當前位置:首頁 » 操作系統 » 資料庫概念模型圖

資料庫概念模型圖

發布時間: 2023-01-08 04:33:25

資料庫邏輯模型

資料庫關系模型(資料庫邏輯模型)是將數據概念模型轉換為所使用的資料庫管理系統(DBMS)支持的資料庫邏輯結構,即將E-R圖表示成關系資料庫模式。資料庫邏輯設計的結果不是唯一的,需利用規范化理論對資料庫結構進行優化。

在關系模型中,資料庫的邏輯結構是一張二維表。在資料庫中,滿足下列條件的二維表稱為關系模型:

1)每列中的分量是類型相同的數據;

2)列的順序可以是任意的;

3)行的順序可以是任意的;

4)表中的分量是不可再分割的最小數據項,即表中不允許有子表;

5)表中的任意兩行不能完全相同。

由此可見,有序的航空物探測量剖面數據不滿足資料庫關系模型條件第3條「行的順序可以是任意的」,因此,不能簡單地直接利用關系資料庫(如Oracle,sql Server,Sybase等)來管理剖面數據,需將數據在資料庫中的存儲方式改為大欄位存儲,確保不因資料庫數據的增加和刪除等操作改變剖面數據有序特性。

一、大欄位存儲

(一)大欄位存儲技術

大欄位LOB(Large Object)技術是Oracle專門用於存放處理大對象類型數據(如多媒體材料、影像資料、文檔資料等)的數據管理技術。LOB包括內部的和外部的兩種類型。內部LOB又分CLOB(字元型)、BLOB(二進制型)等3種數據類型,其數據存儲在資料庫中,並且支持事務操作;外部LOB只有BFILE類型,其數據存儲在操作系統中,並且不支持事務操作。LOB存放數據的長度最大可以達到4G位元組,並且空值列(沒有存放數據)不佔空間(圖2-6)。

圖2-6 大欄位存儲示意圖

由於外部LOB存放在操作系統文件中,其安全性比內部LOB差一些。此外,大欄位的存儲支持事務操作(批量提交和回滾等),而外部LOB不支持事務操作。所以,航空物探測量剖面數據採用BLOB來存儲。對於BLOB類型,如果數據量小於4000位元組,資料庫通常採用行內存儲,而數據量大於4000位元組採用行外存儲。分析航空物探測量剖面數據,每個場值數據佔4個位元組(單精度),目前航磁數據采樣率為10次/s,4000位元組只能存儲100s數據;一般情況下航空物探測量每條測線飛行時間至少在10min以上,每條測線數據量遠遠大於4000位元組。所以,航空物探測量剖面數據採用行外存儲方式,即大欄位列指定「Disable Storage In Row」的存儲參數。

由於大欄位類型長度可變,最大可到4G。假設測線飛行時間為T,場值采樣率為n次/s,測線場值數據量為4Tn,所以有4Tn≤4G。單條測線飛行時間T不會超過10h(36000s,航空物探測量1架次至少飛行1個往返2條測線),則場值的采樣率n≤4G/4T=4×1024×1024×1024/4×36000次/s=29826次/s。採用大欄位來存儲測量數據,不僅能夠減少數據表的記錄數,提高查詢效率,而且使得采樣率的擴展不受限制。

(二)大欄位存儲技術應用

由於航空物探數據的數據量較大,現有的航磁測量數據按基準點方式(點存儲)存儲可達幾億個數據記錄。若按磁場數據采樣點存儲方式(簡稱「場值存儲方式」),則記錄條數=(磁場數據采樣率/坐標采樣率)點存儲方式的記錄數,達幾十億條數據記錄,且隨著數據采樣率的擴展、測點的加密,航空物探測量數據量隨著時間的推移呈現快速增長之勢。顯然,如果採用常規的表結構來存儲,勢必造成數據的存儲、管理、檢索、瀏覽和提取都非常困難。另一方面,從航空物探專業應用需求來說,很少對單個測點的場值數據進行運算、分析等操作,一般至少是對一條測線或以上測線,多數時候是需要對整個測區的場值數據進行化極、上延、正反演擬合等。

因此,在航空物探資料庫表結構設計時,改變過去將基準點或場值點數據記錄作為資料庫最小管理對象的理念,採用了大欄位存儲技術,將測線作為資料庫最小管理對象,將測線上的測量數據,如坐標數據和磁場、重力場數據分別存儲在相應大欄位中。在航空物探資料庫建設中,大量採用資料庫的大欄位存儲技術(詳見《航空物探信息系統資料庫結構設計》)。

(三)大欄位存儲效率

以航磁測量數據為例分析大欄位存儲技術優勢。如果以場值存儲方式存儲測線數據,則每條記錄包含架次號、測線號、基準號、地理坐標、投影坐標、磁場數據等,由於坐標數據采樣率2次/s,磁場數據采樣率10次/s,每5個磁場數據中,只有第1個磁場數據有坐標數據,其他4個坐標數據是內插出來,因此在測線記錄中會產生大量冗餘的數據坐標數據。採用點存儲方式存儲的測線數據記錄數等於線上基準點數,若採用大欄位存儲方式,一條測線數據只存儲為1條數據記錄(圖2-7),一般一條測線的測點數近萬個,甚至更多,可見採用大欄位存儲大大減少測線數據存儲記錄數,提高數據的存取效率。

以某測區的兩條航跡線為例,分別採用3種方式測試資料庫的數據存儲效率。磁場數據的采樣率10次/s,坐標數據采樣率2次/s,兩條測線上共有基準點8801個。以場值方式存儲先內插坐標信息,使得每個場值數據都擁有自己的坐標,然後存入資料庫,共有數據記錄44005條,寫入資料庫時間為57.22s,讀取時間為1.03s。第二種方式是以采樣點的方式進行存儲,共有8801條記錄,寫入資料庫時間為9.47s,讀取需要0.91s。第三種方式是以大欄位的形式存儲,只有2條記錄,寫入資料庫1.03s,讀取時間為0.44s(表2-2)。大欄位數據存儲記錄數最少,存取效率最高。用整個測區數據測試效果更加明顯。

表2-2 三種數據存儲方法的存取效率比較

圖2-7 大欄位存儲方式示意圖

二、聯合主鍵

主外鍵是關系型資料庫建立表間關系的核心。在航空物探空間資料庫建設過程中,要素類與要素類之間、要素類與對象類之間,以及對象類與對象類之間的關系的描述有3種形式,即拓撲關系——描述要素類與要素類之間結點、鄰接和聯通關系;疊加關系——描述要素類與要素類之間的相交、包含與分類關系;隸屬關系——描述對象類與對象類之間的派生關系。前兩種關系是採用空間數據模型建立的關系,而隸屬關系是通過主鍵建立的對象類與對象類之間的關系。在建立一對一、一對多的表間關系時,需要在整個資料庫表中確定具有唯一性的一個欄位作為主鍵(主關鍵字)。

按照傳統的航空物探數據的檔案管理模式,每個項目分配一個自然數作為檔案號,項目的所有資料均與此檔案號相聯系。勘查項目和科研項目的檔案號是獨立編號的,且均從001開始。加之人工管理的原因,存在1個項目2個檔案號和2個項目1個檔案號的情況,因此現行的檔案號與項目之間的對應關系不具備唯一性,不能作為項目的唯一標識,即不能作為資料庫表的主鍵。項目編號也不能作為資料庫表的主鍵,項目編號也只是近十年的事,以前的項目沒有項目編號。

綜合考慮上述因素和項目具有分級、分類的特點,提出了構造項目唯一標識碼(簡稱「項目標識」)的方法,並以此碼作為資料庫表的主鍵。

項目標識(主鍵):AGS+項目類別(2位)+項目起始年份(4位)+檔案號(6位)

標識含義:AGS——航空物探的縮位代碼;

項目類別——2位代碼,01代表勘查項目、02代表科研項目;

起始年份—4位代碼,項目開始年號;

檔案號—6位代碼,為了與傳統的項目管理方式相銜接,後面3~4位是

項目檔案管理模式下的檔案號,不足部分補零。

以上15位編碼是一級項目的項目標識,二級及其以下級別的項目標識是在上一級項目標識基礎上擴展2位數字代碼,中間用「.」號隔開,數字為該級項目的序號。項目標識定義為30位編碼,適用於六級以內的項目。例如:AGS022004000576.08.04.02,表示該項目為2004年開展的檔案號為576的航空物探科研項目(一級項目)的第8課題(二級項目)第4子課題(三級項目)的第2專題。由此可見,該項目標識不僅僅是一個建立表間關系的關鍵字,同時還表達了不同級別項目間的隸屬關系。在系統軟體開發時,利用此關系生成了項目的分級樹形目錄,用戶對項目的層次關系一目瞭然,便於項目查詢。

資料庫的主鍵一經確定,相應地需要確定聯合主鍵的組成及其表達方式。所謂聯合主鍵就是數據資料的唯一標識,在一個資料庫表中選擇2個或者2個以上的欄位作為主鍵。由於航空物探數據絕大部分與項目標識有關,加之數據的種類較多,分類復雜,單憑主鍵確定資料庫表中記錄的唯一性,勢必需要構建極其復雜的主鍵,這種方法既不利於主鍵的數據操作,又會造成大量的數據冗餘,合理地使用聯合主鍵技術可以很好地解決資料唯一問題。以項目提交資料為例,提交的資料分為文字類資料、圖件類資料和媒體類資料,我們對資料進行分類和編號,例如100代表文字資料(110——World文檔,120——PDF文檔),200代表圖件資料(210——基礎地理資料、220——基礎地質資料,230——航跡線圖,240——剖面圖,250——等值線圖等),300代表媒體資料(310——PPT文檔,320——照片等),第1位(百位)表示該資料的類型,第2~3位表示該類資料的序號。

在資料庫管理和項目資料查詢時,採用項目標識與資料分類編號作為聯合主鍵(圖2-8),可以高效地實現復雜數據的查詢。在整個資料庫系統中多處(項目查詢、數據提取等模塊)使用聯合主鍵技術。

圖2-8 聯合主鍵實例

三、信息標准化

為了實現數據共享,在航空物探資料庫建模過程中,參考和引用了近百個國家信息化標准,編制了4個中心信息化標准和1個圖件信息化工作指南。

(一)引用的國家信息化標准

1)地質礦產術語分類代碼:地球物理勘查,地球化學勘查,大地構造學,工程地質學,結晶學及礦物學,礦床學,水文地質學,岩石學,地質學等。

2)國家基礎信息數據分類與代碼,國土基礎信息數據分類與代碼,地球物理勘查技術符號,地面重力測量規范,地面磁勘查技術規程,地面高精度磁測技術規程,大比例尺重力勘查規范,地理信息技術基本術語,地理點位置的緯度、經度和高程的標准表示法,地名分類與類別代碼編制規則。

3)地球空間數據交換格式;數學數字地理底圖數據交換格式;數字化地質圖圖層及屬性文件格式。

(二)本系統建立的信息化標准

編寫了「航空物探空間數據要素類和對象類劃分標准」,「航空物探項目管理和資料管理分類代碼標准」,「航空物探勘查分類代碼標准」,「航空物探信息系統元數據標准」,「航空物探圖件信息化工作指南」,以便與其他應用系統進行信息交換,實現資料庫資料共享。

航空物探空間數據要素類和對象類劃分標准:根據物探方法、數據處理過程以及推斷解釋方法和過程,把與GIS有關的數據劃分為不同類型的要素類-對象類數據,按專業、比例尺、數據內容對要素類和對象類進行統一命名,使空間資料庫中的每個要素類和對象類的命名具有唯一性,防止重名出現。規定要素類-對象類資料庫表結構及數據項數值類型。

航空物探項目管理和資料管理分類代碼標准:規定了航空物探項目管理和資料管理的相關內容,包括航空物探勘查項目和科研項目的項目立項、設計、實施、成果、評審、資料匯交等項目管理的全過程中的內容,以及項目成果資料和收集資料的歸檔、發送、銷毀、借閱等資料管理與服務過程中的內容和數據項代碼。

航空物探勘查分類代碼標准:在「地質礦產術語分類代碼地球物理勘查」(國家標准GB/T9649.28—1998)增加了航磁、航重專業方面所涉及的數據採集、物性參數、方法手段、儀器設備、資料數據解釋及成圖圖件等內容和數據項代碼。

航空物探信息系統元數據標准:規定了航空物探空間數據管理與服務的元數據(數據的標識、內容、質量、狀況及其他有關特徵)的內容。

四、航跡線數據模型

(一)航跡線模型的結構

航空物探測量是依據測量比例尺在測區內布置測網(測線和切割線)。當飛機沿著設計的測線飛行測量時,航空物探數據收錄系統按照一定的采樣率採集采樣點的地理位置、高度和各種地球物理場信息。採用屬性數據分置的方法,將測線地理位置信息從航空物探測量數據中分離出來,形成航跡線要素類表,在此表中只存儲與航跡線要素類有關的數據,如項目標識、測區編號、測線號、測線類型(用於區分測線、切割線、不同高度線、重復線等)、坐標、高度值等;將航跡線的對象類數據(磁場、重力場基礎數據)分別以大欄位形式存儲在各自的二維表中,它們共享航跡線,解決了多源有序不同采樣率的航空物探測量數據的數據存儲問題,在滿足要素類空間查詢的同時,統一數據的存儲方式(圖2-9)。航跡線要素類隸屬於測區要素類,它們之間為空間拓撲(包含)關系。測區從屬於勘查項目,每個勘查項目至少有一個測區,它們之間為1對多關系。有關項目信息存放在項目概況信息對象類表中,各種表之間通過項目標識進行聯接。

圖2-9 航跡線數據模型結構

(二)航跡線的UML模型

統一建模語言UML(Unified Modeling Language)是一種定義良好、易於表達、功能強大且普遍適用的建模語言。它溶入了軟體工程領域的新思想、新方法和新技術。UML是面向對象技術領域內佔主導地位的標准建模語言,成為可視化建模語言的工業標准。在UML基礎上,ESRI定義了空間資料庫建模的ArcGIS包、類庫和擴展原則。

圖2-10 與航跡線有關的資料庫表邏輯模型結構圖

在確定航跡線數據模型後,以它為基礎,使用UML完成與航跡的有關的項目概況信息、測區信息、原始數據等資料庫表邏輯模型設計(圖2-10)。

由UML模型生成Geodatabase模式時,模型中的每個類都對應生成一個要素類或對象類。類的屬性映射為要素類或對象類的欄位。基類屬性中包含的欄位,在繼承類中不需重復創建。例如,每個類都包括項目標識等欄位,可以創建一個包含公共屬性的基類,其他類從該類繼承公共的屬性,而無需重復建基類中包含的屬性。因為基類沒有對應的要素類或對象類,所以將基類設置為抽象類型。要素類之間的關系採用依賴關系表示。

五、資料庫邏輯模型

關系資料庫的邏輯結構由一組關系模式組成,因而從概念結構到關系資料庫邏輯結構的轉換就是將概念設計中所得到的概念結構(ER圖)轉換成等價的UML關系模式(圖2-11)。在UML模型圖中,要素數據集用Geodatabase工作空間下的靜態包表示。要素集包不能互相嵌套,為了容易組織,在生成物理模型後,在要素數據集包中自定義嵌套。要素數據集與空間參考有關,但是空間參考不能在UML中表達。要素類和二維表都是以類的形式創建的,區別是要素類繼承Feature Class的屬性,而二維表繼承Object屬性。為了表達每種元素的額外屬性,比如設置字元型屬性欄位的字元串長度,設置要素類的幾何類型(點、線或面)需要使用Geodatabase預定義的元素標記值。

圖2-11 邏輯設計關系轉換

基於航空物探數據的內在邏輯關系進行分析,使用統一建模語言(UML)構建數據實體對象間的關系類,定義了航空物探資料庫的邏輯模型(圖2-12)。

㈡ 資料庫主要有哪幾種數據模型

層次模型
網狀模型
關系模型
對象關系模型
對象模型
還有這些資料庫模型:

數據聯合模型
面向概念模型
實體-屬性-值模型
多位資料庫模型
半結構化模型

㈢ 資料庫模型圖和ER圖區別是什麼

ER圖是屬於概念模型它與具體的DBMS無關。
從你的截圖上來看,截圖里的所說的資料庫模型圖是不準確的,正確的是ER模型轉換為關系模型。
因為ER圖是屬於概念設計階段,它的下一階段就是轉換成關系模型,也就說與具體的DBMS有關。

下面是資料庫設計的常見四階段:
第一階段:用戶需求分析;
第二階段:概念設計(即E-R模型); 與具體的DBMS無關
第三階段:關系模型; 與具體的DBMS有關
第四階段:物理模式。

㈣ 資料庫設計時的概念數據模型一般用什麼圖表示

通過數據抽象,設計系統概念模型,一般為E-R模型

資料庫設計一般分6個階段:
1、需求分析:了解用戶的數據需求、處理需求、安全性及完整性要求;
2、概念設計:通過數據抽象,設計系統概念模型,一般為E-R模型;
3、邏輯結構設計:設計系統的模式和外模式,對於關系模型主要是基本表和視圖;
4、物理結構設計:設計數據的存儲結構和存取方法,如索引的設計;
5、系統實施:組織數據入庫、編制應用程序、試運行;
6、運行維護:系統投入運行,長期的維護工作。

㈤ 資料庫概念模型

一、航空物探資料庫定位

資料庫是信息系統的基礎和核心,把大量的數據信息按一定的模型組織起來存儲在資料庫中,提供數據維護、數據檢索等功能,使信息系統能方便、及時、准確地從資料庫中獲得所需的信息。因此,資料庫結構設計是信息系統開發的重中之重。

經分析航空物探數據具有空間性、海量性、多源性和多尺度的特點,這說明航空物探數據具有典型的空間數據的特點,可以採用空間數據管理方式進行管理。

ESRI公司的Geodatabase(空間資料庫)是採用標准關系資料庫技術來表現地理信息的面向對象的高級GIS數據模型,是建立在DBMS之上的統一的、智能化的空間數據模型,是以一組相關聯的表來表達地理要素之間關系、有效性規則和值域。對於多源、海量的航空物探數據,Geodatabase能在一個統一的模型框架下很好地解決多源數據一體化存儲的問題,和採用標准關系資料庫技術來表現海量航空物探數據的地理信息特性。Geodatabase引入了地理空間實體的行為、有效性規則和關系,在處理Geodatabase中對象時,對象的基本行為和必須滿足的規則無需通過程序編碼實現,只需根據需要擴展其有效性規則(Geodatabase面向對象的智能化特性),即可支持航空物探數據模型擴展的需要。

因此,航空物探資料庫是空間資料庫,在航空物探資料庫建模過程中,以空間數據建模為主導,統領屬性數據建模。

二、統一空間坐標框架

為了用數學語言描述地球,人們用規則的幾何形體來替代地球表面,從地球自然表面、大地水準面、旋轉橢球面直到用簡單數學函數表達的參考橢球體,以便通過地圖投影將三維曲面轉化成二維平面。由於地球表面不同地區的地形起伏差異很大,採用單一橢球體勢必會造成某地區的誤差小而其他地區誤差很大的結果。因此,在20世紀初不同國家或地區先後採用了逼近本國或本地區地球表面的橢球體,如中國的克拉索夫斯基橢球體,美國的海福特橢球體、英國的克拉克橢球體等。這又造成了目前世界各國的地理信息空間坐標框架不統一,空間數據信息難以共享被動局面。為此,在實現數字地球計劃中,必須規范和統一世界上不同國家和地區的地球參考橢球體。

在小區域表達地球表面時,通常採用平面的方式,即投影坐標系統。如何科學地選擇投影坐標,一般要根據具體的地學應用、地理區域和范圍、比例尺條件等因素來確定,不同的國家有著不同的規定。

通過對航空物探數據的坐標系統進行分析可知,航空物探圖件的坐標框架與國家對基本比例尺制圖的規定相一致,即小比例尺編圖採用Lambert雙標准緯線等角圓錐投影;中比例尺採用Gauss 6°帶的分帶投影;大比例尺採用Gauss 3°帶的分帶投影(表2-1);對於低緯度的海上作業區通常採用Mecator等角圓柱投影。地球橢球體分別採用1954北京坐標系的Krassovsky橢球參數、WGS84橢球參數和未來的國家2000坐標系的橢球參數。

表2-1 航空物探地理坐標數據的投影方式

傳統的航空物探數據是按測區管理的,根據測區的測量比例尺來確定相應的坐標框架;因此,勘探目標不同的測區測量比例尺是不一致的,地坐標框架也不同。航空物探資料庫要將不同測區、不同比例尺、不同坐標框架的數據集中管理和可視表達,若沒有統一的空間坐標框架,就不可能正確地表達全國航空物探數據。所以,面對如此復雜的多坐標框架的航空物探數據,如何確定科學合理的空間坐標框架,將全國的航空物探數據整合到統一的空間參考框架下,實現數據的統一存儲和數據間無縫拼接,是航空物探資料庫建設的關鍵所在,是組織和管理多維、多格式、大跨度、跨平台的航空物探數據和多目標數字制圖的數學基礎。

統一的空間坐標框架必須支持我國領土覆蓋的海域和陸域航空物探數據的存儲和表達。我國領土東西跨度達70°,南北達55°,顯然採用任何投影坐標系都是不合適的。Gauss 6°投影適合6°帶內空間數據表達,若全國航物探數據採用6°分帶表達,在高緯度地區會造成6°帶間數據裂縫問題;Lambert投影可滿足數據的無縫表達,但對大比例尺數據變形較大,無法滿足數據制圖的精度要求;Mecator投影也可滿足數據的無縫表達,低緯度地區也能滿足大比例尺數據制圖的精度要求,但在我國中高緯度區存在著嚴重變形問題。所以,航空物探數據模型採用地理坐標(無投影,圖2-1)格式存放,可根據實際應用的需要將航空物探數據變換到任何方式的投影坐標系統。

航空物探資料庫模型採用Beijing_1954地理坐標系,相關參數如下:

角度單位:°(0.017453292519943299rad)

零經線:格林尼治(0.000000000000000000)

基準:D_Beijing_1954

橢球:Krasovsky_1940

長軸半徑:6378245.000 m

短軸半徑:6356863.019 m

建立統一坐標框架是空間資料庫建設的一項基礎性工作,採用Beijing_1954 地理坐標系作為航空物探資料庫統一空間坐標框架具有以下優點。

圖2-1 統一空間坐標框架示意圖

(一)無縫空間數據存儲

統一空間坐標框架解決了復雜的航空物探數據的坐標系統、投影、比例尺等不統一的問題,實現同一性質的物探數據在同一個主題中進行管理。如全國的航磁異常數據可放在一個圖層上進行管理。

(二)適合多尺度表達

按測區管理的多尺度、多框架的航空物探數據是處於一個相對坐標系統中,各個測區間相對位置關系會發生錯位。採用統一的Beijing_1954地理坐標框架,恢復了各測區間正確的位置關系,實現不同尺度數據的集成和正確表達,易於多源異構空間數據的融合。

(三)大區域數據集成

我國海陸面積近1300×104km2,地域跨度較大。在進行小比例尺的航空物探編圖時,需要選用與之相適應的投影坐標;在陸地和海域進行大比例尺制圖時,同樣需要選用合適投影系統。航空物探制圖的實踐也證明了這一點。1995 年6 月由中國、加拿大、美國、愛爾蘭和俄羅斯等國科學家共同編制的1∶1000萬歐亞東北地區磁異常與大地構造圖,採用橫軸Mercator投影。中心編制的1∶500 萬全國航磁圖採用Lambert投影。2008 年,由中國和吉爾吉斯斯坦科學家編制的1∶100萬中吉天山金屬礦產成礦規律圖,採用Lambert投影,將兩個國家不同時期、不同尺度的數據進行了有效的集成,是地質、地球物理等綜合應用的典範。

隨著航空物探數據應用領域的不斷擴展,陸地、海域,甚至於洲際和全球航空物探數據的整體表達都需對坐標投影提出要求。採用統一的地理坐標框架的航空物探數據非常容易變換到指定的投影坐標框架,滿足多樣化的制圖要求。

三、要素類和對象類的劃分

Geodatabase空間資料庫模型結構(圖2-2)分為空間資料庫、要素數據集(Feature dataset)、要素類(Feature classes)、要素(Feature)4個層次。為了建立航空物探Geodatabase空間數據模型,我們依據Geodatabase模型關於要素類和對象類的劃分原則,結合相關的國家標准和地球物理行業標准,制定了《航空物探數據要素類和對象類劃分標准》,對航空物探數據進行數據分類。

圖2-2 空間資料庫模型結構

1)按照航空物探數據的空間特徵,將其劃分為5個要素數據集,即勘查項目概況要素數據集、基礎數據要素數據集、異常要素數據集、解釋要素數據集和評價要素數據集。

2)根據航空物探測量方法、數據處理過程以及推斷解釋方法和過程,進一步把航空物探數據劃分為若干要素類和對象類,定義了要素類的主題特徵和表達方式,確定子類和屬性域;定義對象類的結構和聯接欄位,建立了關系類。

3)定義要素類的內容、欄位名稱和存儲結構。在航空物探數據採集過程中,不同類型的數據采樣率不同,坐標數據采樣2次/s,重力場數據采樣2次/s,磁場數據采樣10次/s,這就造成了場值數據與坐標數據無法一一對應問題。若按場值數據采樣率內插坐標數據,將導致數據量成倍增長;若按坐標數據采樣率抽稀場值數據,將降低航空物探測量對地質體的分辨能力,影響測量效果。在綜合分析航空物探數據應用基礎上,提出了採用要素數據與屬性數據分置的方式,將測線坐標數據與地球物理場數據分離,分別建立獨立共享的航跡線數據要素類模型,磁場、重力場等數據對象類模型(圖2-3),很好地解決了航空物探數據的存儲問題。

圖2-3 要素數據與屬性數據分置示意圖

採用要素數據與屬性數據分置方式,不僅是基於航空物探數據屬性數據的多源性、不同采樣頻率等特點的考慮,還考慮到數據的綜合查詢和檢索的速度,特別是通過ArcSDE訪問空間資料庫的效率的問題。再者,對於大部分用戶來說,需求是屬性數據的綜合應用,因此在資料庫建模過程中,將屬性數據採用對象類的方式進行管理,不但提高了空間數據的操作能力,同時在ArcSDE的配置上採用直接訪問資料庫(對象類)方式,並且加快了數據查詢和統計的速度。

四、資料庫概念模型

用戶需求是資料庫建設的約束條件之一。航空物探數據的空間特性決定航空物探資料庫必須是空間資料庫,採用資料庫管理數據,利用GIS技術提供可視化服務,這是各個層次用戶的一致要求。因此,我們從現實世界出發,對航空物探數據的多源性、多尺度和不同采樣等問題進行了描述,提出了解決方案。此方案是不依賴於任何具體的硬體環境和資料庫管理系統(DBMS),建立了客觀反映現實世界的航空物探資料庫概念模型,把用戶需要管理的信息統一到整體概念結構中,表達了用戶需要。

在全面分析航空物探業務流程和數據流程,以及航空物探數據特性的基礎上,按照《航空物探數據要素類和對象類劃分標准》,以及空間實體點、線、面要素特徵的基本原則,對航空物探資料庫所涉及的實體進行歸類,劃分成12個主題。根據空間數據分主題表達的特點和航空物探空間數據坐標框架的定義,確定航空物探資料庫空間數據概念模型,明確各個主題的用途、數據來源、表達方式、空間參考、比例尺和精度等內容,按照ArcGIS定義空間資料庫的數據分層表達方式(圖2-4),完成航空物探資料庫概念模型設計(圖2-5)。

圖2-4 航空物探資料庫空間數據分層模型

圖2-5 航空物探資料庫空間數據概念模型

㈥ ER圖和概念數據模型的關系

概念數據模型是按用戶的觀點對數據和信息建模,是現實世界到信息世界的第一層抽象,最常用的概念數據模型就是er圖,也就是說他們是包含關系。
概念模型把現實世界的關系抽象到信息世界,er圖的畫法選擇就是對資料庫在進行設計,然後依據er圖進行邏輯結構設計,物理結構設計,這些就是實現了從信息世界到計算機世界的抽象,即數據的結構、儲存方式等等。最後是資料庫的創建與維護。答得還行吧,把分給我唄

㈦ 資料庫的概念模型是什麼其特點是什麼

概念模型表徵了待解釋的系統的學科共享知識。為了把現實世界中的具體事物抽象、組織為某一資料庫管理系統支持的數據模型,人們常常首先將現實世界抽象為信息世界,然後將信息世界轉換為機器世界。也就是說,首先把現實世界中的客觀對象抽象為某一種信息結構,這種信息結構並不依賴於具體的計算機系統,不是某一個資料庫管理系統(DBMS)支持的數據模型,而是概念級的模型,稱為概念模型。

特點:

1、能真實地、充分地反映現實世界,是對現實世界的一個真實模型。
2、易於理解,可以用它和不熟悉資料庫的用戶交換意見。
3、易於更改。
4、易於向關系、網狀、層次等各種數據模型轉換。

㈧ 什麼是資料庫概念模型

問題一:資料庫概念模型與什麼有關 數據模型是對現實世界數據特徵的抽象,其三要素是(數據結構,數據操作,數據的約束條件)
最常用的數據模型分為概念數據模型和基本數據模型
概念數據模型是按用戶的觀點對數據和信息建模,是現實世界到信息世界的第一層抽象。
基本數據模型是按計算機系統的觀點對數據建模,是現實世界數據特徵的抽象,用於DBMS的實現(層次模型,網狀模型,關系模型)

問題二:資料庫概念模型的基本概述 把面向對象的方法和資料庫技術結合起來可以使資料庫系統的分析、設計最大程度地與人們對客觀世界的認識相一致。面向對象資料庫系統是為了滿足新的資料庫應用需要而產生的新一代資料庫系統。資料庫概念模型實際上是現實世界到機器世界的一個中間層次。資料庫概念模型用於信息世界的建模,是現實世界到信息世界的第一層抽象,是資料庫設計人員進行資料庫設計的有力工具,也是資料庫設計人員和用戶之間進行交流的語言。建立數據概念模型,就是從數據的觀點出發,觀察系統中數據的採集、傳輸、處理、存儲、輸出等,經過分析、總結之後建立起來的一個邏輯模型,它主要是用於描述系統中數據的各種狀態。這個模型不關心具體的實現方式(例如如何存儲)和細節,而是主要關心數據在系統中的各個處理階段的狀態。 實際上,數據流圖也是一種數據概念模型。

問題三:資料庫中概念模型的含義和作用 數據模型是對現實世界數據特徵的抽象,其三要素是(數據結構,數據操作,數據的約束條件) 最常用的數據模型分為概念數據模型和基本數據模型 概念數據模型是按用戶的觀點對數據和信息建模,是現實世界到信息世界的第一層抽象。 基本數據模型是按計算機系統的觀點對數據建模,是現實世界數據特徵的抽象,用於DBMS的實現(層次模型,網狀模型,關系模型)

問題四:概念模型是什麼? 也稱信息模型,它是按用戶的觀點來對數據和信息建模。概念模型是現實世界到機器世界的一個中間層次。表示概念模型最常用的是實體-關系圖。概念模型是對真實世界中問題域內的事物的描述,不是對軟體設計的描述。概念的描述包括:記號、內涵、外延,其中記號和內涵(視圖)是其最具實際意義的。概念模型用於信息世界的建模,它是世界到信息世界的第一層抽象,它資料庫設計的有力工具,也是資料庫開發人員與用戶之間進行交流的語言。因此概念模型既要有較強的表達能力,應該簡單、清晰、易於理解。目前最常用的是實體-聯系模型。在管理信息系統中,概念模型:是設計者對現實世界的認識結果的體現,是對軟體系統的整體概括描述。讓讀者更易理解,讀時有個參考的東西。概念模型設計的常用方法是實體關系方法(E-R方法)。用實體關系方法對具體數據進行抽象加工,將實體 *** 抽象成實體類型,用實體間的關系反映現實世界事物間的內在關系。首先可以進行局部E-R模型,然後把各局部E-R模型綜合成一個全局的E-R模型,最後對全局E-R模型進行優化,最後得到的。在數據倉庫中的含義總的來說,數據倉庫的結構採用了三級數據模型的方式,即概念模型、邏輯模型、物理模型。概念模型:也就是業務模型,由企業決策者,商務領域知識專家和IT專家共同研究和分析企業級的跨領域業務系統需求分析的結果。在數據倉庫項目中,物理模型設計和業務模型設計象兩個輪子一樣有力地支撐著數據倉庫的實施,兩者並行不悖,缺一不可。實際上,這有意地擴大了物理模型和業務模型的內涵和外延,因為,在這里物理模型不僅僅是數據的存儲,而且也包含了數據倉庫項目實施的方法論、資源以及軟硬體選型,而業務模型不僅僅是主題模型的確立,也包含了企業的發展戰略,行業模本等等更多的內容。一個優秀的項目必定會兼顧業務需求和行業標准兩個方面,業務需求既包括用戶提出的實際需求,也要客觀分析它隱含的更深層次的需求,但是往往用戶的需求是不明確的,需要加以提煉甚至在商務知識專家引導下加以升華,和用戶一起進行需求分析工作。如果不能滿足用戶的需求,項目也就失去了原本的意義。關於概念模型概念模型設計是在原有的業務資料庫的基礎上建立了一個較為穩固的概念模型。因為數據倉庫是對原有資料庫系統中的數據進行集成和重組而形成的數據 *** ,所以數據倉庫的概念模型設計,首先要對原有資料庫系統加以分析理解,看在原有的資料庫系統中有什麼、怎樣組織的和如何分布的等,然後再來考慮應當如何建立數據倉庫系統的概念模型。一方面,通過原有資料庫的設計文檔以及在數據字典中的資料庫關系模式,我們可以對企業現有的資料庫中的內容有一個完整而清晰的認識;另一方面,數據倉庫的概念模型是面向企業全局建立的,它為集成來自各個面向應用的資料庫的數據提供了統一的概念視圖。它的工作主要是界定系統的邊界和確定主要的主題域。界定系統邊界將決策者的數據分析的需求用系統邊界的定義形式反映出來。確定主題域是對每個主題域的內容進行較明確的數據倉庫建模技術在行業中的應用描述,其內容包括:主題域的公共碼鍵、主題域之間的聯系以及充分代表主題的屬性組。

問題五:資料庫設計概念模型圖,邏輯模型圖分別是什麼? 1.1.概念模型(E-R圖描述)
概念模型是對真實世界中問題域內的事物的描述,不是對軟體設計的描述。
表示概念模型最常用的是實體-關系圖。
E-R圖主要是由實體、屬性和關系三個要素構成的。在E-R圖中,使用了下面幾種基本的圖形符號。
實體,矩形
E/R圖三要素 屬性,橢圓形
關系,菱形
關系:一對一關系,一對多關系,多對多關系。
E/R圖中的子類(實體):
1.2.邏輯模型
邏輯數據模型反映的是系統分析設計人員對數據存儲的觀點,是對概念數據模型進一步的分解和細化。
1.3.物理模型
物理模型是對真實資料庫的描述。資料庫中的一些對象如下:表,視圖,欄位,數據類型、長度、主鍵、外鍵、索引、是否可為空,默認值。
概念模型到物理模型的轉換即是把概念模型中的對象轉換成物理模型的對象。

問題六:什麼是資料庫的概念結構 1. 資料庫定義:資料庫是長期儲存在計算機內、有組織的、可共享的大量數據的 *** 。資料庫中的數據按一定的數據模型組織、描述和儲存,具有較小的冗餘度、較高的數據獨立性和易擴展性,並可為各種用戶共享。2. 資料庫管理技術發展的三個階段:人工管理階段,文件系統階段,資料庫系統階段。3. DBMS(資料庫管理系統)是位於用戶與操作系統之間的一層數據管理軟體。主要功能:1,數據定義功能。2,數據組織、存儲和管理。3,數據操縱功能。4,資料庫的事務管理和運行管理。5,資料庫的建立和維護功能。6,其他功能。4. 什麼是數據模型及其要素? (設計題): 數據模型是資料庫中用來對現實世界進行抽象的工具,是資料庫中用於提供信息表示和操作手段的形式構架。一般地講,數據模型是嚴格定義的概念的 *** 。這些概 念精確地描述系統的靜態特性、動態特性和完整性約束條件。因此數據模型通常由數據結構、數據操作和完整性約束三部分組成。 (1)數據結構:是所研究的對象類型的 *** ,是對系統的靜態特性的描述。 (2)數據操作:是指對資料庫中各種對象(型)的實例(值)允許進行的操作的 *** ,包括操作及有關的操作規則,是對系統動態特性的描述。 (3)數據的約束條件:是完整性規則的 *** ,完整性規則是給定的數據模型中數據及其聯系所具有的制約和依存規則,用以限定符合數據模型的資料庫狀態以及狀態的變化,以保證數據的正確、有效、相容。最常用的數據模型:層次模型,網狀模型,關系模型,面積對象模型,對象關系模型。5.常用的數據模型有哪些(邏輯模型是主要的),各有什麼特徵,數據結構是什麼樣的。答:數據模型可分為兩類:第一類是概念模型,也稱信息模型,它是按用戶的觀點來地數據和信息建模,主要用於資料庫設計。第二類是邏輯模型和物理模型。其中邏輯模型主要包括層次模型、層次模型、關系模型、面向對象模型和對象關系模型等。它是按計算機系統的觀點對數據建模,主要用於DBMS的實現。物理模型是對數據最低層的抽象,它描述數據在系統內部的表示方式和存取方法,在磁碟或磁帶上的存儲方式和存取方法,是面向計算機系統的。物理模型是具體實現是DBMS的任務,資料庫設計人員要了解和選擇物理醋,一般用戶則不必考慮物理級的細節。層次數據模型的數據結構特點:一是:有且只有一個結點沒有雙親結點,這個結點稱為根結點。二是:根 以外的其他結點有且只有一個雙親結點。優點是:1.層次 數據結構比較簡單清晰。2.層次資料庫的查詢效率高。3.層次數據模型提供了良好的完整性支持。缺點主要有:1.現實世界中很多聯系是非層次性的,如結點之間具有多對多聯系。2.一個結點具有多個雙親等 ,層次模型表示這類聯系的方法很笨拙,只能通過引入冗餘數據或創建非自然的數據結構來解決。對插入和刪除操作的限制比較多,因此應用程序的編寫比較復雜。3.查詢子女結點必須通過雙親結點。4.由於結構嚴密,層次命令趨於程序化。可見用層次模型對具有一對多的層次聯系的部門描述非常自然,直觀容易理解,這是層次資料庫的突出優點。網狀模型:特點:1.允許一個以上的結點無雙親2.一個結點可以有多於一個的雙親。網狀數據模型的優點主要有:1.能夠更為直接地描述現實世界,如一個結點可以有多個雙親。結點
之間可以有多種上聯第。2.具有良好的性能,存取效率較高。缺點主要有:1.結構比較復雜,而且隨著應用環境的擴大,資料庫的結構就變得越來越復雜,不利於最終 用戶掌握。2.網狀模型的DDL,DML復雜,並且要嵌入某一種高級語言中,用戶不容易掌握,不容易使用。關系數據模型具有下列優點:1.關系模型與非關系模型不同,它是建立在嚴格的數學......>>

問題七:怎麼用powerdesigner畫資料庫概念模型 怎麼用powerdesigner畫資料庫概念模型方法/步驟
打開PowerDesigner,點擊菜單「File」---->「New Model」
點擊【OK】按鈕後,將進入如下的畫面,
系統將出現一個工具欄如下,用於在設計面板中設計模型,
單擊Entity圖標,然後在主面板中單擊一次便可添加一個實體,
切換回一般滑鼠模式,雙擊已經添加的實體,彈出設置屬性的對話框,
在General選項卡中可以設置實體的Name和Code等屬性,
Code是實體在資料庫中的實際名稱,一般用英文,Name是顯示的名稱,一般用中文,方便理解。
切換到Attributes選項卡可以添加實體的屬性,

問題八:資料庫概念模型的關系模型 在關系模型中,數據的邏輯結構是一張二維表。在資料庫中,滿足下列條件的二維表稱為關系模型:① 每一列中的分量是類型相同的數據;② 列的順序可以是任意的;③ 行的順序可以是任意的;④ 表中的分量是不可再分割的最小數據項,即表中不允許有子表;⑤ 表中的任意兩行不能完全相同。關系資料庫採用關系模型作為數據的組織方式。 關系資料庫因其嚴格的數學理論、使用簡單靈活、數據獨立性強等特點,而被公認為最有前途的一種資料庫管理系統。它的發展十分迅速,目前已成為占據主導地位的資料庫管理系統。自20世紀80年代以來,作為商品推出的資料庫管理系統幾乎都是關系型的,例如,Oracle,Sybase,Informix,Visual FoxPro,mysql,sqlserver等。關系模型範式只有滿足一定條件的關系模式,才能避免操作異常。關系模式要滿足的條件稱為規范化形式,簡稱範式。下面介紹四種不同程度的範式,由低級向高級:1、第一範式(1NF)在關系模式R的每一個具體關系r中,如果每個屬性值都是不可能再分的最小數據單元,則稱R是第一範式。記為R∈1NF。1NF是關系資料庫能夠保存數據並且正確訪問數據的最基本條件。2、第二範式(2NF)如果關系模式R(U,F)中的所有非主屬性都完全函數依賴於任意一個候選關鍵字,則稱關系R是屬於第二範式。記為R∈2NF。3、第三範式(3NF)如果關系模式R(U,F)中所有非主屬性對任何侯選關鍵字都不存在傳遞依賴,則稱關系R是屬於第三範式。記為R∈3NF。4、BCNF如果關系模式R(U,F)R屬於1NF,對任何非平凡依賴的函數依賴X→Y(Y!→X)X均包含碼。記為R∈BCNF。如果R是BCNF則一定是3NF;反之則不行。一個低級範式的關系模式,可以通過分解方法轉換成若干個高一級範式的關系模式的 *** ,也可以說任何一個高層的範式,總是能夠滿足低層的範式。

問題九:模型的概念。資料庫中的數據模型主要有哪些?數據模型的組成的要素有哪些? 資料庫模型描述了在資料庫中結構化和操縱數據的方法,模型的結構部分規定了數據如何被描述(例如樹、表等);模型的操縱部分規定了數據的添加、刪除、顯示、維護、列印、查找、選擇、排序和更新等操作。
資料庫模型的分類
1概念模型 2 層次模型
3 網狀模型 4 關系模型
數據模型所描述的內容包括三個部分:數據結構、數據操作、數據約束。

㈨ 資料庫設計概念模型圖,邏輯模型圖分別是什麼

1.1.概念模型(E-R圖描述)
概念模型是對真實世界中問題域內的事物的描述,不是對軟體設計的描述。
表示概念模型最常用的是"實體-關系"圖。
E-R圖主要是由實體、屬性和關系三個要素構成的。在E-R圖中,使用了下面幾種基本的圖形符號。
實體,矩形
E/R圖三要素 屬性,橢圓形
關系,菱形
關系:一對一關系,一對多關系,多對多關系。
E/R圖中的子類(實體):
1.2.邏輯模型
邏輯數據模型反映的是系統分析設計人員對數據存儲的觀點,是對概念數據模型進一步的分解和細化。
1.3.物理模型
物理模型是對真實資料庫的描述。資料庫中的一些對象如下:表,視圖,欄位,數據類型、長度、主鍵、外鍵、索引、是否可為空,默認值。
概念模型到物理模型的轉換即是把概念模型中的對象轉換成物理模型的對象。

㈩ 資料庫主要有哪幾種數據模型

一. 數據模型的分類:

最常用的數據模型是概念數據模型和結構數據模型。

1.概念數據模型:面向用戶的,按照用戶的觀點進行建模。

2.結構數據模型:面向計算機系統的,用於DBMS的實現。

二.E-R圖:

1.E-R實體聯系圖是直觀表示概念模型的工具,其中包含了實體、聯系、屬性三個成分,聯系的方 法為一對一(1:1)、一對多(1:N)、多對多(M:N)三種方式。

2.E-R模型圖,既表示實體,也表示實體之間的聯系,是現實世界的抽象,與計算機系統沒有關系, 是可以被用戶理解的數據描述方式。

三.層次模型:

1.層次模型採取樹形結構表示數據與數據之間的關系。

2.層次模型不能直接表示多對多的聯系。

四.網狀模型:

1.用網路結構表示數據與數據之間的聯系的模型。

2.網狀模型子節點和父節點聯系不唯一,需要為聯系命名。

五.關系模型:

1.關系模型是目前最常見的數據模型之一,主要採用表格結構表達實體集以及實體之間的聯 系。

2.關系是一張表,關系數據模型由若干個表組成。

熱點內容
oracle的資料庫驅動jar 發布:2025-05-14 07:23:20 瀏覽:553
我的世界電腦版伺服器手機版能進嗎 發布:2025-05-14 07:22:01 瀏覽:677
達內培訓php多少錢 發布:2025-05-14 07:19:10 瀏覽:26
python位元組轉字元串 發布:2025-05-14 07:06:35 瀏覽:421
subplotpython 發布:2025-05-14 06:53:51 瀏覽:661
豎屏大屏導航工廠密碼一般是多少 發布:2025-05-14 06:49:29 瀏覽:806
如何在手機里設置無線網密碼 發布:2025-05-14 06:47:54 瀏覽:120
動態ip文件伺服器 發布:2025-05-14 06:44:22 瀏覽:891
文字分行的腳本有什麼 發布:2025-05-14 06:33:10 瀏覽:288
svn小烏龜怎麼配置 發布:2025-05-14 06:31:43 瀏覽:393