遺傳演算法最優化
⑴ 遺傳演算法,交叉概率,和變異概率,選擇,通常在多少值,合適
這幾個操作的概率是相互獨立的,並不要求和為1。
選擇操作中的概率,以輪賭法為例,概率只反映了個體被選擇到的可能性,與個體的適應度大小有關,一般是適應度越大,對應輪賭法中的概率值越大。
交叉操作中的概率是用於判定兩個個體是否進行交叉操作,一般都會大於0.9。
變異操作的概率是允許少數個體存在變異情況,以避免限入局部最優解,其值一般都在0.1以下。
⑵ 如何用遺傳演算法實現多變數的最優化問題
將多個變數的數值編碼編排進去,進行組合,只需要增長基因個體的長度,但是要明確每個變數具體的位置,然後讓每個變數轉化成二進制的等長編碼,組合在一起,就可以來運算了。
⑶ 遺傳演算法最優化設計每一代的最優自變數(設計變數)怎麼得到
加一個和迭代次數相同的數組,每一代結束時去一個當前種群最大的適應值存進數組就好了,或者直接disp出來
⑷ 遺傳演算法可以解決哪些問題
遺傳演算法主要是用來求解最優化問題的。
一般來講可以求解函數的最大、最小值問題,還可以結合其它一些方法解決(非)線性回歸、分類問題等等。
但遺傳演算法有兩個缺點,一是時間長,二是初值的選擇會影響收斂的效果。
它的本質,實際上還是隨機搜索演算法,還是屬於所謂的蒙特卡羅式的方法。
⑸ 遺傳演算法的優缺點
優點:
1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。
另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。
2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。
3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。
另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。
4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。
5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。
缺點:
1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。
2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。
3、遺傳演算法效率通常低於其他傳統的優化方法。
4、遺傳演算法容易出現過早收斂的問題。
(5)遺傳演算法最優化擴展閱讀
遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。
函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。
為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。
⑹ 遺傳演算法的核心是什麼!
遺傳操作的交叉運算元。
在自然界生物進化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳演算法中起核心作用的是遺傳操作的交叉運算元。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。通過交叉,遺傳演算法的搜索能力得以飛躍提高。
交叉運算元根據交叉率將種群中的兩個個體隨機地交換某些基因,能夠產生新的基因組合,期望將有益基因組合在一起。
(6)遺傳演算法最優化擴展閱讀
評估編碼策略常採用以下3個規范:
a)完備性(completeness):問題空間中的所有點(候選解)都能作為GA空間中的點(染色體)表現。
b)健全性(soundness): GA空間中的染色體能對應所有問題空間中的候選解。
c)非冗餘性(nonrendancy):染色體和候選解一一對應。
目前的幾種常用的編碼技術有二進制編碼,浮點數編碼,字元編碼,變成編碼等。
而二進制編碼是目前遺傳演算法中最常用的編碼方法。即是由二進制字元集{0,1}產生通常的0,1字元串來表示問題空間的候選解。
⑺ matlab上的遺傳演算法函數優化
用ga函數,ga函數就是遺傳演算法的函數,它的調用格式為:
x
=
ga(fitnessfcn,nvars,a,b,aeq,beq,lb,ub,nonlcon,options)
fitnessfcn就是待優化函數,nvars為變數個數,然後後面的lb是下界,ub是上界,你這個問題就需要這4個位置的參數,其他位置的參數用[]代替就行,由於ga函數默認是求待優化函數的最小值,所以要想求最大值需要把待優化函數取負,即編寫為
function
y=myfun(x)
y=-x.*sin(10*pi.*x)-2;
把這個函數存為myfun.m,然後在命令行里敲
x=ga(@myfun,1,[],[],[],[],[1],[2])
會返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.8506
由於遺傳演算法的原理其實是在取值范圍內隨機選擇初值然後進行遺傳,所以可能每次運行給出的值都不一樣,比如再運行一次會返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.6507
這個具體原因需要參考遺傳演算法的有關資料
⑻ 如何用遺傳演算法實現多變數的最優化問題
是不是像求函數最值那樣子?建議你了解一下遺傳演算法的實數編碼,這個對於求函數最值很方便,不用像二進制那樣需要轉換。
簡單介紹一下思路:
最重要的是確定適應度函數,只要確定這個函數就很容易了,就用你不會編程,直接調用matlab的工具箱就行了。
1st.設置種群規模,並初始化種群p,並計算各個個體的適應度。
例如,20個個體,每個個體包含5個變數,x1,x2,x3,x4,x5.
如果你用matlab來編程的話,這個可以很容易實現,會用到random('unif',a,b)這個函數吧。
例如x1的取值范圍是[0,1],那麼x1=random('unif',0,1).
2nd.採用輪盤賭選出可以產生後代的父本,p_parents。
額,輪盤賭的實質就是適應度大的被選出的概率大。這個不難,但說起來比較長,你可以自己去看一下。
3rd.雜交過程的思路隨機將p_parents中的個體隨機兩兩配對,然後隨機產生一個1到n的數(n為變數的個數),設為i,交換每對父本中i之後的變數值。交換以後的p_parents成為後代p_offspring.
這里變起來有點點復雜,不過只要耐心一點,編好配對過程和交換過程。
4th.變異過程,這個比較簡單,不過需要自己把握的較好。
基本的思路是設置一個概率,例如0.05,然後產生一個隨機數如果隨機數比0.05小那麼這個變數值就要產生微小的增加或減少。
這個變異過程要歷遍p_offspring所有的變數喔。
5th.將p和p_offspring合並起來,然後選出適應度大的,重新構成一個如原始種群規模相等的種群。
⑼ Python實現基於遺傳演算法的排課優化
排課問題的本質是將課程、教師和學生在合適的時間段內分配到合適的教室中,涉及到的因素較多,是一個多目標的調度問題,在運籌學中被稱為時間表問題(Timetable Problem,TTP)。設一個星期有n個時段可排課,有m位教師需要參與排課,平均每位教師一個星期上k節課,在不考慮其他限制的情況下,能夠推出的可能組合就有 種,如此高的復雜度是目前計算機所無法承受的。因此眾多研究者提出了多種其他排課演算法,如模擬退火,列表尋優搜索和約束滿意等。
Github : https://github.com/xiaochus/GeneticClassSchele
遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳演算法的流程如下所示:
遺傳演算法首先針對待解決問題隨機生成一組解,我們稱之為種群(Population)。種群中的每個個體都是問題的解,在優化的過程中,演算法會計算整個種群的成本函數,從而得到一個與種群相關的適應度的序列。如下圖所示:
為了得到新的下一代種群,首先根據適應度對種群進行排序,從中挑選出最優的幾個個體加入下一代種群,這一個過程也被稱為精英選拔。新種群餘下的部分通過對選拔出來的精英個體進行修改得到。
對種群進行修改的方法參考了生物DAN進化的方法,一般使用兩種方法: 變異 和 交叉 。 變異 的做法是對種群做一個微小的、隨機的改變。如果解的編碼方式是二進制,那麼就隨機選取一個位置進行0和1的互相突變;如果解的編碼方式是十進制,那麼就隨機選取一個位置進行隨機加減。 交叉 的做法是隨機從最優種群中選取兩個個體,以某個位置為交叉點合成一個新的個體。
經過突變和交叉後我們得到新的種群(大小與上一代種群一致),對新種群重復重復上述過程,直到達到迭代次數(失敗)或者解的適應性達到我們的要求(成功),GA演算法就結束了。
演算法實現
首先定義一個課程類,這個類包含了課程、班級、教師、教室、星期、時間幾個屬性,其中前三個是我們自定義的,後面三個是需要演算法來優化的。
接下來定義cost函數,這個函數用來計算課表種群的沖突。當被測試課表沖突為0的時候,這個課表就是個符合規定的課表。沖突檢測遵循下面幾條規則:
使用遺傳演算法進行優化的過程如下,與上一節的流程圖過程相同。
init_population :隨機初始化不同的種群。
mutate :變異操作,隨機對 Schele 對象中的某個可改變屬性在允許范圍內進行隨機加減。
crossover :交叉操作,隨機對兩個對象交換不同位置的屬性。
evolution :啟動GA演算法進行優化。
實驗結果
下面定義了3個班,6種課程、教師和3個教室來對排課效果進行測試。
優化結果如下,迭代到第68次時,課程安排不存在任何沖突。
選擇1203班的課表進行可視化,如下所示,演算法合理的安排了對應的課程。
⑽ 經濟最優單目標遺傳優化演算法怎麼實現
我給你一個標准遺傳演算法程序供你參考:
該程序是遺傳演算法優化BP神經網路函數極值尋優:
%% 該代碼為基於神經網路遺傳演算法的系統極值尋優
%% 清空環境變數
clc
clear
%% 初始化遺傳演算法參數
%初始化參數
maxgen=100; %進化代數,即迭代次數
sizepop=20; %種群規模
pcross=[0.4]; %交叉概率選擇,0和1之間
pmutation=[0.2]; %變異概率選擇,0和1之間
lenchrom=[1 1]; %每個變數的字串長度,如果是浮點變數,則長度都為1
bound=[-5 5;-5 5]; %數據范圍
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %將種群信息定義為一個結構體
avgfitness=[]; %每一代種群的平均適應度
bestfitness=[]; %每一代種群的最佳適應度
bestchrom=[]; %適應度最好的染色體
%% 初始化種群計算適應度值
% 初始化種群
for i=1:sizepop
%隨機產生一個種群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%計算適應度
indivials.fitness(i)=fun(x); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[avgfitness bestfitness];
%% 迭代尋優
% 進化開始
for i=1:maxgen
i
% 選擇
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:); %解碼
indivials.fitness(j)=fun(x);
end
%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束
%% 結果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('適應度曲線','fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('適應度','fontsize',12);
axis([0,100,0,1])
disp('適應度 變數');
x=bestchrom;
% 窗口顯示
disp([bestfitness x]);