更穩定的演算法
❶ 穩定的排序演算法有哪些
1.穩定的排序
冒泡排序(bubble sort) — O(n2)
雞尾酒排序 (Cocktail sort, 雙向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 額外 記憶體
計數排序 (counting sort) — O(n+k); 需要 O(n+k) 額外 記憶體
歸並排序 (merge sort)— O(n log n); 需要 O(n) 額外記憶體
原地歸並排序 — O(n2)
二叉樹排序 (Binary tree sort) — O(n log n); 需要 O(n) 額外記憶體
鴿巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 額外記憶體
基數排序 (radix sort)— O(n·k); 需要 O(n) 額外記憶體
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 額外記憶體
2.不穩定的排序
選擇排序 (selection sort)— O(n2)
希爾排序 (shell sort)— O(n log n) 如果使用最佳的現在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望時間, O(n2) 最壞情況; 對於大的、亂數串列一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情況時間, 需要 額外的 O(n + k) 空間, 也需要找到最長的遞增子序列(longest increasing subsequence)
❷ 100維度用什麼優化演算法
神經網路中常用的優化演算法。
優化演算法的目的:
1. 跳出局部極值點或鞍點,尋找全局最小值;
2.使訓練過程更加穩定,更加容易收斂。
優化演算法:深度學習優化學習方法(一階、二階)
一階方法:隨機梯度下降(SGD)、動量(Momentum)、牛頓動量法(Nesterov動量)、AdaGrad(自適應梯度)、RMSProp(均方差傳播)、Adam、Nadam。
二階方法:牛頓法、擬牛頓法、共軛梯度法(CG)、BFGS、L-BFGS。
自適應優化演算法有哪些?(Adagrad(累積梯度平方)、RMSProp(累積梯度平方的滑動平均)、Adam(帶動量的RMSProp,即同時使用梯度的一、二階矩))。
梯度下降陷入局部最優有什麼解決辦法?可以用BGD、SGD、MBGD、momentum,RMSprop,Adam等方法來避免陷入局部最優。
❸ 穩定的演算法會得到比較准確的計算結果嗎
穩定的演算法會得到比較准確的計算結果。a原本在b前面,而a=b,排序之後a依舊在b的前面。待排序的序列中,存在多個具有相同關鍵字的記錄,經過排序,這些記錄的相對次序保持不變,則稱該演算法是穩定的。
❹ 在快速排序、堆排序、歸並排序中,什麼排序是穩定的
歸並排序是穩定的排序演算法。
歸並排序的穩定性分析:
歸並排序是把序列遞歸地分成短序列,遞歸出口是短序列只有1個元素或者2個序列,然後把各個有序的段序列合並成一個有序的長序列,不斷合並直到原序列全部排好序。
可以發現,在1個或2個元素時,1個元素不會交換,2個元素如果大小相等,沒有外部干擾,將不會破壞穩定性。
那麼,在短的有序序列合並的過程中,穩定性是沒有受到破壞的,合並過程中如果兩個當前元素相等時,把處在前面的序列的元素保存在結果序列的前面,這樣就保證了穩定性。所以,歸並排序也是穩定的排序演算法。
(4)更穩定的演算法擴展閱讀:
演算法穩定性的判斷方法:
在常見的排序演算法中,堆排序、快速排序、希爾排序、直接選擇排序是不穩定的排序演算法,而基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序是穩定的排序演算法。
對於不穩定的排序演算法,只要舉出一個實例,即可說明它的不穩定性;而對於穩定的排序演算法,必須對演算法進行分析從而得到穩定的特性。
需要注意的是,排序演算法是否為穩定的是由具體演算法決定的,不穩定的演算法在某種條件下可以變為穩定的演算法,而穩定的演算法在某種條件下也可以變為不穩定的演算法。
比如,快速排序原本是不穩定的排序方法,但若待排序記錄中只有一組具有相同關鍵碼的記錄,而選擇的軸值恰好是這組相同關鍵碼中的一個,此時的快速排序就是穩定的。
參考資料來源:網路-排序演算法穩定性
❺ 排序演算法穩定性的判斷方法
對於不穩定的排序演算法,只要舉出一個實例,即可說明它的不穩定性;而對於穩定的排序演算法,必須對演算法進行分析從而得到穩定的特性。需要注意的是,排序演算法是否為穩定的是由具體演算法決定的,不穩定的演算法在某種條件下可以變為穩定的演算法,而穩定的演算法在某種條件下也可以變為不穩定的演算法。
例如,對於如下起泡排序演算法,原本是穩定的排序演算法,如果將記錄交換的條件改成r[j]>=r[j+1],則兩個相等的記錄就會交換位置,從而變成不穩定的演算法。
void BubbleSort(int r[ ], int n){
exchange=n; //第一趟起泡排序的范圍是r[1]到r[n]
while (exchange) //僅當上一趟排序有記錄交換才進行本趟排序
{
bound=exchange; exchange=0;
for (j=1; j if (r[j]>r[j+1]) {
r[j]←→r[j+1];
exchange=j; //記錄每一次發生記錄交換的位置
}
}
}
再如,快速排序原本是不穩定的排序方法,但若待排序記錄中只有一組具有相同關鍵碼的記錄,而選擇的軸值恰好是這組相同關鍵碼中的一個,此時的快速排序就是穩定的。
❻ 數據結構的排序演算法中,哪些排序是穩定的,哪些排序是不穩定的
一、穩定排序演算法
1、冒泡排序
2、雞尾酒排序
3、插入排序
4、桶排序
5、計數排序
6、合並排序
7、基數排序
8、二叉排序樹排序
二、不穩定排序演算法
1、選擇排序
2、希爾排序
3、組合排序
4、堆排序
5、平滑排序
6、快速排序
排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
一個排序演算法是穩定的,就是當有兩個相等記錄的關鍵字R和S,且在原本的列表中R出現在S之前,在排序過的列表中R也將會是在S之前。
不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地實現為穩定。
做這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個對象間之比較,就會被決定使用在原先數據次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。
(6)更穩定的演算法擴展閱讀:
排序演算法的分類:
1、通過時間復雜度分類
計算的復雜度(最差、平均、和最好性能),依據列表(list)的大小(n)。
一般而言,好的性能是 O(nlogn),且壞的性能是 O(n^2)。對於一個排序理想的性能是 O(n)。
而僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要 O(nlogn)。
2、通過空間復雜度分類
存儲器使用量(空間復雜度)(以及其他電腦資源的使用)
3、通過穩定性分類
穩定的排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。
❼ 十大經典排序演算法
排序演算法是《數據結構與演算法》中最基本的演算法之一。
排序演算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序演算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸並排序、快速排序、堆排序、基數排序等。用一張圖概括:
點擊以下圖片查看大圖:
關於時間復雜度
平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。
線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸並排序;
O(n1+§)) 排序,§ 是介於 0 和 1 之間的常數。 希爾排序
線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。
關於穩定性
穩定的排序演算法:冒泡排序、插入排序、歸並排序和基數排序。
不是穩定的排序演算法:選擇排序、快速排序、希爾排序、堆排序。
名詞解釋:
n:數據規模 k:"桶"的個數 In-place:佔用常數內存,不佔用額外內存 Out-place:佔用額外內存 穩定性:排序後 2 個相等鍵值的順序和排序之前它們的順序相同包含以下內容:
1、冒泡排序 2、選擇排序 3、插入排序 4、希爾排序 5、歸並排序 6、快速排序 7、堆排序 8、計數排序 9、桶排序 10、基數排序排序演算法包含的相關內容具體如下:
冒泡排序演算法
冒泡排序(Bubble Sort)也是一種簡單直觀的排序演算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越小的元素會經由交換慢慢"浮"到數列的頂端。
選擇排序演算法
選擇排序是一種簡單直觀的排序演算法,無論什麼數據進去都是 O(n?) 的時間復雜度。所以用到它的時候,數據規模越小越好。唯一的好處可能就是不佔用額外的內存空間。
插入排序演算法
插入排序的代碼實現雖然沒有冒泡排序和選擇排序那麼簡單粗暴,但它的原理應該是最容易理解的了,因為只要打過撲克牌的人都應該能夠秒懂。插入排序是一種最簡單直觀的排序演算法,它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。
希爾排序演算法
希爾排序,也稱遞減增量排序演算法,是插入排序的一種更高效的改進版本。但希爾排序是非穩定排序演算法。
歸並排序演算法
歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
計數排序演算法
計數排序的核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,計數排序要求輸入的數據必須是有確定范圍的整數。
桶排序演算法
桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在於這個映射函數的確定。
基數排序演算法
基數排序是一種非比較型整數排序演算法,其原理是將整數按位數切割成不同的數字,然後按每個位數分別比較。由於整數也可以表達字元串(比如名字或日期)和特定格式的浮點數,所以基數排序也不是只能使用於整數。
❽ 什麼是穩定的排序方法
所謂穩定的排序演算法就是你排序之後相同大小的數值沒有發生變化,比如: 2 4 4 1 6 3 排序之後第二4的位置依然在一個4之後就是他們兩個沒有發生位置變化;稱之為穩定;
❾ 關於快速排序演算法的穩定性是什麼
快速排序演算法的穩定性是什麼:假定在待排序的記錄序列中,存在多個具有相同的關鍵字的記錄,若經過排序,這些記錄的相對次序保持不變,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序後的序列中,r[i]仍在r[j]之前,則稱這種排序演算法是穩定的;否則稱為不穩定的。
對於不穩定的排序演算法,只要舉出一個實例,即可說明它的不穩定性;而對於穩定的排序演算法,必須對演算法進行分析從而得到穩定的特性。
詳細解釋:
堆排序、快速排序、希爾排序、直接選擇排序是不穩定的排序演算法,而冒泡排序、直接插入排序、折半插入排序、歸並排序是穩定的排序演算法。
首先,排序演算法的穩定性大家應該都知道,通俗地講就是能保證排序前2個相等的數其在序列的前後位置順序和排序後它們兩個的前後位置順序相同。在簡單形式化一下,如果Ai = Aj, Ai原來在位置前,排序後Ai還是要在Aj位置前。
其次,說一下穩定性的好處。排序演算法如果是穩定的,那麼從一個鍵上排序,然後再從另一個鍵上排序,第一個鍵排序的結果可以為第二個鍵排序所用。基數排序就 是這樣,先按低位排序,逐次按高位排序,低位相同的元素其順序再高位也相同時是不會改變的。
以上內容參考網路—排序演算法穩定性
❿ 10個常用演算法
原理:
二分法查找,也稱為折半法,是一種在有序數組中查找特定元素的搜索演算法。
一般步驟:
(1)確定該區間的中間位置K;
(2)將查找的值T與array[k]比較。
若相等,查找成功返回此位置;否則確定新的查找區域,繼續二分查找。每一次查找與中間值比較,可以確定是否查找成功,不成功當前查找區間將縮小一半,遞歸查找即可。
原理:
一種通過重復將問題分解為同類的子問題而解決問題的方法
典型例子:
斐波那契數列
描述: 斐波那契數列 指的是這樣一個數列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368.....自然中的斐波那契數列") 自然中的斐波那契數列,這個數列從第3項開始,每一項都等於前兩項之和。
解決方式:
原理:
在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。
回溯法是一種選優搜索法,按選優條件向前搜索,以達到目標。
但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為「回溯點」。
解決問題一般步驟:
1、 針對所給問題,定義問題的解空間,它至少包含問題的一個(最優)解。
2 、確定易於搜索的解空間結構,使得能用回溯法方便地搜索整個解空間 。
3 、以深度優先的方式搜索解空間,並且在搜索過程中用剪枝函數避免無效搜索。
典型例子:
八皇後問題
描述:在8×8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問有多少種擺法。
解決方式: https://blog.csdn.net/weixin_41865447/article/details/80034433
概念:
將雜亂無章的數據元素,通過一定的方法按關鍵字順序排列的過程叫做排序。
分類:
非穩定排序演算法:快速排序、希爾排序、堆排序、直接選擇排序
穩定的排序演算法:基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序
十個常用排序演算法
利用計算機的高性能來有目的的窮舉一個問題解空間的部分或所有的可能情況,從而求出問題的解的一種方法。
分類:
枚舉演算法、深度優先搜索、廣度優先搜索、A*演算法、回溯演算法、蒙特卡洛樹搜索、散列函數等演算法。
將一個數據轉換為一個標志,這個標志和源數據的每一個位元組都有十分緊密的關系。
很難找到逆向規律
只要符合散列思想的演算法都可以被稱為是Hash演算法
對不同的關鍵字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),這種現象稱為 碰撞 。
原理
在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在 某種意義上的局部最優解 。
從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止。
一種近似演算法
一般步驟:
1、建立數學模型來描述問題;
2、把求解的問題分成若干個子問題;
3、對每一子問題求解,得到子問題的局部最優解;
4、把子問題的解局部最優解合成原來解問題的一個解。
典型例子:
0/1背包問題
馬踏棋盤
均分紙牌
例題: https://www.cnblogs.com/hust-chen/p/8646009.html
概念:
分治演算法的基本思想是將一個規模為N的問題分解為K個規模較小的子問題,這些子問題相互獨立且與原問題性質相同。求出子問題的解,就可得到原問題的解。即一種分目標完成程序演算法,簡單問題可用二分法完成。
一般步驟:
(1)分解,將要解決的問題劃分成若干規模較小的同類問題;
(2)求解,當子問題劃分得足夠小時,用較簡單的方法解決;
(3)合並,按原問題的要求,將子問題的解逐層合並構成原問題的解。
典型例子:
排序中:歸並排序、堆排序、快速排序;
實例:找偽幣、求最值、棋盤覆蓋
https://ke..com/item/%E5%88%86%E6%B2%BB%E7%AE%97%E6%B3%95/3263297
概念:
用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。
動態規劃一般可分為線性動規,區域動規,樹形動規,背包動規四類。
舉例:
線性動規:攔截導彈,合唱隊形,挖地雷,建學校,劍客決斗等;
區域動規:石子合並, 加分二叉樹,統計單詞個數,炮兵布陣等;
樹形動規:貪吃的九頭龍,二分查找樹,聚會的歡樂,數字三角形等;
背包問題:01背包問題,完全背包問題,分組背包問題,二維背包,裝箱問題,擠牛奶(同濟)等;
應用實例:
最短路徑問題 ,項目管理,網路流優化等;
https://ke..com/item/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92/529408?fromtitle=%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%AE%97%E6%B3%95&fromid=15742703&fr=aladdin
概念:
在一個給定的字元文本內搜尋出自己想要找的一個字元串,平常所用的各種文本編輯器里的ctrl+F大多就是使用的這些字元匹配演算法。
分類:
KMP、BM、Sunday、Horspool、RK
參考:
https://cloud.tencent.com/developer/news/282694
https://blog.csdn.net/paincupid/article/details/81159320