當前位置:首頁 » 操作系統 » 聚類演算法原理

聚類演算法原理

發布時間: 2022-12-07 05:13:31

Ⅰ dbscan演算法是什麼

DBSCAN基於高密度連通區域的、基於密度的聚類演算法,能夠將具有足夠高密度的區域劃分為簇,並在具有雜訊的數據中發現任意形狀的簇。我們總結一下DBSCAN聚類演算法原理的基本要點:

DBSCAN演算法需要選擇一種距離度量,對於待聚類的數據集中,任意兩個點之間的距離,反映了點之間的密度,說明了點與點是否能夠聚到同一類中。由於DBSCAN演算法對高維數據定義密度很困難,所以對於二維空間中的點,可以使用歐幾里德距離來進行度量。



(1)聚類演算法原理擴展閱讀:

dbscan個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。

(1)適當選擇c個類的初始中心;

(2)在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類;

(3)利用均值等方法更新該類的中心值;

(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代。

Ⅱ k均值聚類演算法原理

 演算法:
第一步:選K個初始聚類中心,z1(1),z2(1),…,zK(1),其中括弧內的序號為尋找聚類中心的迭代運算的次序號。聚類中心的向量值可任意設定,例如可選開始的K個模式樣本的向量值作為初始聚類中心。
第二步:逐個將需分類的模式樣本{x}按最小距離准則分配給K個聚類中心中的某一個zj(1)。
假設i=j時, ,則 ,其中k為迭代運算的次序號,第一次迭代k=1,Sj表示第j個聚類,其聚類中心為zj。
第三步:計算各個聚類中心的新的向量值,zj(k+1),j=1,2,…,K
求各聚類域中所包含樣本的均值向量:

其中Nj為第j個聚類域Sj中所包含的樣本個數。以均值向量作為新的聚類中心,可使如下聚類准則函數最小:

在這一步中要分別計算K個聚類中的樣本均值向量,所以稱之為K-均值演算法。
第四步:若 ,j=1,2,…,K,則返回第二步,將模式樣本逐個重新分類,重復迭代運算;
若 ,j=1,2,…,K,則演算法收斂,計算結束。

Ⅲ K-Means聚類演算法

        所謂聚類演算法是指將一堆沒有標簽的數據自動劃分成幾類的方法,屬於無監督學習方法,這個方法要保證同一類的數據有相似的特徵,如下圖所示:

        根據樣本之間的距離或者說是相似性(親疏性),把越相似、差異越小的樣本聚成一類(簇),最後形成多個簇,使同一個簇內部的樣本相似度高,不同簇之間差異性高。

相關概念:

K值 :要得到的簇的個數

質心 :每個簇的均值向量,即向量各維取平均即可

距離量度 :常用歐幾里得距離和餘弦相似度(先標准化)

演算法流程:

1、首先確定一個k值,即我們希望將數據集經過聚類得到k個集合。

2、從數據集中隨機選擇k個數據點作為質心。

3、對數據集中每一個點,計算其與每一個質心的距離(如歐式距離),離哪個質心近,就劃分到那個質心所屬的集合。

4、把所有數據歸好集合後,一共有k個集合。然後重新計算每個集合的質心。

5、如果新計算出來的質心和原來的質心之間的距離小於某一個設置的閾值(表示重新計算的質心的位置變化不大,趨於穩定,或者說收斂),我們可以認為聚類已經達到期望的結果,演算法終止。

6、如果新質心和原質心距離變化很大,需要迭代3~5步驟。

K-Means採用的啟發式方式很簡單,用下面一組圖就可以形象的描述:

        上圖a表達了初始的數據集,假設k=2。在圖b中,我們隨機選擇了兩個k類所對應的類別質心,即圖中的紅色質心和藍色質心,然後分別求樣本中所有點到這兩個質心的距離,並標記每個樣本的類別為和該樣本距離最小的質心的類別,如圖c所示,經過計算樣本和紅色質心和藍色質心的距離,我們得到了所有樣本點的第一輪迭代後的類別。此時我們對我們當前標記為紅色和藍色的點分別求其新的質心,如圖d所示,新的紅色質心和藍色質心的位置已經發生了變動。圖e和圖f重復了我們在圖c和圖d的過程,即將所有點的類別標記為距離最近的質心的類別並求新的質心。最終我們得到的兩個類別如圖f。

坐標系中有六個點:

1、我們分兩組,令K等於2,我們隨機選擇兩個點:P1和P2

2、通過勾股定理計算剩餘點分別到這兩個點的距離:

3、第一次分組後結果:

        組A:P1

        組B:P2、P3、P4、P5、P6

4、分別計算A組和B組的質心:

        A組質心還是P1=(0,0)

        B組新的質心坐標為:P哥=((1+3+8+9+10)/5,(2+1+8+10+7)/5)=(6.2,5.6)

5、再次計算每個點到質心的距離:

6、第二次分組結果:

        組A:P1、P2、P3

        組B:P4、P5、P6

7、再次計算質心:

        P哥1=(1.33,1) 

        P哥2=(9,8.33)

8、再次計算每個點到質心的距離:

9、第三次分組結果:

        組A:P1、P2、P3

        組B:P4、P5、P6

可以發現,第三次分組結果和第二次分組結果一致,說明已經收斂,聚類結束。

優點:

1、原理比較簡單,實現也是很容易,收斂速度快。

2、當結果簇是密集的,而簇與簇之間區別明顯時, 它的效果較好。

3、主要需要調參的參數僅僅是簇數k。

缺點:

1、K值需要預先給定,很多情況下K值的估計是非常困難的。

2、K-Means演算法對初始選取的質心點是敏感的,不同的隨機種子點得到的聚類結果完全不同 ,對結果影響很大。

3、對噪音和異常點比較的敏感。用來檢測異常值。

4、採用迭代方法, 可能只能得到局部的最優解,而無法得到全局的最優解 。

1、K值怎麼定?

        答:分幾類主要取決於個人的經驗與感覺,通常的做法是多嘗試幾個K值,看分成幾類的結果更好解釋,更符合分析目的等。或者可以把各種K值算出的 E 做比較,取最小的 E 的K值。

2、初始的K個質心怎麼選?

        答:最常用的方法是隨機選,初始質心的選取對最終聚類結果有影響,因此演算法一定要多執行幾次,哪個結果更reasonable,就用哪個結果。 當然也有一些優化的方法,第一種是選擇彼此距離最遠的點,具體來說就是先選第一個點,然後選離第一個點最遠的當第二個點,然後選第三個點,第三個點到第一、第二兩點的距離之和最小,以此類推。第二種是先根據其他聚類演算法(如層次聚類)得到聚類結果,從結果中每個分類選一個點。

3、關於離群值?

        答:離群值就是遠離整體的,非常異常、非常特殊的數據點,在聚類之前應該將這些「極大」「極小」之類的離群數據都去掉,否則會對於聚類的結果有影響。但是,離群值往往自身就很有分析的價值,可以把離群值單獨作為一類來分析。

4、單位要一致!

        答:比如X的單位是米,Y也是米,那麼距離算出來的單位還是米,是有意義的。但是如果X是米,Y是噸,用距離公式計算就會出現「米的平方」加上「噸的平方」再開平方,最後算出的東西沒有數學意義,這就有問題了。

5、標准化

        答:如果數據中X整體都比較小,比如都是1到10之間的數,Y很大,比如都是1000以上的數,那麼,在計算距離的時候Y起到的作用就比X大很多,X對於距離的影響幾乎可以忽略,這也有問題。因此,如果K-Means聚類中選擇歐幾里德距離計算距離,數據集又出現了上面所述的情況,就一定要進行數據的標准化(normalization),即將數據按比例縮放,使之落入一個小的特定區間。

參考文章: 聚類、K-Means、例子、細節

Ⅳ DBSCAN原理

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚類演算法,它是一種基於高密度連通區域的、基於密度的聚類演算法,能夠將具有足夠高密度的區域劃分為簇,並在具有雜訊的數據中發現任意形狀的簇。我們總結一下DBSCAN聚類演算法原理的基本要點:
DBSCAN演算法需要選擇一種距離度量,對於待聚類的數據集中,任意兩個點之間的距離,反映了點之間的密度,說明了點與點是否能夠聚到同一類中。由於DBSCAN演算法對高維數據定義密度很困難,所以對於二維空間中的點,可以使用歐幾里德距離來進行度量。
DBSCAN演算法需要用戶輸入2個參數:一個參數是半徑(Eps),表示以給定點P為中心的圓形鄰域的范圍;另一個參數是以點P為中心的鄰域內最少點的數量(MinPts)。如果滿足:以點P為中心、半徑為Eps的鄰域內的點的個數不少於MinPts,則稱點P為核心點。
DBSCAN聚類使用到一個k-距離的概念,k-距離是指:給定數據集P={p(i); i=0,1,…n},對於任意點P(i),計算點P(i)到集合D的子集S={p(1), p(2), …, p(i-1), p(i+1), …, p(n)}中所有點之間的距離,距離按照從小到大的順序排序,假設排序後的距離集合為D={d(1), d(2), …, d(k-1), d(k), d(k+1), …,d(n)},則d(k)就被稱為k-距離。也就是說,k-距離是點p(i)到所有點(除了p(i)點)之間距離第k近的距離。對待聚類集合中每個點p(i)都計算k-距離,最後得到所有點的k-距離集合E={e(1), e(2), …, e(n)}。
根據經驗計算半徑Eps:根據得到的所有點的k-距離集合E,對集合E進行升序排序後得到k-距離集合E』,需要擬合一條排序後的E』集合中k-距離的變化曲線圖,然後繪出曲線,通過觀察,將急劇發生變化的位置所對應的k-距離的值,確定為半徑Eps的值。
根據經驗計算最少點的數量MinPts:確定MinPts的大小,實際上也是確定k-距離中k的值,DBSCAN演算法取k=4,則MinPts=4。
另外,如果覺得經驗值聚類的結果不滿意,可以適當調整Eps和MinPts的值,經過多次迭代計算對比,選擇最合適的參數值。可以看出,如果MinPts不變,Eps取得值過大,會導致大多數點都聚到同一個簇中,Eps過小,會導致以一個簇的分裂;如果Eps不變,MinPts的值取得過大,會導致同一個簇中點被標記為雜訊點,MinPts過小,會導致發現大量的核心點。

Ⅳ 聚類演算法 - 凝聚層次聚類

層次聚類 就是通過對數據集按照某種方法進行層次分解,直到滿足某種條件為止。按照分類原理的不同,可以分為凝聚和分裂兩種方法。

層次聚類方法對給定的數據集進行層次的分解,直到某種條件滿足為止。具體又可分為 凝聚 分裂 的兩種方案:

凝聚的層次聚類是一種自底向上的策略,首先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有的對象都在一個簇中,或者某個終結條件被滿足,絕大多數層次聚類方法屬於這一類,它們只是在簇間相似度的定義上有所不同。.

分裂的層次聚類與凝聚的層次聚類相反,採用自頂向下的策略,它首先將所有對象置於同一個簇中,然後逐漸細分為越來越小的簇,直到每個對象自成一簇,或者達到了某個終止條件。

本篇主要討論凝聚的層次聚類。

第一步 ,將訓練樣本集中的每個數據點都當做一個聚類
第二步 ,計算每兩個聚類之間的距離,將距離最近的或最相似的兩個聚類進行合並,如同下圖中的p1和p2、p5和p6
第三步 ,重復上述步驟,依舊計算每個聚類的距離,當然這次因為已經有聚合起來的簇了因此距離的計算方式有多種: 【單鏈】簇內的最近的點的距離、【全鏈】簇內的最遠的點的距離、【組平均】簇的平均距離、簇的相似度等
第四步 ,直到得到的當前聚類數是合並前聚類數的10%,即90%的聚類都被合並了;當然還可以設置其他終止條件,這樣設置是為了防止過度合並,此時需要幾個簇,那麼就可以用一條橫線去截取分出的簇,如下圖分出3類、4類、5類的橫線截止

ps:距離在通常的情況下可以計算歐幾里得距離,就是普通的直線距離,還可以計算餘弦相似度
具體的動畫效果可以參考視頻,這是----> 傳送門

1)距離和規則的相似度容易定義,限制少
2)不像kmeans,不需要預先制定聚類數
3)可以發現類的層次關系

1)計算復雜度太高
2)奇異值也能產生很大影響
3)由於根據距離來聚合數據,演算法很可能聚類成鏈狀

Ⅵ 四種聚類方法之比較

四種聚類方法之比較
介紹了較為常見的k-means、層次聚類、SOM、FCM等四種聚類演算法,闡述了各自的原理和使用步驟,利用國際通用測試數據集IRIS對這些演算法進行了驗證和比較。結果顯示對該測試類型數據,FCM和k-means都具有較高的准確度,層次聚類准確度最差,而SOM則耗時最長。
關鍵詞:聚類演算法;k-means;層次聚類;SOM;FCM
聚類分析是一種重要的人類行為,早在孩提時代,一個人就通過不斷改進下意識中的聚類模式來學會如何區分貓狗、動物植物。目前在許多領域都得到了廣泛的研究和成功的應用,如用於模式識別、數據分析、圖像處理、市場研究、客戶分割、Web文檔分類等[1]。
聚類就是按照某個特定標准(如距離准則)把一個數據集分割成不同的類或簇,使得同一個簇內的數據對象的相似性盡可能大,同時不在同一個簇中的數據對象的差異性也盡可能地大。即聚類後同一類的數據盡可能聚集到一起,不同數據盡量分離。
聚類技術[2]正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。
1 聚類演算法的分類
目前,有大量的聚類演算法[3]。而對於具體應用,聚類演算法的選擇取決於數據的類型、聚類的目的。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。
主要的聚類演算法可以劃分為如下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法以及基於模型的方法[4-6]。
每一類中都存在著得到廣泛應用的演算法,例如:劃分方法中的k-means[7]聚類演算法、層次方法中的凝聚型層次聚類演算法[8]、基於模型方法中的神經網路[9]聚類演算法等。
目前,聚類問題的研究不僅僅局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類[10]也是聚類分析中研究較為廣泛的一個分支。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如著名的FCM演算法等。
本文主要對k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法通過通用測試數據集進行聚類效果的比較和分析。
2 四種常用聚類演算法研究
2.1 k-means聚類演算法
k-means是劃分方法中較經典的聚類演算法之一。由於該演算法的效率高,所以在對大規模數據進行聚類時被廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。
k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下:

這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值[9]。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下:
輸入:包含n個對象的資料庫和簇的數目k;
輸出:k個簇,使平方誤差准則最小。
步驟:
(1) 任意選擇k個對象作為初始的簇中心;
(2) repeat;
(3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇;
(4) 更新簇的平均值,即計算每個簇中對象的平均值;
(5) until不再發生變化。
2.2 層次聚類演算法
根據層次分解的順序是自底向上的還是自上向下的,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。
凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下:

這里給出採用最小距離的凝聚層次聚類演算法流程:
(1) 將每個對象看作一類,計算兩兩之間的最小距離;
(2) 將距離最小的兩個類合並成一個新類;
(3) 重新計算新類與所有類之間的距離;
(4) 重復(2)、(3),直到所有類最後合並成一類。
2.3 SOM聚類演算法
SOM神經網路[11]是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
(1) 網路初始化,對輸出層每個節點權重賦初值;
(2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
(3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
(4) 提供新樣本、進行訓練;
(5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
2.4 FCM聚類演算法
1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析[12]。
FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。

演算法流程:
(1) 標准化數據矩陣;
(2) 建立模糊相似矩陣,初始化隸屬矩陣;
(3) 演算法開始迭代,直到目標函數收斂到極小值;
(4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。
3 四種聚類演算法試驗
3.1 試驗數據
實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS[13]數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。
3.2 試驗結果說明
文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。

如表1所示,對於四種聚類演算法,按三方面進行比較:(1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和;(2)運行時間:即聚類整個過程所耗費的時間,單位為s;(3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為:

3.3 試驗結果分析
四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。
聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。

Ⅶ K均值聚類分析的原理

在訓練圖像中,數據事件數量非常多。如果將這些數據事件逐一與模擬區域數據模式進行比對,對計算機性能要求高,計算效率低下。對數據事件分析發現,很多數據事件具有很高的相似性,可以將其劃分為同一類。這樣大大減少數據事件的個數,提高了運算效率。基於這樣考慮,聚類分析技術被引入到多點地質統計學中。

J.B.MacQueen在1967年提出的K-means演算法是到目前為止用於科學和工業應用的諸多聚類演算法中一種極有影響的技術。它是聚類方法中一個基本的劃分方法,常常採用誤差平方和准則函數作為聚類准則函數,誤差平方和准則函數定義為

多點地質統計學原理、方法及應用

式中:mi(i=1,2,…,k)是類i中數據對象的均值,分別代表K個類。

K-means演算法的工作原理:首先隨機從數據集中選取K個點作為初始聚類中心,然後計算各個樣本到聚類中的距離,把樣本歸到離它最近的那個聚類中心所在的類。計算新形成的每一個聚類的數據對象的平均值來得到新的聚類中心,如果相鄰兩次的聚類中心沒有任何變化,說明樣本調整結束,聚類准則函數已經收斂。本演算法的一個特點是在每次迭代中都要考察每個樣本的分類是否正確。若不正確,就要調整,在全部樣本調整完後,再修改聚類中心,進入下一次迭代。如果在一次迭代演算法中,所有的樣本被正確分類,則不會有調整,聚類中心也不會有任何變化,這標志著已經收斂,因此演算法結束。

基本步驟如下:

a.對於數據對象集,任意選取K個對象作為初始的類中心;

b.根據類中對象的平均值,將每個對象重新賦給最相似的類;

c.更新類的平均值,即計算每個類中對象的平均值;

d.重復b和c步驟;

e.直到不再發生變化。

圖2-7是利用K-means方法做的一個數據事件的聚類分析結果。數據類定義為10個。數據事件來自於圖2-8,採用的數據樣板是8×8的數據樣板。

K-means演算法優點為當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,缺點主要有三個:

圖2-7 K-means方法聚類結果

圖2-8 用於聚類的訓練圖像,數據樣板選擇為8*8

1)在K-means演算法中K是事先給定的,這個K值的選定是非常難以估計的。很多時候,事先並不知道給定的數據集應該分成多少個類別才最合適。這是K-means演算法的一個不足。

2)在K-means演算法中,首先需要根據初始聚類中心來確定一個初始劃分,然後對初始劃分進行優化。這個初始聚類中心的選擇對聚類結果有較大的影響,一旦初始值選擇的不好,可能無法得到有效的聚類結果,這也成為K-means演算法的一個主要問題。

3)從K-means演算法框架可以看出,該演算法需要不斷地進行樣本分類調整,不斷地計算調整後的新的聚類中心,因此當數據量非常大時,演算法的時間開銷是非常大的。所以需要對演算法的時間復雜度進行分析、改進,提高演算法應用范圍。

Ⅷ K-Mode 聚類演算法的原理和用法

適用於catagorical data,適用於離散屬性的數據集,因為不用計算簇的均值和點與點之間的歐拉距離

對於有M個屬性的N個樣本

1. 隨機選擇k個聚類中心C_1, C_2 ... C_k個長度為M的向量,作為聚類中心

2.以樣本X與每個中心的不同屬性值個數作為距離,計算出每個樣本X到不同中心的距離,並按照距離歸到最小簇

3. 在全部的樣本都被分到簇之後,重新確定簇的中心。使每個族中每個屬性出現頻率最大的那個屬性作為簇的代表屬性,如([a,b], [a,c], [c,b], [b,c])的代表屬性是[a,c]或者是[a,b]

4.重復2-3一直到簇中心不再變化為止就好了

refers:

K-Means聚類演算法以及擴展演算法K-Modes、K-Prototype

k-modes聚類演算法介紹

Ⅸ 層次聚類演算法是降維還是升維

層次聚類演算法是降維。

層次聚類演算法通過計算不同類別數據點間的相似度來創建一棵有層次的嵌套聚類樹。 在聚類樹中,不同類別的原始數據點是樹的最低層,樹的頂層是一個聚類的根節點。 創建聚類樹有自下而上合並和自上而下分裂兩種方法,本篇文章介紹合並方法。

層次聚類演算法原理:

層次聚類的合並演算法通過計算兩類數據點間的相似性,對所有數據點中最為相似的兩個數據點進行組合,並反復迭代這一過程。簡單的說層次聚類的合並演算法是通過計算每一個類別的數據點與所有數據點之間的距離來確定它們之間的相似性,距離越小,相似度越高。

Ⅹ Kmeans聚類演算法簡介(有點枯燥)

1. Kmeans聚類演算法簡介

由於具有出色的速度和良好的可擴展性,Kmeans聚類演算法算得上是最著名的聚類方法。Kmeans演算法是一個重復移動類中心點的過程,把類的中心點,也稱重心(centroids),移動到其包含成員的平均位置,然後重新劃分其內部成員。k是演算法計算出的超參數,表示類的數量;Kmeans可以自動分配樣本到不同的類,但是不能決定究竟要分幾個類。k必須是一個比訓練集樣本數小的正整數。有時,類的數量是由問題內容指定的。例如,一個鞋廠有三種新款式,它想知道每種新款式都有哪些潛在客戶,於是它調研客戶,然後從數據里找出三類。也有一些問題沒有指定聚類的數量,最優的聚類數量是不確定的。後面我將會詳細介紹一些方法來估計最優聚類數量。

Kmeans的參數是類的重心位置和其內部觀測值的位置。與廣義線性模型和決策樹類似,Kmeans參數的最優解也是以成本函數最小化為目標。Kmeans成本函數公式如下:

μiμi是第kk個類的重心位置。成本函數是各個類畸變程度(distortions)之和。每個類的畸變程度等於該類重心與其內部成員位置距離的平方和。若類內部的成員彼此間越緊湊則類的畸變程度越小,反之,若類內部的成員彼此間越分散則類的畸變程度越大。求解成本函數最小化的參數就是一個重復配置每個類包含的觀測值,並不斷移動類重心的過程。首先,類的重心是隨機確定的位置。實際上,重心位置等於隨機選擇的觀測值的位置。每次迭代的時候,Kmeans會把觀測值分配到離它們最近的類,然後把重心移動到該類全部成員位置的平均值那裡。

2. K值的確定

2.1 根據問題內容確定

這種方法就不多講了,文章開篇就舉了一個例子。

2.2 肘部法則

如果問題中沒有指定kk的值,可以通過肘部法則這一技術來估計聚類數量。肘部法則會把不同kk值的成本函數值畫出來。隨著kk值的增大,平均畸變程度會減小;每個類包含的樣本數會減少,於是樣本離其重心會更近。但是,隨著kk值繼續增大,平均畸變程度的改善效果會不斷減低。kk值增大過程中,畸變程度的改善效果下降幅度最大的位置對應的kk值就是肘部。為了讓讀者看的更加明白,下面讓我們通過一張圖用肘部法則來確定最佳的kk值。下圖數據明顯可分成兩類:

從圖中可以看出,k值從1到2時,平均畸變程度變化最大。超過2以後,平均畸變程度變化顯著降低。因此最佳的k是2。

2.3 與層次聚類結合

經常會產生較好的聚類結果的一個有趣策略是,首先採用層次凝聚演算法決定結果粗的數目,並找到一個初始聚類,然後用迭代重定位來改進該聚類。

2.4 穩定性方法

穩定性方法對一個數據集進行2次重采樣產生2個數據子集,再用相同的聚類演算法對2個數據子集進行聚類,產生2個具有kk個聚類的聚類結果,計算2個聚類結果的相似度的分布情況。2個聚類結果具有高的相似度說明kk個聚類反映了穩定的聚類結構,其相似度可以用來估計聚類個數。採用次方法試探多個kk,找到合適的k值。

2.5 系統演化方法

系統演化方法將一個數據集視為偽熱力學系統,當數據集被劃分為kk個聚類時稱系統處於狀態kk。系統由初始狀態k=1k=1出發,經過分裂過程和合並過程,系統將演化到它的穩定平衡狀態 kiki ,其所對應的聚類結構決定了最優類數 kiki 。系統演化方法能提供關於所有聚類之間的相對邊界距離或可分程度,它適用於明顯分離的聚類結構和輕微重疊的聚類結構。

2.6 使用canopy演算法進行初始劃分

基於Canopy Method的聚類演算法將聚類過程分為兩個階段

(1) 聚類最耗費計算的地方是計算對象相似性的時候,Canopy Method在第一階段選擇簡單、計算代價較低的方法計算對象相似性,將相似的對象放在一個子集中,這個子集被叫做Canopy,通過一系列計算得到若干Canopy,Canopy之間可以是重疊的,但不會存在某個對象不屬於任何Canopy的情況,可以把這一階段看做數據預處理;

(2) 在各個Canopy內使用傳統的聚類方法(如Kmeans),不屬於同一Canopy的對象之間不進行相似性計算。

從這個方法起碼可以看出兩點好處:首先,Canopy不要太大且Canopy之間重疊的不要太多的話會大大減少後續需要計算相似性的對象的個數;其次,類似於Kmeans這樣的聚類方法是需要人為指出K的值的,通過(1)得到的Canopy個數完全可以作為這個k值,一定程度上減少了選擇k的盲目性。

其他方法如貝葉斯信息准則方法(BIC)可參看文獻[4]。

3. 初始質心的選取

選擇適當的初始質心是基本kmeans演算法的關鍵步驟。常見的方法是隨機的選取初始中心,但是這樣簇的質量常常很差。處理選取初始質心問題的一種常用技術是:多次運行,每次使用一組不同的隨機初始質心,然後選取具有最小SSE(誤差的平方和)的簇集。這種策略簡單,但是效果可能不好,這取決於數據集和尋找的簇的個數。

第二種有效的方法是,取一個樣本,並使用層次聚類技術對它聚類。從層次聚類中提取kk個簇,並用這些簇的質心作為初始質心。該方法通常很有效,但僅對下列情況有效:(1)樣本相對較小,例如數百到數千(層次聚類開銷較大);(2) kk相對於樣本大小較小。

第三種選擇初始質心的方法,隨機地選擇第一個點,或取所有點的質心作為第一個點。然後,對於每個後繼初始質心,選擇離已經選取過的初始質心最遠的點。使用這種方法,確保了選擇的初始質心不僅是隨機的,而且是散開的。但是,這種方法可能選中離群點。此外,求離當前初始質心集最遠的點開銷也非常大。為了克服這個問題,通常該方法用於點樣本。由於離群點很少(多了就不是離群點了),它們多半不會在隨機樣本中出現。計算量也大幅減少。

第四種方法就是上面提到的canopy演算法。

4. 距離的度量

常用的距離度量方法包括:歐幾里得距離和餘弦相似度。兩者都是評定個體間差異的大小的。

歐氏距離是最常見的距離度量,而餘弦相似度則是最常見的相似度度量,很多的距離度量和相似度度量都是基於這兩者的變形和衍生,所以下面重點比較下兩者在衡量個體差異時實現方式和應用環境上的區別。

藉助三維坐標系來看下歐氏距離和餘弦相似度的區別:

從圖上可以看出距離度量衡量的是空間各點間的絕對距離,跟各個點所在的位置坐標(即個體特徵維度的數值)直接相關;而餘弦相似度衡量的是空間向量的夾角,更加的是體現在方向上的差異,而不是位置。如果保持A點的位置不變,B點朝原方向遠離坐標軸原點,那麼這個時候餘弦相似cosθ是保持不變的,因為夾角不變,而A、B兩點的距離顯然在發生改變,這就是歐氏距離和餘弦相似度的不同之處。

根據歐氏距離和餘弦相似度各自的計算方式和衡量特徵,分別適用於不同的數據分析模型:歐氏距離能夠體現個體數值特徵的絕對差異,所以更多的用於需要從維度的數值大小中體現差異的分析,如使用用戶行為指標分析用戶價值的相似度或差異;而餘弦相似度更多的是從方向上區分差異,而對絕對的數值不敏感,更多的用於使用用戶對內容評分來區分用戶興趣的相似度和差異,同時修正了用戶間可能存在的度量標准不統一的問題(因為餘弦相似度對絕對數值不敏感)。

因為歐幾里得距離度量會受指標不同單位刻度的影響,所以一般需要先進行標准化,同時距離越大,個體間差異越大;空間向量餘弦夾角的相似度度量不會受指標刻度的影響,餘弦值落於區間[-1,1],值越大,差異越小。但是針對具體應用,什麼情況下使用歐氏距離,什麼情況下使用餘弦相似度?

從幾何意義上來說,n維向量空間的一條線段作為底邊和原點組成的三角形,其頂角大小是不確定的。也就是說對於兩條空間向量,即使兩點距離一定,他們的夾角餘弦值也可以隨意變化。感性的認識,當兩用戶評分趨勢一致時,但是評分值差距很大,餘弦相似度傾向給出更優解。舉個極端的例子,兩用戶只對兩件商品評分,向量分別為(3,3)和(5,5),這兩位用戶的認知其實是一樣的,但是歐式距離給出的解顯然沒有餘弦值合理。

5. 聚類效果評估

我們把機器學習定義為對系統的設計和學習,通過對經驗數據的學習,將任務效果的不斷改善作為一個度量標准。Kmeans是一種非監督學習,沒有標簽和其他信息來比較聚類結果。但是,我們還是有一些指標可以評估演算法的性能。我們已經介紹過類的畸變程度的度量方法。本節為將介紹另一種聚類演算法效果評估方法稱為輪廓系數(Silhouette Coefficient)。輪廓系數是類的密集與分散程度的評價指標。它會隨著類的規模增大而增大。彼此相距很遠,本身很密集的類,其輪廓系數較大,彼此集中,本身很大的類,其輪廓系數較小。輪廓系數是通過所有樣本計算出來的,計算每個樣本分數的均值,計算公式如下:

aa是每一個類中樣本彼此距離的均值,bb是一個類中樣本與其最近的那個類的所有樣本的距離的均值。

6. Kmeans演算法流程

輸入:聚類個數k,數據集XmxnXmxn。 

輸出:滿足方差最小標準的k個聚類。

(1) 選擇k個初始中心點,例如c[0]=X[0] , … , c[k-1]=X[k-1];

(2) 對於X[0]….X[n],分別與c[0]…c[k-1]比較,假定與c[i]差值最少,就標記為i;

(3) 對於所有標記為i點,重新計算c[i]={ 所有標記為i的樣本的每個特徵的均值};

(4) 重復(2)(3),直到所有c[i]值的變化小於給定閾值或者達到最大迭代次數。

Kmeans的時間復雜度:O(tkmn),空間復雜度:O((m+k)n)。其中,t為迭代次數,k為簇的數目,m為樣本數,n為特徵數。

7. Kmeans演算法優缺點

7.1 優點

(1). 演算法原理簡單。需要調節的超參數就是一個k。

(2). 由具有出色的速度和良好的可擴展性。

7.2 缺點

(1). 在 Kmeans 演算法中 kk 需要事先確定,這個 kk 值的選定有時候是比較難確定。

(2). 在 Kmeans 演算法中,首先需要初始k個聚類中心,然後以此來確定一個初始劃分,然後對初始劃分進行優化。這個初始聚類中心的選擇對聚類結果有較大的影響,一旦初始值選擇的不好,可能無法得到有效的聚類結果。多設置一些不同的初值,對比最後的運算結果,一直到結果趨於穩定結束。

(3). 該演算法需要不斷地進行樣本分類調整,不斷地計算調整後的新的聚類中心,因此當數據量非常大時,演算法的時間開銷是非常大的。

(4). 對離群點很敏感。

(5). 從數據表示角度來說,在 Kmeans 中,我們用單個點來對 cluster 進行建模,這實際上是一種最簡化的數據建模形式。這種用點來對 cluster 進行建模實際上就已經假設了各 cluster的數據是呈圓形(或者高維球形)或者方形等分布的。不能發現非凸形狀的簇。但在實際生活中,很少能有這種情況。所以在 GMM 中,使用了一種更加一般的數據表示,也就是高斯分布。

(6). 從數據先驗的角度來說,在 Kmeans 中,我們假設各個 cluster 的先驗概率是一樣的,但是各個 cluster 的數據量可能是不均勻的。舉個例子,cluster A 中包含了10000個樣本,cluster B 中只包含了100個。那麼對於一個新的樣本,在不考慮其與A cluster、 B cluster 相似度的情況,其屬於 cluster A 的概率肯定是要大於 cluster B的。

(7). 在 Kmeans 中,通常採用歐氏距離來衡量樣本與各個 cluster 的相似度。這種距離實際上假設了數據的各個維度對於相似度的衡量作用是一樣的。但在 GMM 中,相似度的衡量使用的是後驗概率 αcG(x|μc,∑c)αcG(x|μc,∑c) ,通過引入協方差矩陣,我們就可以對各維度數據的不同重要性進行建模。

(8). 在 Kmeans 中,各個樣本點只屬於與其相似度最高的那個 cluster ,這實際上是一種 hard clustering 。

針對Kmeans演算法的缺點,很多前輩提出了一些改進的演算法。例如 K-modes 演算法,實現對離散數據的快速聚類,保留了Kmeans演算法的效率同時將Kmeans的應用范圍擴大到離散數據。還有K-Prototype演算法,可以對離散與數值屬性兩種混合的數據進行聚類,在K-prototype中定義了一個對數值與離散屬性都計算的相異性度量標准。當然還有其它的一些演算法,這里我 就不一一列舉了。

Kmeans 與 GMM 更像是一種 top-down 的思想,它們首先要解決的問題是,確定 cluster 數量,也就是 k 的取值。在確定了 k 後,再來進行數據的聚類。而 hierarchical clustering 則是一種 bottom-up 的形式,先有數據,然後通過不斷選取最相似的數據進行聚類。

熱點內容
js源碼下載 發布:2024-04-20 15:05:16 瀏覽:19
編譯翻譯的區別 發布:2024-04-20 14:55:53 瀏覽:893
登錄之後qq密碼要在哪裡看 發布:2024-04-20 14:55:03 瀏覽:730
天龍多開腳本 發布:2024-04-20 14:53:05 瀏覽:770
同一段代碼編譯的長度不同 發布:2024-04-20 14:24:14 瀏覽:379
緩存美劇權力的游戲 發布:2024-04-20 14:16:52 瀏覽:987
如何刪除word文件保存密碼 發布:2024-04-20 14:15:18 瀏覽:824
紅米安卓10如何降級到安卓9 發布:2024-04-20 14:13:25 瀏覽:30
ftp目錄遍歷 發布:2024-04-20 13:58:37 瀏覽:970
mysql存儲過程的數組 發布:2024-04-20 13:58:33 瀏覽:60