ,如果整數規劃的所有決策變數均為離散變數,則該整數規劃為 純整數規劃(pure integer program) ;否則為 混合整數規劃(mixed integer program)

搜索演算法(improving search) 通過檢查鄰域來尋找比當前更好地解,若有改進則替換當前解,繼續迭代,直到鄰域中沒有更好的解為止。搜索演算法又稱為 局部改進(local improvement) 爬山演算法(hillclimbing) 局部搜索(local search) 鄰域搜索(neighborhood search)

倘若一組可行解周圍足夠小的的鄰域內沒有優於該解的可行點,則稱為 局部最優解(local optimum) ,最小化(最大化)問題存在 局部最小(最大)解

如果在全局范圍內不存在目標值優於某可行解的其他可行點,則稱為 全局最優解(global optimum) ,最小化(最大化)問題存在 全局最小(最大)解

搜索演算法沿 由當前點 向下一個搜索點 移動,其中 是當前點 處的 搜索方向(move direction) , 是沿該方向前進的 步長 , 。

對於所有足夠小的 都有 ,則稱 是當前解的一個 改進方向(improving direction) ,如果滿足所有約束條件,則為 可行改進方向

如果優化模型的目標函數 是光滑的(所有決策變數都是可微的),那麼,當 是一個n維向量的函數,當它有一個一階片倒數,這些導數組成的n維向量稱為 梯度

導數(derivative) ,描述函數隨參數的變化率,可以看做斜率。 偏導數(partial derivative) ,是保持其他變數恆定時,關於其中一個變數的導數

對於最大化目標函數 ,若 ,搜索方向 是 處的可改進方向,若 ,搜索方向 不是 處的可改進方向。

對於最小化目標函數 ,若 ,搜索方向 是 處的可改進方向,若 ,搜索方向 不是 處的可改進方向。

當目標函數梯度 ,是最大化目標 的一個改進方向, 是最小化目標函數 的一個改進方向

如果可行域內任意兩點的連線都在可行域內,則稱該可行域為 凸集

離散的可行集總是非凸集

若優化模型的可行集是凸集,那麼對任意可行解始終存在指向另一個解的可行方向,意味著,只要存在最優解,可能性不會阻礙局部最優解發展為全局最優解。

線性約束的可行集又稱為多面體集。

如果優化模型的所有約束都是線性的,那麼該模型的可行域是凸集

兩階段法

大M法

10. 折半查找法是線性查找還是非線性查找

那是兩個查找演算法,線性查找思路就是從第一個找的最後一個。拆半也加二分法查找,是判斷大小,一步步的縮小位置,沒有可比性,兩種思路。

熱點內容
c語言點陣字模 發布:2024-04-26 22:19:35 瀏覽:918
光加密 發布:2024-04-26 22:15:28 瀏覽:352
aspnet經典源碼 發布:2024-04-26 22:14:46 瀏覽:135
linux編譯提示缺少build 發布:2024-04-26 22:14:34 瀏覽:415
編譯opengl 發布:2024-04-26 21:57:32 瀏覽:506
ubuntu查找文件夾 發布:2024-04-26 21:48:18 瀏覽:203
qq瀏覽器wifi助手怎麼查看密碼 發布:2024-04-26 21:48:18 瀏覽:669
在線安裝androidsdk 發布:2024-04-26 21:42:33 瀏覽:480
杭州地鐵wifi密碼是多少 發布:2024-04-26 21:32:45 瀏覽:320
重裝系統源碼 發布:2024-04-26 21:32:44 瀏覽:275