人工神經網路bp演算法
Ⅰ bp神經網路演算法介紹 bp神經網路演算法簡介
1、BP(Back Propagation)網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
2、BP神經網路演算法是在BP神經網路現有演算法的基礎上提出的,是通過任意選定一組權值,將給定的目標輸出直接作為線性方程的代數和來建立線性方程組,解得待求權,不存在傳統方法的局部極小及收斂速度慢的問題,且更易理解。
Ⅱ 神經網路BP模型
一、BP模型概述
誤差逆傳播(Error Back-Propagation)神經網路模型簡稱為BP(Back-Propagation)網路模型。
Pall Werbas博士於1974年在他的博士論文中提出了誤差逆傳播學習演算法。完整提出並被廣泛接受誤差逆傳播學習演算法的是以Rumelhart和McCelland為首的科學家小組。他們在1986年出版「Parallel Distributed Processing,Explorations in the Microstructure of Cognition」(《並行分布信息處理》)一書中,對誤差逆傳播學習演算法進行了詳盡的分析與介紹,並對這一演算法的潛在能力進行了深入探討。
BP網路是一種具有3層或3層以上的階層型神經網路。上、下層之間各神經元實現全連接,即下層的每一個神經元與上層的每一個神經元都實現權連接,而每一層各神經元之間無連接。網路按有教師示教的方式進行學習,當一對學習模式提供給網路後,神經元的激活值從輸入層經各隱含層向輸出層傳播,在輸出層的各神經元獲得網路的輸入響應。在這之後,按減小期望輸出與實際輸出的誤差的方向,從輸入層經各隱含層逐層修正各連接權,最後回到輸入層,故得名「誤差逆傳播學習演算法」。隨著這種誤差逆傳播修正的不斷進行,網路對輸入模式響應的正確率也不斷提高。
BP網路主要應用於以下幾個方面:
1)函數逼近:用輸入模式與相應的期望輸出模式學習一個網路逼近一個函數;
2)模式識別:用一個特定的期望輸出模式將它與輸入模式聯系起來;
3)分類:把輸入模式以所定義的合適方式進行分類;
在人工神經網路的實際應用中,80%~90%的人工神經網路模型採用BP網路或它的變化形式,它也是前向網路的核心部分,體現了人工神經網路最精華的部分。
二、BP模型原理
下面以三層BP網路為例,說明學習和應用的原理。
1.數據定義
P對學習模式(xp,dp),p=1,2,…,P;
輸入模式矩陣X[N][P]=(x1,x2,…,xP);
目標模式矩陣d[M][P]=(d1,d2,…,dP)。
三層BP網路結構
輸入層神經元節點數S0=N,i=1,2,…,S0;
隱含層神經元節點數S1,j=1,2,…,S1;
神經元激活函數f1[S1];
權值矩陣W1[S1][S0];
偏差向量b1[S1]。
輸出層神經元節點數S2=M,k=1,2,…,S2;
神經元激活函數f2[S2];
權值矩陣W2[S2][S1];
偏差向量b2[S2]。
學習參數
目標誤差ϵ;
初始權更新值Δ0;
最大權更新值Δmax;
權更新值增大倍數η+;
權更新值減小倍數η-。
2.誤差函數定義
對第p個輸入模式的誤差的計算公式為
中國礦產資源評價新技術與評價新模型
y2kp為BP網的計算輸出。
3.BP網路學習公式推導
BP網路學習公式推導的指導思想是,對網路的權值W、偏差b修正,使誤差函數沿負梯度方向下降,直到網路輸出誤差精度達到目標精度要求,學習結束。
各層輸出計算公式
輸入層
y0i=xi,i=1,2,…,S0;
隱含層
中國礦產資源評價新技術與評價新模型
y1j=f1(z1j),
j=1,2,…,S1;
輸出層
中國礦產資源評價新技術與評價新模型
y2k=f2(z2k),
k=1,2,…,S2。
輸出節點的誤差公式
中國礦產資源評價新技術與評價新模型
對輸出層節點的梯度公式推導
中國礦產資源評價新技術與評價新模型
E是多個y2m的函數,但只有一個y2k與wkj有關,各y2m間相互獨立。
其中
中國礦產資源評價新技術與評價新模型
則
中國礦產資源評價新技術與評價新模型
設輸出層節點誤差為
δ2k=(dk-y2k)·f2′(z2k),
則
中國礦產資源評價新技術與評價新模型
同理可得
中國礦產資源評價新技術與評價新模型
對隱含層節點的梯度公式推導
中國礦產資源評價新技術與評價新模型
E是多個y2k的函數,針對某一個w1ji,對應一個y1j,它與所有的y2k有關。因此,上式只存在對k的求和,其中
中國礦產資源評價新技術與評價新模型
則
中國礦產資源評價新技術與評價新模型
設隱含層節點誤差為
中國礦產資源評價新技術與評價新模型
則
中國礦產資源評價新技術與評價新模型
同理可得
中國礦產資源評價新技術與評價新模型
4.採用彈性BP演算法(RPROP)計算權值W、偏差b的修正值ΔW,Δb
1993年德國 Martin Riedmiller和Heinrich Braun 在他們的論文「A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm」中,提出Resilient Backpropagation演算法——彈性BP演算法(RPROP)。這種方法試圖消除梯度的大小對權步的有害影響,因此,只有梯度的符號被認為表示權更新的方向。
權改變的大小僅僅由權專門的「更新值」
中國礦產資源評價新技術與評價新模型
其中
權更新遵循規則:如果導數是正(增加誤差),這個權由它的更新值減少。如果導數是負,更新值增加。
中國礦產資源評價新技術與評價新模型
RPROP演算法是根據局部梯度信息實現權步的直接修改。對於每個權,我們引入它的
各自的更新值
於在誤差函數E上的局部梯度信息,按照以下的學習規則更新
中國礦產資源評價新技術與評價新模型
其中0<η-<1<η+。
在每個時刻,如果目標函數的梯度改變它的符號,它表示最後的更新太大,更新值
為了減少自由地可調參數的數目,增大倍數因子η+和減小倍數因子η–被設置到固定值
η+=1.2,
η-=0.5,
這兩個值在大量的實踐中得到了很好的效果。
RPROP演算法採用了兩個參數:初始權更新值Δ0和最大權更新值Δmax
當學習開始時,所有的更新值被設置為初始值Δ0,因為它直接確定了前面權步的大小,它應該按照權自身的初值進行選擇,例如,Δ0=0.1(默認設置)。
為了使權不至於變得太大,設置最大權更新值限制Δmax,默認上界設置為
Δmax=50.0。
在很多實驗中,發現通過設置最大權更新值Δmax到相當小的值,例如
Δmax=1.0。
我們可能達到誤差減小的平滑性能。
5.計算修正權值W、偏差b
第t次學習,權值W、偏差b的的修正公式
W(t)=W(t-1)+ΔW(t),
b(t)=b(t-1)+Δb(t),
其中,t為學習次數。
6.BP網路學習成功結束條件每次學習累積誤差平方和
中國礦產資源評價新技術與評價新模型
每次學習平均誤差
中國礦產資源評價新技術與評價新模型
當平均誤差MSE<ε,BP網路學習成功結束。
7.BP網路應用預測
在應用BP網路時,提供網路輸入給輸入層,應用給定的BP網路及BP網路學習得到的權值W、偏差b,網路輸入經過從輸入層經各隱含層向輸出層的「順傳播」過程,計算出BP網的預測輸出。
8.神經元激活函數f
線性函數
f(x)=x,
f′(x)=1,
f(x)的輸入范圍(-∞,+∞),輸出范圍(-∞,+∞)。
一般用於輸出層,可使網路輸出任何值。
S型函數S(x)
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍(0,1)。
f′(x)=f(x)[1-f(x)],
f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,
一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(0,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。
在用於模式識別時,可用於輸出層,產生逼近於0或1的二值輸出。
雙曲正切S型函數
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍(-1,1)。
f′(x)=1-f(x)·f(x),
f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,1]。
一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(-1,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。
階梯函數
類型1
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。
f′(x)=0。
類型2
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍{-1,1}。
f′(x)=0。
斜坡函數
類型1
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍[0,1]。
中國礦產資源評價新技術與評價新模型
f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。
類型2
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍[-1,1]。
中國礦產資源評價新技術與評價新模型
f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。
三、總體演算法
1.三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b初始化總體演算法
(1)輸入參數X[N][P],S0,S1,f1[S1],S2,f2[S2];
(2)計算輸入模式X[N][P]各個變數的最大值,最小值矩陣 Xmax[N],Xmin[N];
(3)隱含層的權值W1,偏差b1初始化。
情形1:隱含層激活函數f( )都是雙曲正切S型函數
1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];
2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];
3)計算W,b的幅度因子Wmag;
4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];
5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];
6)計算W[S1][S0],b[S1];
7)計算隱含層的初始化權值W1[S1][S0];
8)計算隱含層的初始化偏差b1[S1];
9))輸出W1[S1][S0],b1[S1]。
情形2:隱含層激活函數f( )都是S型函數
1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];
2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];
3)計算W,b的幅度因子Wmag;
4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];
5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];
6)計算W[S1][S0],b[S1];
7)計算隱含層的初始化權值W1[S1][S0];
8)計算隱含層的初始化偏差b1[S1];
9)輸出W1[S1][S0],b1[S1]。
情形3:隱含層激活函數f( )為其他函數的情形
1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];
2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];
3)計算W,b的幅度因子Wmag;
4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];
5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];
6)計算W[S1][S0],b[S1];
7)計算隱含層的初始化權值W1[S1][S0];
8)計算隱含層的初始化偏差b1[S1];
9)輸出W1[S1][S0],b1[S1]。
(4)輸出層的權值W2,偏差b2初始化
1)產生[-1,1]之間均勻分布的S2×S1維隨機數矩陣W2[S2][S1];
2)產生[-1,1]之間均勻分布的S2×1維隨機數矩陣b2[S2];
3)輸出W2[S2][S1],b2[S2]。
2.應用彈性BP演算法(RPROP)學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b總體演算法
函數:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)
(1)輸入參數
P對模式(xp,dp),p=1,2,…,P;
三層BP網路結構;
學習參數。
(2)學習初始化
1)
2)各層W,b的梯度值
(3)由輸入模式X求第一次學習各層輸出y0,y1,y2及第一次學習平均誤差MSE
(4)進入學習循環
epoch=1
(5)判斷每次學習誤差是否達到目標誤差要求
如果MSE<ϵ,
則,跳出epoch循環,
轉到(12)。
(6)保存第epoch-1次學習產生的各層W,b的梯度值
(7)求第epoch次學習各層W,b的梯度值
1)求各層誤差反向傳播值δ;
2)求第p次各層W,b的梯度值
3)求p=1,2,…,P次模式產生的W,b的梯度值
(8)如果epoch=1,則將第epoch-1次學習的各層W,b的梯度值
(9)求各層W,b的更新
1)求權更新值Δij更新;
2)求W,b的權更新值
3)求第epoch次學習修正後的各層W,b。
(10)用修正後各層W、b,由X求第epoch次學習各層輸出y0,y1,y2及第epoch次學習誤差MSE
(11)epoch=epoch+1,
如果epoch≤MAX_EPOCH,轉到(5);
否則,轉到(12)。
(12)輸出處理
1)如果MSE<ε,
則學習達到目標誤差要求,輸出W1,b1,W2,b2。
2)如果MSE≥ε,
則學習沒有達到目標誤差要求,再次學習。
(13)結束
3.三層BP網路(含輸入層,隱含層,輸出層)預測總體演算法
首先應用Train3lBP_RPROP( )學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b,然後應用三層BP網路(含輸入層,隱含層,輸出層)預測。
函數:Simu3lBP( )。
1)輸入參數:
P個需預測的輸入數據向量xp,p=1,2,…,P;
三層BP網路結構;
學習得到的各層權值W、偏差b。
2)計算P個需預測的輸入數據向量xp(p=1,2,…,P)的網路輸出 y2[S2][P],輸出預測結果y2[S2][P]。
四、總體演算法流程圖
BP網路總體演算法流程圖見附圖2。
五、數據流圖
BP網數據流圖見附圖1。
六、實例
實例一 全國銅礦化探異常數據BP 模型分類
1.全國銅礦化探異常數據准備
在全國銅礦化探數據上用穩健統計學方法選取銅異常下限值33.1,生成全國銅礦化探異常數據。
2.模型數據准備
根據全國銅礦化探異常數據,選取7類33個礦點的化探數據作為模型數據。這7類分別是岩漿岩型銅礦、斑岩型銅礦、矽卡岩型、海相火山型銅礦、陸相火山型銅礦、受變質型銅礦、海相沉積型銅礦,另添加了一類沒有銅異常的模型(表8-1)。
3.測試數據准備
全國化探數據作為測試數據集。
4.BP網路結構
隱層數2,輸入層到輸出層向量維數分別為14,9、5、1。學習率設置為0.9,系統誤差1e-5。沒有動量項。
表8-1 模型數據表
續表
5.計算結果圖
如圖8-2、圖8-3。
圖8-2
圖8-3 全國銅礦礦床類型BP模型分類示意圖
實例二 全國金礦礦石量品位數據BP 模型分類
1.模型數據准備
根據全國金礦儲量品位數據,選取4類34個礦床數據作為模型數據,這4類分別是綠岩型金礦、與中酸性浸入岩有關的熱液型金礦、微細浸染型型金礦、火山熱液型金礦(表8-2)。
2.測試數據准備
模型樣本點和部分金礦點金屬量、礦石量、品位數據作為測試數據集。
3.BP網路結構
輸入層為三維,隱層1層,隱層為三維,輸出層為四維,學習率設置為0.8,系統誤差1e-4,迭代次數5000。
表8-2 模型數據
4.計算結果
結果見表8-3、8-4。
表8-3 訓練學習結果
表8-4 預測結果(部分)
續表
Ⅲ 人工神經網路的分類 ann和bp是什麼意思
人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等.目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等.
ann:人工神經網路(Artificial Neural Networks)
bp:Back Propagation網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一.BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程.它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小.BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer).
Ⅳ 什麼是BP神經網路
BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。
Ⅳ bp代表什麼呀
BP神經網路 BP (Back Propagation)神經網路是一種神經網路學習演算法,全稱基於誤差反向傳播演算法的人工神經網路。
如圖所示拓撲結構的單隱層前饋網路,一般稱為三層前饋網或三層感知器,即:輸入層、中間層(也稱隱層)和輸出層。它的特點是:各層神經元僅與相鄰層神經元之間相互全連接,同層內神經元之間無連接,各層神經元之間無反饋連接,夠成具有層次結構的前饋型神經網路系統。單計算層前饋神經網路只能求解線性可分問題,能夠求解非線性問題的網路必須是具有隱層的多層神經網路。
在人工神經網路發展歷史中,很長一段時間里沒有找到隱層的連接權值調整問題的有效演算法。直到誤差反向傳播演算法(BP演算法)的提出,成功地解決了求解非線性連續函數的多層前饋神經網路權重調整問題。
BP (Back Propagation)神經網路,即誤差反傳誤差反向傳播演算法的學習過程,由信息的正向傳播和誤差的反向傳播兩個過程組成。輸入層各神經元負責接收來自外界的輸入信息,並傳遞給中間層各神經元;中間層是內部信息處理層,負責信息變換,根據信息變化能力的需求,中間層可以設計為單隱層或者多隱層結構;最後一個隱層傳遞到輸出層各神經元的信息,經進一步處理後,完成一次學習的正向傳播處理過程,由輸出層向外界輸出信息處理結果。當實際輸出與期望輸出不符時,進入誤差的反向傳播階段。誤差通過輸出層,按誤差梯度下降的方式修正各層權值,向隱層、輸入層逐層反傳。周而復始的信息正向傳播和誤差反向傳播過程,是各層權值不斷調整的過程,也是神經網路學習訓練的過程,此過程一直進行到網路輸出的誤差減少到可以接受的程度,或者預先設定的學習次數為止。
神經網路
神經網路是:
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。目前,主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機饃擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
【人工神經網路的工作原理】
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
「人腦是如何工作的?」
「人類能否製作模擬人腦的人工神經元?」
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,近年來逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決目前不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。
與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。
人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。
神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。
樹突是細胞體的延伸部分,它由細胞體發出後逐漸變細,全長各部位都可與其他神經元的軸突末梢相互聯系,形成所謂「突觸」。在突觸處兩神經元並未連通,它只是發生信息傳遞功能的結合部,聯系界面之間間隙約為(15~50)×10米。突觸可分為興奮性與抑制性兩種類型,它相應於神經元之間耦合的極性。每個神經元的突觸數目正常,最高可達10個。各神經元之間的連接強度和極性有所不同,並且都可調整、基於這一特性,人腦具有存儲信息的功能。利用大量神經元相互聯接組成人工神經網路可顯示出人的大腦的某些特徵。下面通過人工神經網路與通用的計算機工作特點來對比一下:
若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
人腦存貯信息的特點為利用突觸效能的變化來調整存貯內容,也即信息存貯在神經元之間連接強度的分布上,存貯區與計算機區合為一體。雖然人腦每日有大量神經細胞死亡 (平均每小時約一千個),但不影響大腦的正常思維活動。
普通計算機是具有相互獨立的存貯器和運算器,知識存貯與數據運算互不相關,只有通過人編出的程序使之溝通,這種溝通不能超越程序編制者的預想。元器件的局部損壞及程序中的微小錯誤都可能引起嚴重的失常。
人類大腦有很強的自適應與自組織特性,後天的學習與訓練可以開發許多各具特色的活動功能。如盲人的聽覺和觸覺非常靈敏;聾啞人善於運用手勢;訓練有素的運動員可以表現出非凡的運動技巧等等。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
人工神經網路早期的研究工作應追溯至本世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹人工神經網路的發展歷史。
1943年,心理學家W·Mcculloch和數理邏輯學家W·Pitts在分析、總結神經元基本特性的基礎上首先提出神經元的數學模型。此模型沿用至今,並且直接影響著這一領域研究的進展。因而,他們兩人可稱為人工神經網路研究的先驅。
1945年馮·諾依曼領導的設計小組試製成功存儲程序式電子計算機,標志著電子計算機時代的開始。1948年,他在研究工作中比較了人腦結構與存儲程序式計算機的根本區別,提出了以簡單神經元構成的再生自動機網路結構。但是,由於指令存儲式計算機技術的發展非常迅速,迫使他放棄了神經網路研究的新途徑,繼續投身於指令存儲式計算機技術的研究,並在此領域作出了巨大貢獻。雖然,馮·諾依曼的名字是與普通計算機聯系在一起的,但他也是人工神經網路研究的先驅之一。
50年代末,F·Rosenblatt設計製作了「感知機」,它是一種多層的神經網路。這項工作首次把人工神經網路的研究從理論探討付諸工程實踐。當時,世界上許多實驗室仿效製作感知機,分別應用於文字識別、聲音識別、聲納信號識別以及學習記憶問題的研究。然而,這次人工神經網路的研究高潮未能持續很久,許多人陸續放棄了這方面的研究工作,這是因為當時數字計算機的發展處於全盛時期,許多人誤以為數字計算機可以解決人工智慧、模式識別、專家系統等方面的一切問題,使感知機的工作得不到重視;其次,當時的電子技術工藝水平比較落後,主要的元件是電子管或晶體管,利用它們製作的神經網路體積龐大,價格昂貴,要製作在規模上與真實的神經網路相似是完全不可能的;另外,在1968年一本名為《感知機》的著作中指出線性感知機功能是有限的,它不能解決如異感這樣的基本問題,而且多層網路還不能找到有效的計算方法,這些論點促使大批研究人員對於人工神經網路的前景失去信心。60年代末期,人工神經網路的研究進入了低潮。
另外,在60年代初期,Widrow提出了自適應線性元件網路,這是一種連續取值的線性加權求和閾值網路。後來,在此基礎上發展了非線性多層自適應網路。當時,這些工作雖未標出神經網路的名稱,而實際上就是一種人工神經網路模型。
隨著人們對感知機興趣的衰退,神經網路的研究沉寂了相當長的時間。80年代初期,模擬與數字混合的超大規模集成電路製作技術提高到新的水平,完全付諸實用化,此外,數字計算機的發展在若干應用領域遇到困難。這一背景預示,向人工神經網路尋求出路的時機已經成熟。美國的物理學家Hopfield於1982年和1984年在美國科學院院刊上發表了兩篇關於人工神經網路研究的論文,引起了巨大的反響。人們重新認識到神經網路的威力以及付諸應用的現實性。隨即,一大批學者和研究人員圍繞著 Hopfield提出的方法展開了進一步的工作,形成了80年代中期以來人工神經網路的研究熱潮。
Ⅵ BP神經網路和感知器有什麼區別
1、BP神經網路,指的是用了「BP演算法」進行訓練的「多層感知器模型」。
2、感知器(MLP,Multilayer
Perceptron)是一種前饋人工神經網路模型,其將輸入的多個數據集映射到單一的輸出的數據集上,可以解決任何線性不可分問題。
3、多層感知器就是指得結構上多層的感知器模型遞接連成的前向型網路。BP就是指得反向傳播演算法
Ⅶ 神經網路——BP演算法
對於初學者來說,了解了一個演算法的重要意義,往往會引起他對演算法本身的重視。BP(Back Propagation,後向傳播)演算法,具有非凡的歷史意義和重大的現實意義。
1969年,作為人工神經網路創始人的明斯基(Marrin M insky)和佩珀特(Seymour Papert)合作出版了《感知器》一書,論證了簡單的線性感知器功能有限,不能解決如「異或」(XOR )這樣的基本問題,而且對多層網路也持悲觀態度。這些論點給神經網路研究以沉重的打擊,很多科學家紛紛離開這一領域,神經網路的研究走向長達10年的低潮時期。[1]
1974年哈佛大學的Paul Werbos發明BP演算法時,正值神經外網路低潮期,並未受到應有的重視。[2]
1983年,加州理工學院的物理學家John Hopfield利用神經網路,在旅行商這個NP完全問題的求解上獲得當時最好成績,引起了轟動[2]。然而,Hopfield的研究成果仍未能指出明斯基等人論點的錯誤所在,要推動神經網路研究的全面開展必須直接解除對感知器——多層網路演算法的疑慮。[1]
真正打破明斯基冰封魔咒的是,David Rumelhart等學者出版的《平行分布處理:認知的微觀結構探索》一書。書中完整地提出了BP演算法,系統地解決了多層網路中隱單元連接權的學習問題,並在數學上給出了完整的推導。這是神經網路發展史上的里程碑,BP演算法迅速走紅,掀起了神經網路的第二次高潮。[1,2]
因此,BP演算法的歷史意義:明確地否定了明斯基等人的錯誤觀點,對神經網路第二次高潮具有決定性意義。
這一點是說BP演算法在神經網路領域中的地位和意義。
BP演算法是迄今最成功的神經網路學習演算法,現實任務中使用神經網路時,大多是在使用BP演算法進行訓練[2],包括最近炙手可熱的深度學習概念下的卷積神經網路(CNNs)。
BP神經網路是這樣一種神經網路模型,它是由一個輸入層、一個輸出層和一個或多個隱層構成,它的激活函數採用sigmoid函數,採用BP演算法訓練的多層前饋神經網路。
BP演算法全稱叫作誤差反向傳播(error Back Propagation,或者也叫作誤差逆傳播)演算法。其演算法基本思想為:在2.1所述的前饋網路中,輸入信號經輸入層輸入,通過隱層計算由輸出層輸出,輸出值與標記值比較,若有誤差,將誤差反向由輸出層向輸入層傳播,在這個過程中,利用梯度下降演算法對神經元權值進行調整。
BP演算法中核心的數學工具就是微積分的 鏈式求導法則 。
BP演算法的缺點,首當其沖就是局部極小值問題。
BP演算法本質上是梯度下降,而它所要優化的目標函數又非常復雜,這使得BP演算法效率低下。
[1]、《BP演算法的哲學思考》,成素梅、郝中華著
[2]、《機器學習》,周志華著
[3]、 Deep Learning論文筆記之(四)CNN卷積神經網路推導和實現
2016-05-13 第一次發布
2016-06-04 較大幅度修改,完善推導過程,修改文章名
2016-07-23 修改了公式推導中的一個錯誤,修改了一個表述錯誤
Ⅷ BP人工神經網路方法
(一)方法原理
人工神經網路是由大量的類似人腦神經元的簡單處理單元廣泛地相互連接而成的復雜的網路系統。理論和實踐表明,在信息處理方面,神經網路方法比傳統模式識別方法更具有優勢。人工神經元是神經網路的基本處理單元,其接收的信息為x1,x2,…,xn,而ωij表示第i個神經元到第j個神經元的連接強度或稱權重。神經元的輸入是接收信息X=(x1,x2,…,xn)與權重W={ωij}的點積,將輸入與設定的某一閾值作比較,再經過某種神經元激活函數f的作用,便得到該神經元的輸出Oi。常見的激活函數為Sigmoid型。人工神經元的輸入與輸出的關系為
地球物理勘探概論
式中:xi為第i個輸入元素,即n維輸入矢量X的第i個分量;ωi為第i個輸入與處理單元間的互聯權重;θ為處理單元的內部閾值;y為處理單元的輸出。
常用的人工神經網路是BP網路,它由輸入層、隱含層和輸出層三部分組成。BP演算法是一種有監督的模式識別方法,包括學習和識別兩部分,其中學習過程又可分為正向傳播和反向傳播兩部分。正向傳播開始時,對所有的連接權值置隨機數作為初值,選取模式集的任一模式作為輸入,轉向隱含層處理,並在輸出層得到該模式對應的輸出值。每一層神經元狀態隻影響下一層神經元狀態。此時,輸出值一般與期望值存在較大的誤差,需要通過誤差反向傳遞過程,計算模式的各層神經元權值的變化量
(二)BP神經網路計算步驟
(1)初始化連接權值和閾值為一小的隨機值,即W(0)=任意值,θ(0)=任意值。
(2)輸入一個樣本X。
(3)正向傳播,計算實際輸出,即根據輸入樣本值、互聯權值和閾值,計算樣本的實際輸出。其中輸入層的輸出等於輸入樣本值,隱含層和輸出層的輸入為
地球物理勘探概論
輸出為
地球物理勘探概論
式中:f為閾值邏輯函數,一般取Sigmoid函數,即
地球物理勘探概論
式中:θj表示閾值或偏置;θ0的作用是調節Sigmoid函數的形狀。較小的θ0將使Sigmoid函數逼近於閾值邏輯單元的特徵,較大的θ0將導致Sigmoid函數變平緩,一般取θ0=1。
(4)計算實際輸出與理想輸出的誤差
地球物理勘探概論
式中:tpk為理想輸出;Opk為實際輸出;p為樣本號;k為輸出節點號。
(5)誤差反向傳播,修改權值
地球物理勘探概論
式中:
地球物理勘探概論
地球物理勘探概論
(6)判斷收斂。若誤差小於給定值,則結束,否則轉向步驟(2)。
(三)塔北雅克拉地區BP神經網路預測實例
以塔北雅克拉地區S4井為已知樣本,取氧化還原電位,放射性元素Rn、Th、Tc、U、K和地震反射
S4井位於測區西南部5線25點,是區內唯一已知井。該井在5390.6m的侏羅系地層獲得40.6m厚的油氣層,在5482m深的震旦系地層中獲58m厚的油氣層。取S4井周圍9個點,即4~6線的23~25 點作為已知油氣的訓練樣本;由於區內沒有未見油的鑽井,只好根據地質資料分析,選取14~16線的55~57點作為非油氣的訓練樣本。BP網路學習迭代17174次,總誤差為0.0001,學習效果相當滿意。以學習後的網路進行識別,得出結果如圖6-2-4所示。
圖6-2-4 塔北雅克拉地區BP神經網路聚類結果
(據劉天佑等,1997)
由圖6-2-4可見,由預測值大於0.9可得5個大封閉圈遠景區,其中測區南部①號遠景區對應著已知油井S4井;②、③號油氣遠景區位於地震勘探所查明的托庫1、2號構造,該兩個構造位於沙雅隆起的東段,其西段即為1984年鑽遇高產油氣流的Sch2井,應是含油氣性好的遠景區;④、⑤號遠景區位於大澇壩構造,是yh油田的組成部分。
Ⅸ 什麼是BP演算法
bp演算法,即反向傳播方法,是用來訓練前向網路的一種普遍演算法