當前位置:首頁 » 操作系統 » 點過濾演算法

點過濾演算法

發布時間: 2023-01-11 23:51:49

『壹』 協同過濾演算法有哪些 slope

協同過濾演算法是這一領域的主流。作為基於內容的演算法執行方式,協同過濾在准確性上具有相當的優勢,但無法冷啟動、同質化和運算效率低使其依然存在很多不足。
協同過濾演算法的名稱來源於化學上的過濾操作。
原理
利用物質的溶解性差異,將液體和不溶於液體的固體分離開來的一種方法。如用過濾法除去粗食鹽中少量的泥沙
過濾實驗儀器
漏斗、燒杯、玻璃棒、鐵架台(含鐵圈)、濾紙。
過濾操作要領
要做到「一貼、二低、三靠」。
一貼
即使濾紙潤濕,緊貼漏斗內壁,中間不要留下氣泡。(防止氣泡減慢過濾速度。)
二低
1.濾紙邊緣略低於漏斗邊緣。
2.液面低於濾紙邊緣。(防止液體過濾不凈。)
三靠
1.傾倒時燒杯杯口要緊靠玻璃棒上。
2.玻璃棒下端抵靠在三層濾紙處。
3.漏斗下端長的那側管口緊靠燒杯內壁。
過濾注意事項
1.燒杯中的混合物在過濾前應用玻璃棒攪拌,然後進行過濾。
2.過濾後若溶液還顯渾濁,應再過濾一次,直到溶液變得透明為止。
3.過濾器中的沉澱的洗滌方法:用燒瓶或滴管向過濾器中加蒸餾水,使水面蓋沒沉澱物,待溶液全部濾出後,重復2~3次。
希望我能幫助你解疑釋惑。

『貳』 數學濾波演算法可以處理三個坐標點嗎

濾波演算法可以處理三個坐標點的。濾波在三坐標中的應用:
1、粗糙度對測量的影響:測量點也在圖中被放大獲取到大量的點,表面粗度被認為是,引起「噪點」的原因。
2、探針的機械濾波:
選擇探針直徑-使用探針測量工件會由於工件表面結構的影響產生機械濾波。
由於探針直徑過大精細的工件表面的形狀無法捕捉,因此可看作是機械低通濾波。
3、三坐標的濾波:
用同樣參數進行低通濾波的掃描線。
如下圖所示,描繪出的圖形差異並不明顯。

4、2 RC濾波:不再使用圓度測量最初的標准化濾波器,但是已被現代濾波計算所取代。
5、高斯濾波:坐標測量技術中標准濾波演算法。此濾波方法為標准演算法被廣泛使用。他使用高斯曲線加權計算測量點得到新的輪廓。
6、樣條濾波:基於濾波方程的增強濾波方法(多項式計算),樣條濾波更合乎標准,也更優於高斯濾波但並不是標准濾波方法。
(2)點過濾演算法擴展閱讀:
圖像濾波是一種非常重要的圖像處理技術,現在大火的卷積神經網路其實也是濾波的一種,都是用卷積核去提取圖像的特徵模式。不過,傳統的濾波,使用的卷積核是固定的參數,是由經驗非常豐富的人去手動設計的,也稱為手工特徵。而卷積神經網路的卷積核參數初始時未知的,根據不同的任務由數據和神經網路反向傳播演算法去學習得到的參數,更能適應於不同的任務。
自適應中值濾波
中值濾波器是一種常用的非線性濾波器,其基本原理是:選擇待處理像素的一個鄰域中各像素值的中值來代替待處理的像素。主要功能使某像素的灰度值與周圍領域內的像素比較接近,從而消除一些孤立的雜訊點,所以中值濾波器能夠很好的消除椒鹽雜訊。不僅如此,中值濾波器在消除雜訊的同時,還能有效的保護圖像的邊界信息,不會對圖像造成很大的模糊(相比於均值濾波器)。
中值濾波器的效果受濾波窗口尺寸的影響較大,在消除雜訊和保護圖像的細節存在著矛盾:濾波窗口較小,則能很好的保護圖像中的某些細節,但對雜訊的過濾效果就不是很好,因為實際中的雜訊不可能只佔一個像素位置;反之,窗口尺寸較大有較好的雜訊過濾效果,但是會對圖像造成一定的模糊。另外,根據中值濾波器原理,如果在濾波窗口內的雜訊點的個數大於整個窗口內非雜訊像素的個數,則中值濾波就不能很好的過濾掉雜訊。

『叄』 最近手機廣告計價模式很火,到底分為哪些

為了靈活控制廣告投放管理,將在推廣成本上壓縮到最小,點入科技採取了CPC(點擊廣告)、 CPD(下載分成)兩種不同的廣告推廣樣式來滿足廣告主的效果營銷目的。CPC點擊,用戶點擊一次廣告條,經過點入系統過濾演算法後打開廣告內容記為一次有效點擊。CPD下載APP程序安裝推廣模式,較適合影音娛樂類、動漫遊戲類、女性時尚類、電子商務類等廣告主投放。而CPD下載分成模式則整合了廣告收入及廣告傭金統一管理服務,使開發者增加受眾人群,使廣告主投放效果達到最佳,提高整體知名度。更多資訊請到www.dianru.com

『肆』 怎麼轉換淘寶直通車

想要開好淘寶直通車,我們得先了解他的運作原理。首先他是怎麼來的呢?
谷歌的創始人拉里佩奇說了一段故事,說谷歌的廣告改進,源於 CEO 的一次發飆。
他搜索一個日本摩托車品牌型號「川崎 h1b」,但是出現的廣告,和他搜索的內容完全不相關,是一些美國移民廣告。然後,他就把一些搜索和廣告不匹配的結果列印出來,貼到大家都能看到的檯球室牆壁上,寫上幾個大字:「這些廣告糟透了」。
接下來,谷歌搜索演算法小組,並不負責廣告業務,利用業余時間調整廣告演算法,明確廣告的排序核心,不是看商家願意出多少錢,而是以廣告信息對用戶的價值為標准,這就成就了谷歌廣告後面幾十億業務的衍生。
目前,直通車其實的演算法核心,學習的就是谷歌的廣告演算法,通俗點說,就是如果你的產品和用戶搜索詞匹配度高,你就可以少花錢,如果匹配弱,那麼花再多錢也難排到前面。而這樣匹配結果,直通車用了一個新的詞語表示,就是質量得分。
因此,直通車里衍生兩種玩法:
一種是欺騙直通車,雖然直通車演算法判斷你寶貝相關度不高,但是你用假的用戶反饋,讓它認為你的寶貝和用戶匹配度高。比如:在類目匹配的情況下,人為刷點擊和數據,讓直通車誤認為高相關,然後質量得分提高,降低出價;
這種方法,剛開始肯定有效,但是只要方法被更多的賣家使用後,淘寶就會對應的針對這種所謂的「黑車技術」典型行為,找到共性,建立數據模型,制定反惡意點擊過濾演算法,讓這些作弊方法失效。
所以,我們看到的這些所謂的黑技術,都很難長久,還容易被處罰。
第二種是順勢而為,深挖產品購買用戶。同一個產品可能有不同人群需求,比如買深海魚油的,有老人,小孩,女人等等,人群不同需求可能也不同。找到最匹配的人群,通過搜索引流詞和成交詞的反饋,找到單產品最有效的引流成交詞,然後主圖,標題和賣點優化集中火力去打這一個人群,促成高點擊和轉化,比如這個深海魚油,我們只展示給女人看,主打女性美容保養功效。
所以,這種打法需要在操作直通車的時候,遵循三高原理:
1. 高精準詞。往往圍繞著主成交詞擴展,比如這款深海魚油的軟化血管是主成交詞,我們找到這個功能的主人群是老人,然後在行業熱詞榜里找到所有與老人和軟化血管相關詞作直通車投放,測試詞和產品是否高精準,

『伍』 有誰知道3D彩票過濾的演算法,最好舉個例子!

『陸』 推薦系統(一):基於物品的協同過濾演算法

協同過濾(collaborative filtering)演算法是最經典、最常用的推薦演算法。其基本思想是收集用戶偏好,找到相似的用戶或物品,然後計算並推薦。
基於物品的協同過濾演算法的核心思想就是:給用戶推薦那些和他們之前喜歡的物品相似的物品。主要可分為兩步:
(1) 計算物品之間的相似度,建立相似度矩陣。
(2) 根據物品的相似度和用戶的歷史行為給用戶生成推薦列表。

相似度的定義有多種方式,下面簡要介紹其中幾種:

其中,分母 是喜歡物品 的用戶數,而分子 是同時喜歡物品 和物品 的用戶數。因此,上述公式可以理解為喜歡物品 的用戶中有多少比例的用戶也喜歡物品 。
上述公式存在一個問題。如果物品 很熱門, 就會很大,接近1。因此,該公式會造成任何物品都會和熱門的物品有很大的相似度,為了避免推薦出熱門的物品,可以用下面的公式:

這個公式懲罰了物品 的權重,因此減輕了熱門物品會和很多物品相似的可能性。
另外為減小活躍用戶對結果的影響,考慮IUF(nverse User Frequence) ,即用戶活躍度對數的倒數的參數,認為活躍用戶對物品相似度的貢獻應該小於不活躍的用戶。

為便於計算,還需要進一步將相似度矩陣歸一化 。

其中 表示用戶 對物品 的評分。 在區間 內,越接近1表示相似度越高。

表示空間中的兩個點,則其歐幾里得距離為:

當 時,即為平面上兩個點的距離,當表示相似度時,可採用下式轉換:

距離越小,相似度越大。

一般表示兩個定距變數間聯系的緊密程度,取值范圍為[-1,1]

其中 是 和 的樣品標准差

將用戶行為數據按照均勻分布隨機劃分為M份,挑選一份作為測試集,將剩下的M-1份作為訓練集。為防止評測指標不是過擬合的結果,共進行M次實驗,每次都使用不同的測試集。然後將M次實驗測出的評測指標的平均值作為最終的評測指標。

對用戶u推薦N個物品(記為 ),令用戶u在測試集上喜歡的物品集合為 ,召回率描述有多少比例的用戶-物品評分記錄包含在最終的推薦列表中。

准確率描述最終的推薦列表中有多少比例是發生過的用戶-物品評分記錄。

覆蓋率反映了推薦演算法發掘長尾的能力,覆蓋率越高,說明推薦演算法越能夠將長尾中的物品推薦給用戶。分子部分表示實驗中所有被推薦給用戶的物品數目(集合去重),分母表示數據集中所有物品的數目。

採用GroupLens提供的MovieLens數據集, http://www.grouplens.org/node/73 。本章使用中等大小的數據集,包含6000多用戶對4000多部電影的100萬條評分。該數據集是一個評分數據集,用戶可以給電影評1-5分5個不同的等級。本文著重研究隱反饋數據集中TopN推薦問題,因此忽略了數據集中的評分記錄。

該部分定義了所需要的主要變數,集合採用字典形式的數據結構。

讀取原始CSV文件,並劃分訓練集和測試集,訓練集佔比87.5%,同時建立訓練集和測試集的用戶字典,記錄每個用戶對電影評分的字典。

第一步循環讀取每個用戶及其看過的電影,並統計每部電影被看過的次數,以及電影總數;第二步計算矩陣C,C[i][j]表示同時喜歡電影i和j的用戶數,並考慮對活躍用戶的懲罰;第三步根據式\ref{similarity}計算電影間的相似性;第四步進行歸一化處理。

針對目標用戶U,找到K部相似的電影,並推薦其N部電影,如果用戶已經看過該電影則不推薦。

產生推薦並通過准確率、召回率和覆蓋率進行評估。

結果如下所示,由於數據量較大,相似度矩陣為 維,計算速度較慢,耐心等待即可。

[1]. https://blog.csdn.net/m0_37917271/article/details/82656158
[2]. 推薦系統與深度學習. 黃昕等. 清華大學出版社. 2019.
[3]. 推薦系統演算法實踐. 黃美靈. 電子工業出版社. 2019.
[4]. 推薦系統演算法. 項亮. 人民郵電出版社. 2012.
[5]. 美團機器學習實踐. 美團演算法團隊. 人民郵電出版社. 2018.

『柒』 協同過濾的演算法細分

這是最早應用協同過濾系統的設計,主要是解決Xerox公司在Palo Alto的研究中心資訊過載的問題。這個研究中心的員工每天會收到非常多的電子郵件卻無從篩選分類,於是研究中心便發展這項實驗性的郵件系統來幫助員工解決這項問題。 其運作機制大致如下:
個人決定自己的感興趣的郵件類型;個人旋即隨機發出一項資訊需求,可預測的結果是會收到非常多相關的文件;從這些文件中個人選出至少三筆資料是其認為有用、會想要看的;系統便將之記錄起來成為個人郵件系統內的過濾器,從此以後經過過濾的文件會最先送達信箱;以上是協同過濾最早的應用,接下來的里程碑為GroupLens。 這個系統主要是應用在新聞的篩選上,幫助新聞的閱聽者過濾其感興趣的新聞內容,閱聽者看過內容後給一個評比的分數,系統會將分數記錄起來以備未來參考之用,假設前提是閱聽者以前感興趣的東西在未來也會有興趣閱聽,若閱聽者不願揭露自己的身分也可以匿名進行評分。 和Tapestry不同之處有兩點,首先,Tapestry專指一個點(如一個網站內、一個系統內)的過濾機制;GroupLens則是跨點跨系統的新聞過濾機制。再來,Tapestry不會將同一筆資料的評比總和起來;GroupLens會將同一筆資料從不同使用者得到的評比加總。
GroupLens具有以下特點:開放性:所有的新聞閱聽者皆可使用,雖然系統委託Better Bit Bureau設計給分的系統,但若有不同的評分機制也適用於GroupLens。方便性:給分並不是一件困難的事情且溝通上非常方便,評分結果容易詮釋。規模性:有可能發展成大規模的系統,一旦發展成大規模,儲存空間與計算成本問題顯得相當棘手。隱密性:如果使用者不想讓別人知道他是誰,別人就不會知道。由此可以看出,現今網路各個推薦系統的雛形已然形成,在GroupLens之後還有性質相近的MovieLens,電影推薦系統;Ringo,音樂推薦系統;Video Recommender,影音推薦系統;以及Jster,笑話推薦系統等等。乃至於今日的YouTube、aNobii皆是相似性值得網路推薦平台,較不同的是經過時間推移,網路越來越發達,使用者越來越多,系統也發展得越來越嚴密。 最著名的電子商務推薦系統應屬亞馬遜網路書店,顧客選擇一本自己感興趣的書籍,馬上會在底下看到一行「Customer Who Bought This Item Also Bought」,亞馬遜是在「對同樣一本書有興趣的讀者們興趣在某種程度上相近」的假設前提下提供這樣的推薦,此舉也成為亞馬遜網路書店為人所津津樂道的一項服務,各網路書店也跟進做這樣的推薦服務如台灣的博客來網路書店。 另外一個著名的例子是Facebook的廣告,系統根據個人資料、周遭朋友感興趣的廣告等等對個人提供廣告推銷,也是一項協同過濾重要的里程碑,和前二者Tapestry、GroupLens不同的是在這里雖然商業氣息濃厚同時還是帶給使用者很大的方便。 以上為三項協同過濾發展上重要的里程碑,從早期單一系統內的郵件、文件過濾,到跨系統的新聞、電影、音樂過濾,乃至於今日橫行互聯網的電子商務,雖然目的不太相同,但帶給使用者的方便是大家都不能否定的。

『捌』 基於用戶的系統過濾 什麼是推薦演算法

什麼是推薦演算法 推薦演算法最早在1992年就提出來了,但是火起來實際上是最近這些年的事情,因為互聯網的爆發,有了更大的數據量可以供我們使用,推薦演算法才有了很大的用武之地。 最開始,所以我們在網上找資料,都是進yahoo,然後分門別類的點進去,找到你想要的東西,這是一個人工過程,到後來,我們用google,直接搜索自己需要的內容,這些都可以比較精準的找到你想要的東西,但是,如果我自己都不知道自己要找什麼腫么辦?最典型的例子就是,如果我打開豆瓣找電影,或者我去買說,我實際上不知道我想要買什麼或者看什麼,這時候推薦系統就可以派上用場了。 推薦演算法的條件 推薦演算法從92年開始,發展到現在也有20年了,當然,也出了各種各樣的推薦演算法,但是不管怎麼樣,都繞不開幾個條件,這是推薦的基本條件 根據和你共同喜好的人來給你推薦 根據你喜歡的物品找出和它相似的來給你推薦 根據你給出的關鍵字來給你推薦,這實際上就退化成搜索演算法了 根據上面的幾種條件組合起來給你推薦 實際上,現有的條件就這些啦,至於怎麼發揮這些條件就是八仙過海各顯神通了,這么多年沉澱了一些好的演算法,今天這篇文章要講的基於用戶的協同過濾演算法就是其中的一個,這也是最早出現的推薦演算法,並且發展到今天,基本思想沒有什麼變化,無非就是在處理速度上,計算相似度的演算法上出現了一些差別而已。 基於用戶的協同過濾演算法 我們先做個詞法分析基於用戶說明這個演算法是以用戶為主體的演算法,這種以用戶為主體的演算法比較強調的是社會性的屬性,也就是說這類演算法更加強調把和你有相似愛好的其他的用戶的物品推薦給你,與之對應的是基於物品的推薦演算法,這種更加強調把和你你喜歡的物品相似的物品推薦給你。 然後就是協同過濾了,所謂協同就是大家一起幫助你啦,然後後面跟個過濾,就是大家是商量過後才把結果告訴你的,不然信息量太大了。。 所以,綜合起來說就是這么一個演算法,那些和你有相似愛好的小夥伴們一起來商量一下,然後告訴你什麼東西你會喜歡。 演算法描述 相似性計算 我們盡量不使用復雜的數學公式,一是怕大家看不懂,難理解,二是我是用mac寫的blog,公式不好畫,太麻煩了。。 所謂計算相似度,有兩個比較經典的演算法 Jaccard演算法,就是交集除以並集,詳細可以看看我這篇文章。 餘弦距離相似性演算法,這個演算法應用很廣,一般用來計算向量間的相似度,具體公式大家google一下吧,或者看看這里 各種其他演算法,比如歐氏距離演算法等等。 不管使用Jaccard還是用餘弦演算法,本質上需要做的還是求兩個向量的相似程度,使用哪種演算法完全取決於現實情況。 我們在本文中用的是餘弦距離相似性來計算兩個用戶之間的相似度。 與目標用戶最相鄰的K個用戶 我們知道,在找和你興趣愛好相似的小夥伴的時候,我們可能可以找到幾百個,但是有些是好基友,但有些只是普通朋友,那麼一般的,我們會定一個數K,和你最相似的K個小夥伴就是你的好基友了,他們的愛好可能和你的愛好相差不大,讓他們來推薦東西給你(比如肥皂)是最好不過了。

『玖』 基於聚類的協同過濾演算法都有哪些

自邀自答,不用謝。這是兩種完全不同的演算法思想。以二維空間為例,聚類是各個樣本往若干個共同中心聚合的過程,計算的是樣本點到聚類中心的二維空間距離;而協同過濾是盡量在樣本中構造平行相似性,以彌合缺失的樣本信息維度。聚類和協同過濾是可以而且應當在解決實際問題中混合使用的。但應該是在解決問題的不同階段。比如用戶興趣,首先使用聚類方法對人群進行若干大類的劃分,然後在一類人群中進行協同過濾。

『拾』 協同過濾演算法

用戶行為數據在網站上最簡單的存在形式就是日誌,比如用戶在電子商務網站中的網頁瀏覽、購買、點擊、評分和評論等活動。 用戶行為在個性化推薦系統中一般分兩種——顯性反饋行為(explicit feedback)和隱性反饋 行為(implicit feedback)。顯性反饋行為包括用戶明確表示對物品喜好的行為。網站中收集顯性反饋的主要方式就是評分和喜歡/不喜歡。隱性反饋行為指的是那些不能明確反應用戶喜好 的行為。最具代表性的隱性反饋行為就是頁面瀏覽行為。 按照反饋的明確性分,用戶行為數據可以分為顯性反饋和隱性反饋,但按照反饋的方向分, 又可以分為正反饋和負反饋。正反饋指用戶的行為傾向於指用戶喜歡該物品,而負反饋指用戶的 行為傾向於指用戶不喜歡該物品。在顯性反饋中,很容易區分一個用戶行為是正反饋還是負反饋, 而在隱性反饋行為中,就相對比較難以確定。

在利用用戶行為數據設計推薦演算法之前,研究人員首先需要對用戶行為數據進行分析,了解 數據中蘊含的一般規律,這樣才能對演算法的設計起到指導作用。

(1) 用戶活躍度和物品流行度

(2) 用戶活躍度和物品流行度的關系

一般認為,新用戶傾向於瀏覽熱門的物品,因為他 們對網站還不熟悉,只能點擊首頁的熱門物品,而老用戶會逐漸開始瀏覽冷門的物品。如果用橫坐標表示用戶活躍度,縱坐標表示具有某個活躍度的所有用戶評過分的物品的平均流行度。圖中曲線呈明顯下 降的趨勢,這表明用戶越活躍,越傾向於瀏覽冷門的物品。

僅僅基於用戶行為數據設計的推薦演算法一般稱為協同過濾演算法。學術界對協同過濾演算法進行了深入研究,提出了很多方法,比如基於鄰域的方法(neighborhood-based)、隱語義模型 (latent factor model)、基於圖的隨機遊走演算法(random walk on graph)等。在這些方法中, 最著名的、在業界得到最廣泛應用的演算法是基於鄰域的方法,而基於鄰域的方法主要包含下面兩種演算法。

基於用戶的協同過濾演算法 :這種演算法給用戶推薦和他興趣相似的其他用戶喜歡的物品

基於物品的協同過濾演算法: 這種演算法給用戶推薦和他之前喜歡的物品相似的物品

基於鄰域的演算法是推薦系統中最基本的演算法,該演算法不僅在學術界得到了深入研究,而且在 業界得到了廣泛應用。基於鄰域的演算法分為兩大類,一類是基於用戶的協同過濾演算法,另一類是 基於物品的協同過濾演算法。現在我們所說的協同過濾,基本上就就是指基於用戶或者是基於物品的協同過濾演算法,因此,我們可以說基於鄰域的演算法即是我們常說的協同過濾演算法

(1) 基於用戶的協同過濾演算法(UserCF)

基於用戶的協同過濾演算法的基本思想是:在一個在線個性化推薦系統中,當一個用戶A需要個性化推薦 時,可以先找到和他有相似興趣的其他用戶,然後把那些用戶喜歡的、而用戶A沒有聽說過的物品推薦給A。

Ø 從上面的描述中可以看到,基於用戶的協同過濾演算法主要包括兩個步驟。 第一步:找到和目標用戶興趣相似的用戶集合。 第二步: 找到這個集合中的用戶喜歡的,且目標用戶沒有聽說過的物品推薦給目標用戶。

這里,步驟1的關鍵是計算兩個用戶的興趣相似度,協同過濾演算法主要利用行為的相似度計算興趣的相似度。給定用戶u和用戶v,令N(u)表示用戶u曾經有過正反饋的物品集合,令N(v) 為用戶v曾經有過正反饋的物品集合。那麼我們可以通過以下方法計算用戶的相似度:

基於餘弦相似度

(2) 基於物品的協同過濾演算法(itemCF)
與UserCF同理
(3) UserCF和itemCF的比

首先我們提出一個問題,為什麼新聞網站一般使用UserCF,而圖書、電商網站一般使用ItemCF呢? 首先回顧一下UserCF演算法和ItemCF演算法的推薦原理。UserCF給用戶推薦那些和他有共同興 趣愛好的用戶喜歡的物品,而ItemCF給用戶推薦那些和他之前喜歡的物品類似的物品。從這個算 法的原理可以看到,UserCF的推薦結果著重於反映和用戶興趣相似的小群體的熱點,而ItemCF 的推薦結果著重於維系用戶的歷史興趣。換句話說,UserCF的推薦更社會化,反映了用戶所在的小型興趣群體中物品的熱門程度,而ItemCF的推薦更加個性化,反映了用戶自己的興趣傳承。 在新聞網站中,用戶的興趣不是特別細化,絕大多數用戶都喜歡看熱門的新聞。個性化新聞推薦更加強調抓住 新聞熱點,熱門程度和時效性是個性化新聞推薦的重點,而個性化相對於這兩點略顯次要。因 此,UserCF可以給用戶推薦和他有相似愛好的一群其他用戶今天都在看的新聞,這樣在抓住熱 點和時效性的同時,保證了一定程度的個性化。同時,在新聞網站中,物品的更新速度遠遠快於新用戶的加入速度,而且 對於新用戶,完全可以給他推薦最熱門的新聞,因此UserCF顯然是利大於弊。

但是,在圖書、電子商務和電影網站,比如亞馬遜、豆瓣、Netflix中,ItemCF則能極大地發 揮優勢。首先,在這些網站中,用戶的興趣是比較固定和持久的。一個技術人員可能都是在購買 技術方面的書,而且他們對書的熱門程度並不是那麼敏感,事實上越是資深的技術人員,他們看 的書就越可能不熱門。此外,這些系統中的用戶大都不太需要流行度來輔助他們判斷一個物品的 好壞,而是可以通過自己熟悉領域的知識自己判斷物品的質量。因此,這些網站中個性化推薦的 任務是幫助用戶發現和他研究領域相關的物品。因此,ItemCF演算法成為了這些網站的首選演算法。 此外,這些網站的物品更新速度不會特別快,一天一次更新物品相似度矩陣對它們來說不會造成 太大的損失,是可以接受的。同時,從技術上考慮,UserCF需要維護一個用戶相似度的矩陣,而ItemCF需要維護一個物品 相似度矩陣。從存儲的角度說,如果用戶很多,那麼維護用戶興趣相似度矩陣需要很大的空間, 同理,如果物品很多,那麼維護物品相似度矩陣代價較大

下表是對二者的一個全面的表較:

熱點內容
安卓文字為什麼沒有蘋果舒服 發布:2025-05-16 03:01:26 瀏覽:356
phpnow解壓版 發布:2025-05-16 02:52:49 瀏覽:811
dmporacle資料庫 發布:2025-05-16 02:44:31 瀏覽:831
雲主機上傳 發布:2025-05-16 02:44:30 瀏覽:82
滑鼠如何編程 發布:2025-05-16 02:29:09 瀏覽:816
安卓70能用什麼軟體 發布:2025-05-16 01:45:09 瀏覽:481
編程發展史 發布:2025-05-16 01:38:52 瀏覽:529
android圖片氣泡 發布:2025-05-16 01:38:40 瀏覽:887
文件加密編輯器下載 發布:2025-05-16 01:30:41 瀏覽:344
linuxapacheyum安裝 發布:2025-05-16 01:30:31 瀏覽:477