圖論演算法k
A. 圖論演算法matlab實現問題
參考樓上給的鏈接,稍微做了一點修改,供參考。
修改的地方包括:
1、原程序為函數,提供了鄰接矩陣和關聯矩陣的雙向轉換,這里針對樓主的需求改為腳本,直接運行即可將鄰接矩陣轉為關聯矩陣。
2、部分語句修改更符合MATLAB的通行寫法,如:
sum(sum(F))改為sum(F(:)),
W(i,k)=1; W(j,k)=1;改為W([i j],k)=1;
3、考慮到鄰接矩陣為對稱陣,第二個for循環改為只針對半個矩陣,減少計算量(對於樓主的這個具體作用微乎其微)。
4、原程序有錯誤,在else分支fprint為fprintf之誤(其實我看到該程序的第一眼就注意到了這個錯誤,擔心還存在其它問題,所以進行了改寫)。
F=[0 1 1 1;1 0 1 1;1 1 0 1;1 1 1 0]; % 鄰接矩陣
m = sum(F(:))/2; % 圖的邊數
n = size(F,1); % 頂點數
W = zeros(n,m);
k=1;
for i = 1:n
for j = 1:i
if F(i,j)~=0
W([i j],k)=1;
k = k + 1;
end
end
end
W
B. C語言演算法有哪些 並舉例和分析
演算法大全(C,C++)
一、 數論演算法
1.求兩數的最大公約數
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;
2.求兩數的最小公倍數
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;
3.素數的求法
A.小范圍內判斷一個數是否為質數:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;
B.判斷longint范圍內的數是否為素數(包含求50000以內的素數表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}
function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}
二、圖論演算法
1.最小生成樹
A.Prim演算法:
procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{尋找離生成樹最近的未加入頂點k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {將頂點k加入生成樹}
{生成樹中增加一條新的邊k到closest[k]}
{修正各點的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}
B.Kruskal演算法:(貪心)
按權值遞增順序刪去圖中的邊,若不形成迴路則將此邊加入最小生成樹。
function find(v:integer):integer; {返回頂點v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;
procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定義n個集合,第I個集合包含一個元素I}
p:=n-1; q:=1; tot:=0; {p為尚待加入的邊數,q為邊集指針}
sort;
{對所有邊按權值遞增排序,存於e[I]中,e[I].v1與e[I].v2為邊I所連接的兩個頂點的序號,e[I].len為第I條邊的長度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;
2.最短路徑
A.標號法求解單源點最短路徑:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指頂點i到源點的最短路徑}
mark:array[1..maxn] of boolean;
procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1為源點}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {對每一個已計算出最短路徑的點}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}
B.Floyed演算法求解所有頂點對之間的最短路徑:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路徑上j的前驅結點}
for k:=1 to n do {枚舉中間結點}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;
C. Dijkstra 演算法:
var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路徑上I的前驅結點}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循環一次加入一個離1集合最近的結點並調整其他結點的參數}
min:=maxint; u:=0; {u記錄離1集合最近的結點}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;
3.計算圖的傳遞閉包
Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;
4.無向圖的連通分量
A.深度優先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {對結點I染色}
c[i]:=color;
dfs(I,color);
end;
end;
B 寬度優先(種子染色法)
5.關鍵路徑
幾個定義: 頂點1為源點,n為匯點。
a. 頂點事件最早發生時間Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 頂點事件最晚發生時間 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 邊活動最早開始時間 Ee[I], 若邊I由<j,k>表示,則Ee[I] = Ve[j];
d. 邊活動最晚開始時間 El[I], 若邊I由<j,k>表示,則El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,則活動j為關鍵活動,由關鍵活動組成的路徑為關鍵路徑。
求解方法:
a. 從源點起topsort,判斷是否有迴路並計算Ve;
b. 從匯點起topsort,求Vl;
c. 算Ee 和 El;
6.拓撲排序
找入度為0的點,刪去與其相連的所有邊,不斷重復這一過程。
例 尋找一數列,其中任意連續p項之和為正,任意q 項之和為負,若不存在則輸出NO.
7.迴路問題
Euler迴路(DFS)
定義:經過圖的每條邊僅一次的迴路。(充要條件:圖連同且無奇點)
Hamilton迴路
定義:經過圖的每個頂點僅一次的迴路。
一筆畫
充要條件:圖連通且奇點個數為0個或2個。
9.判斷圖中是否有負權迴路 Bellman-ford 演算法
x[I],y[I],t[I]分別表示第I條邊的起點,終點和權。共n個結點和m條邊。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚舉每一條邊}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;
10.第n最短路徑問題
*第二最短路徑:每舉最短路徑上的每條邊,每次刪除一條,然後求新圖的最短路徑,取這些路徑中最短的一條即為第二最短路徑。
*同理,第n最短路徑可在求解第n-1最短路徑的基礎上求解。
三、背包問題
*部分背包問題可有貪心法求解:計算Pi/Wi
數據結構:
w[i]:第i個背包的重量;
p[i]:第i個背包的價值;
1.0-1背包: 每個背包只能使用一次或有限次(可轉化為一次):
A.求最多可放入的重量。
NOIP2001 裝箱問題
有一個箱子容量為v(正整數,o≤v≤20000),同時有n個物品(o≤n≤30),每個物品有一個體積 (正整數)。要求從 n 個物品中,任取若千個裝入箱內,使箱子的剩餘空間為最小。
l 搜索方法
procere search(k,v:integer); {搜索第k個物品,剩餘空間為v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]為前n個物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;
l DP
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
實現:將最優化問題轉化為判定性問題
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 邊界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
優化:當前狀態只與前一階段狀態有關,可降至一維。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;
B.求可以放入的最大價值。
F[I,j] 為容量為I時取前j個背包所能獲得的最大價值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }
C.求恰好裝滿的情況數。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;
2.可重復背包
A求最多可放入的重量。
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
狀態轉移方程為
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])
B.求可以放入的最大價值。
USACO 1.2 Score Inflation
進行一次競賽,總時間T固定,有若干種可選擇的題目,每種題目可選入的數量不限,每種題目有一個ti(解答此題所需的時間)和一個si(解答此題所得的分數),現要選擇若干題目,使解這些題的總時間在T以內的前提下,所得的總分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量為i時取前j種背包所能達到的最大值。
*實現:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.
C.求恰好裝滿的情況數。
Ahoi2001 Problem2
求自然數n本質不同的質數和的表達式的數目。
思路一,生成每個質數的系數的排列,在一一測試,這是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此過程計算當前系數的計算結果,now為結果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系數}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;
思路二,遞歸搜索效率較高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }
思路三:可使用動態規劃求解
USACO1.2 money system
V個物品,背包容量為n,求放法總數。
轉移方程:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {讀入第一個物品的重量}
i:=0; {a[i]為背包容量為i時的放法總數}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定義第一個物品重的整數倍的重量a值為1,作為初值}
for i:=2 to v do
begin
read(now);
update; {動態更新}
end;
writeln(a[n]);
四、排序演算法
A.快速排序:
procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {將當前序列在中間位置的數定義為中間數}
repeat
while a[i]<mid do inc(i); {在左半部分尋找比中間數大的數}
while a[j]>mid do dec(j);{在右半部分尋找比中間數小的數}
if i<=j then begin {若找到一組與排序目標不一致的數對則交換它們}
swap(a[i],a[j]);
inc(i);dec(j); {繼續找}
end;
until i>j;
if l<j then qsort(l,j); {若未到兩個數的邊界,則遞歸搜索左右區間}
if i<r then qsort(i,r);
end;{sort}
B.插入排序:
思路:當前a[1]..a[i-1]已排好序了,現要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}
C.選擇排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;
D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比較相鄰元素的關系}
end;
E.堆排序:
procere sift(i,m:integer);{調整以i為根的子樹成為堆,m為結點總數}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉樹中結點i的左孩子為2*i,右孩子為2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]與a[k+1]中較大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {將根放在合適的位置}
end;
procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;
C. 聚類演算法有哪些
聚類演算法有:劃分法、層次法、密度演算法、圖論聚類法、網格演算法、模型演算法。
1、劃分法
劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法。
2、層次法
層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等。
3、密度演算法
基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等。
4、圖論聚類法
圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。
5、網格演算法
基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法。
6、模型演算法
基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。通常有兩種嘗試方向:統計的方案和神經網路的方案。
(3)圖論演算法k擴展閱讀:
聚類分析起源於分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又將多元分析的技術引入到數值分類學形成了聚類分析。聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論聚類法、聚類預報法等。
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
D. 圖論最短路問題和最小生成樹問題有什麼區別
一 區別
最小生成樹能夠保證整個拓撲圖的所有路徑之和最小,但不能保證任意兩點之間是最短路徑。
最短路徑是從一點出發,到達目的地的路徑最小。
二 實現方法
1. 最小生成樹
最小生成樹有兩種演算法來得到:Prims演算法和Kruskal演算法。
Kruskal演算法:根據邊的加權值以遞增的方式,一次找出加權值最低的邊來構建最小生成樹,而且規定:每次添加的邊不能造成生成樹有迴路,知道找到N-1個邊為止。
Prims演算法:以每次加入一個的臨界邊來建立最小生成樹,直到找到N-1個邊為止。其規則為:以開始時生成樹的集合(集合U)為起始的定點,然後找出與生成樹集合鄰接的邊(集合V)中,加權值最小的邊來建立生成樹,為了確定新加入的邊不會造成迴路,所以每一個新加入的邊,只允許有一個頂點在生成樹集合中,重復執行此步驟,直到找到N-1個邊為止。
2 最短路徑
演算法描述
(這里描述的是從節點1開始到各點的dijkstra演算法,其中Wa->b表示a->b的邊的權值,d(i)即為最短路徑值)
1. 置集合S={2,3,...n}, 數組d(1)=0, d(i)=W1->i(1,i之間存在邊) or +無窮大(1.i之間不存在邊)
2. 在S中,令d(j)=min{d(i),i屬於S},令S=S-{j},若S為空集則演算法結束,否則轉3
3. 對全部i屬於S,如果存在邊j->i,那麼置d(i)=min{d(i), d(j)+Wj->i},轉2
Dijkstra演算法思想為:設G=(V,E)是一個帶權有向圖,把圖中頂點集合V分成兩組,第一組為已求出最短路徑的頂點集合(用S表示,初始時S中只有一個源點,以後每求得一條最短路徑 , 就將 加入到集合S中,直到全部頂點都加入到S中,演算法就結束了),第二組為其餘未確定最短路徑的頂點集合(用U表示),按最短路徑長度的遞增次序依次把第二組的頂點加入S中。在加入的過程中,總保持從源點v到S中各頂點的最短路徑長度不大於從源點v到U中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點的距離就是從v到此頂點的最短路徑長度,U中的頂點的距離,是從v到此頂點只包括S中的頂點為中間頂點的當前最短路徑長度。
演算法具體步驟
(1)初始時,S只包含源點,即S=,v的距離為0。U包含除v外的其他頂點,U中頂點u距離為邊上的權(若v與u有邊)或 ∞(若u不是v的出邊鄰接點)。
(2)從U中選取一個距離v最小的頂點k,把k,加入S中(該選定的距離就是v到k的最短路徑長度)。
(3)以k為新考慮的中間點,修改U中各頂點的距離;若從源點v到頂點u(u U)的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改後的距離值為頂點k的距離加上邊上的權。
(4)重復步驟(2)和(3)直到所有頂點都包含在S中。
復雜度分析
Dijkstra 演算法的時間復雜度為O(n^2)空間復雜度取決於存儲方式,鄰接矩陣為O(n^2)
E. 圖論的基本概念有哪些
1、有向圖和無向圖
有向圖,就是有方向的圖;所謂無向圖,就是沒有方向的圖。
2、路徑和環
我們把沒有經過重復的點的路徑就叫做簡單路徑。
環的定義是在路徑的定義的基礎上做了一定的拓展,首尾相接的路徑我們就把它叫做一個環。同樣我們也有簡單環,也就是除開首尾以外,剩下的部分不會經過重復的點的環就叫做簡單環。
3、極大獨立集
如果K是G的獨立集,且不是任何其他獨立集的真子集,就為極大獨立集。
4、極大團
如果一個團不被其他任一團所包含,即它不是其他任一團的真子集,則稱該團為圖G的極大團。
5、最大團
頂點最多的極大團,稱之為圖G的最大團。
6、獨立集
獨立集是指圖G=(V,E)中兩兩互不相鄰的頂點構成的集合。
F. 【floyd演算法求兩個頂點的最短路徑時,pathk-1一定是pathk的子集。】這句話對不對
不對,Floyd是從一個頂點開始比較,k是在k-1的基礎上加入了一個新頂點比較,新加入的頂點有可能改變了最短路徑,記錄了路徑的path也隨之改變
G. 圖論中求任意兩點之間的最短路徑用lingo怎麼實現,求lingo源程序
請參考:(10個點的最短路徑),源頂點編號為10,
!最短路問題;
model:
data:
n=10;
enddata
sets:
cities/1..n/: F; !10個城市;
roads(cities,cities)/
1,2 1,3
2,4 2,5 2,6
3,4 3,5 3,6
4,7 4,8
5,7 5,8 5,9
6,8 6,9
7,10
8,10
9,10
/: D, P;
endsets
data:
D=
6 5
3 6 9
7 5 11
9 1
8 7 5
4 10
5
7
9;
enddata
F(n)=0;
@for(cities(i) | i #lt# n:
F(i)=@min(roads(i,j): D(i,j)+F(j));
);
!顯然,如果P(i,j)=1,則點i到點n的最短路徑的第一步是i --> j,否則就不是。
由此,我們就可方便的確定出最短路徑;
@for(roads(i,j):
P(i,j)=@if(F(i) #eq# D(i,j)+F(j),1,0)
);
end
結果是,
F( 1) 17.00000
F( 2) 11.00000
F( 3) 15.00000
F( 4) 8.000000
F( 5) 13.00000
F( 6) 11.00000
F( 7) 5.000000
F( 8) 7.000000
F( 9) 9.000000
F( 10) 0.000000
H. 圖論問題: 什麼是"Havel-Hakimi"演算法
不知道中文叫什麼。
Havel-Hakimi演算法用來判斷是否可以構造出一個滿足給定頂點序列的圖。例如給一個非升整數序列(4,3,2,2,2,1),該演算法將判斷能不能找到一個具有4個頂點的圖且頂點的度可以構成上述序列。演算法最終會構造出如下的圖。
演算法也很簡單。
給定非升序列(d0,d1,d2,d3,..dn),演算法從一個有n個點沒有邊的圖開始。n個節點與n個度一一對應。
每一次,找出還沒有滿足節點度要求的所有節點,按照剩餘度非升排序。取出第一個節點,設其剩餘度為k,則將其與隨後的k個點分別連邊。更新節點剩餘度,如果出現負值則說明無法構造。
重復上述步驟直至所有點都滿足度要求或者判定無法構造圖。
I. 數學問題。圖論學~高分懸賞。
1。略
2。先算Kn,n。把右側結點任意排列,然後與左側結點一對一組合就行。於是有n!種。(n的階乘)
對於K2n,先找出一個Kn,n的子圖,然後再算每個子圖中的匹配。子圖數:找出n個點放左邊,n個點放右邊即可,有C(2n,n)種。然後,每個Kn,n子圖有n!個匹配,就是C(2n,n)*(n!)種。
但這樣的話,每個匹配都被重復計算了。對於每個匹配中的邊,它的兩個頂點放在左邊計算了一次,又放在右邊計算了一次。一共n條邊,每個匹配就被重復計算了2^n次。所以,完美匹配的數量要除以2^n,就是:
C(2n,n)*(n!)/(2^n) = (2n)!/(n!*2^n)
J. 圖論中常見的最短路徑演算法有幾種都是什麼
主要是有三種、、
第一種是最直接的貪心dijkstra演算法、、可以利用堆數據結構進行優化、、缺點就是不能求有負權的最短路與判斷負環、、
第二種是bellman-ford演算法、、根據鬆弛操作的性質是可以來判斷負環的、、時間復雜度是O(nm)的、、
第三種是SPFA演算法、、把他單獨拿出來作為一種演算法並不是非常好的、、他的實質應該是上面的bellman-ford演算法的隊列優化時間復雜度更低、O(KE)、K的值約等於2、、