幾大基本演算法
㈠ 程序員開發用到的十大基本演算法
演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。
演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
演算法步驟:
演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。
演算法步驟:
終止條件:n=1時,返回的即是i小元素。
演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
演算法步驟:
上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
演算法步驟:
演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
演算法步驟:
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
演算法步驟:
演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
㈡ 演算法有幾種
但是可以分類。 以下是我查到的資料 演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法。 演算法可以宏泛的分為三類: 有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。 有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。 無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。 演算法設計與分析的基本方法 1.遞推法 2.遞歸遞歸指的是一個過程:函數不斷引用自身,直到引用的對象已知 3.窮舉搜索法 窮舉搜索法是對可能是解的眾多候選解按某種順序進行逐一枚舉和檢驗,並從眾找出那些符合要求的候選解作為問題的解。 4.貪婪法貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。 5.分治法把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。 6.動態規劃法 動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。 7.迭代法迭代是數值分析中通過從一個初始估計出發尋找一系列近似解來解決問題(一般是解方程或者方程組)的過程,為實現這一過程所使用的方法統稱為迭代法。
㈢ 演算法有哪些分類
演算法分類編輯演算法可大致分為:
基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
㈣ 幾種常用的演算法簡介
1、窮舉法窮舉法是最基本的演算法設計策略,其思想是列舉出問題所有的可能解,逐一進行判別,找出滿足條件的解。
窮舉法的運用關鍵在於解決兩個問題:
在運用窮舉法時,容易出現的問題是可能解過多,導致演算法效率很低,這就需要對列舉可能解的方法進行優化。
以題1041--純素數問題為例,從1000到9999都可以看作是可能解,可以通過對所有這些可能解逐一進行判別,找出其中的純素數,但只要稍作分析,就會發現其實可以大幅度地降低可能解的范圍。根據題意易知,個位只可能是3、5、7,再根據題意可知,可以在3、5、7的基礎上,先找出所有的二位純素數,再在二位純素數基礎上找出三位純素數,最後在三位純素數的基礎上找出所有的四位純素數。
2、分治法分治法也是應用非常廣泛的一種演算法設計策略,其思想是將問題分解為若乾子問題,從而可以遞歸地求解各子問題,再綜合出問題的解。
分治法的運用關鍵在於解決三個問題:
我們熟知的如漢諾塔問題、折半查找演算法、快速排序演算法等都是分治法運用的典型案例。
以題1045--Square
Coins為例,先對題意進行分析,可設一個函數f(m,
n)等於用面值不超過n2的貨幣構成總值為m的方案數,則容易推導出:
f(m,
n)
=
f(m-0*n*n,
n-1)+f(m-1*n*n,
n-1)+f(m-2*n*n,
n-1)+...+f(m-k*n*n,
n-1)
這里的k是幣值為n2的貨幣最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m,
1)
=
f(1,
n)
=
1
對於這樣的題目,一旦分析出了遞推公式,程序就非常好寫了。所以在動手開始寫程序之前,分析工作做得越徹底,邏輯描述越准確、簡潔,寫起程序來就會越容易。
3、動態規劃法
動態規劃法多用來計算最優問題,動態規劃法與分治法的基本思想是一致的,但處理的手法不同。動態規劃法在運用時,要先對問題的分治規律進行分析,找出終結子問題,以及子問題向父問題歸納的規則,而演算法則直接從終結子問題開始求解,逐層向上歸納,直到歸納出原問題的解。
動態規劃法多用於在分治過程中,子問題可能重復出現的情況,在這種情況下,如果按照常規的分治法,自上向下分治求解,則重復出現的子問題就會被重復地求解,從而增大了冗餘計算量,降低了求解效率。而採用動態規劃法,自底向上求解,每個子問題只計算一次,就可以避免這種重復的求解了。
動態規劃法還有另外一種實現形式,即備忘錄法。備忘錄的基本思想是設立一個稱為備忘錄的容器,記錄已經求得解的子問題及其解。仍然採用與分治法相同的自上向下分治求解的策略,只是對每一個分解出的子問題,先在備忘錄中查找該子問題,如果備忘錄中已經存在該子問題,則不須再求解,可以從備忘錄中直接得到解,否則,對子問題遞歸求解,且每求得一個子問題的解,都將子問題及解存入備忘錄中。
例如,在題1045--Square
Coins中,可以採用分治法求解,也可以採用動態規劃法求解,即從f(m,
1)和f(1,
n)出發,逐層向上計算,直到求得f(m,
n)。
在競賽中,動態規劃和備忘錄的思想還可以有另一種用法。有些題目中的可能問題數是有限的,而在一次運行中可能需要計算多個測試用例,可以採用備忘錄的方法,預先將所有的問題的解記錄下來,然後輸入一個測試用例,就查備忘錄,直接找到答案輸出。這在各問題之間存在父子關系的情況下,會更有效。例如,在題1045--Square
Coins中,題目中已經指出了最大的目標幣值不超過300,也就是說問題數只有300個,而且各問題的計算中存在重疊的子問題,可以採用動態規劃法,將所有問題的解先全部計算出來,再依次輸入測試用例數據,並直接輸出答案。
4、回溯法回溯法是基於問題狀態樹搜索的求解法,其可適用范圍很廣。從某種角度上說,可以把回溯法看作是優化了的窮舉法。回溯法的基本思想是逐步構造問題的可能解,一邊構造,一邊用約束條件進行判別,一旦發現已經不可能構造出滿足條件的解了,則退回上一步構造過程,重新進行構造。這個退回的過程,就稱之為回溯。
回溯法在運用時,要解決的關鍵問題在於:
回溯法的經典案例也很多,例如全排列問題、N後問題等。
5、貪心法貪心法也是求解最優問題的常用演算法策略,利用貪心法策略所設計的演算法,通常效率較高,演算法簡單。貪心法的基本思想是對問題做出目前看來最好的選擇,即貪心選擇,並使問題轉化為規模更小的子問題。如此迭代,直到子問題可以直接求解。
基於貪心法的經典演算法例如:哈夫曼演算法、最小生成樹演算法、最短路徑演算法等。
㈤ C語言中基本的幾種演算法有哪些越多越好!就像打擂台演算法'冒泡排序法等等...
排序演算法
冒泡排序
選擇排序
快速排序
高精度運算
存儲方法
加法運算
減法運算
乘法運算
擴大進制數
習題與練習
搜索演算法
枚舉演算法
深度優先搜索
廣度優先搜索
8數碼問題
n皇後問題
搜索演算法習題
枚舉法習題
聰明的打字員
量水問題
染色問題
跳馬問題
算24點
圖論演算法
最小生成樹演算法(Prim演算法)
單源最短路徑演算法(Dijkstra演算法)
任意結點最短路徑演算法(Floyd演算法)
求有向帶權圖的所有環
Bellman-Ford演算法
計算圖的連通性
計算最佳連通分支
計算拓撲序列
圖論演算法習題
網路建設問題
最短變換問題
挖地雷
烏托邦城市
烏托邦交通中心
動態規劃
最短路徑問題
動態規劃概念
騎士游歷問題
最長遞增子序列
合唱隊形
石子合並問題
能量項鏈
0/1背包問題
開心的金明
金明的預算方案
加分二叉樹
字串編輯距離
花瓶插花
凸多邊形三角劃分
快餐店
㈥ 作為程序員提高編程能力的幾個基礎演算法
一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要Ο(nlogn)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(nlogn)演算法更快,因為它的內部循環(innerloop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divideandconquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1從數列中挑出一個元素,稱為「基準」(pivot),
2重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
堆排序的平均時間復雜度為Ο(nlogn) 。
創建一個堆H[0..n-1]
把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
三:歸並排序
歸並排序(Mergesort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(DivideandConquer)的一個非常典型的應用。
1.申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列
2.設定兩個指針,最初位置分別為兩個已經排序序列的起始位置
3.比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置
4.重復步驟3直到某一指針達到序列尾
5.將另一序列剩下的所有元素直接復制到合並序列尾
四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。
1.將n個元素每5個一組,分成n/5(上界)組。
2.取出每一組的中位數,任意排序方法,比如插入排序。
3.遞歸的調用selection演算法查找上一步中所有中位數的中位數,設為x,偶數個中位數的情況下設定為選取中間小的一個。
4.用x來分割數組,設小於等於x的個數為k,大於x的個數即為n-k。
5.若i==k,返回x;若i<k,在小於x的元素中遞歸查找第i小的元素;若i>k,在大於x的元素中遞歸查找第i-k小的元素。
終止條件:n=1時,返回的即是i小元素。
六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
深度優先遍歷圖演算法步驟:
1.訪問頂點v;
2.依次從v的未被訪問的鄰接點出發,對圖進行深度優先遍歷;直至圖中和v有路徑相通的頂點都被訪問;
3.若此時圖中尚有頂點未被訪問,則從一個未被訪問的頂點出發,重新進行深度優先遍歷,直到圖中所有頂點均被訪問過為止。
上述描述可能比較抽象,舉個實例:
DFS在訪問圖中某一起始頂點v後,由v出發,訪問它的任一鄰接頂點w1;再從w1出發,訪問與w1鄰接但還沒有訪問過的頂點w2;然後再從w2出發,進行類似的訪問,…如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點u為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。
BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
1.首先將根節點放入隊列中。
2.從隊列中取出第一個節點,並檢驗它是否為目標。
如果找到目標,則結束搜尋並回傳結果。
否則將它所有尚未檢驗過的直接子節點加入隊列中。
3.若隊列為空,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」。
4.重復步驟2。
八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』salgorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E表示G中所有邊的集合,而邊的權重則由權重函數w:E→[0,∞]定義。因此,w(u,v)就是從頂點u到頂點v的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
1.初始時令S=,T=,T中頂點對應的距離值
若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值
若不存在<V0,Vi>,d(V0,Vi)為∞
2.從T中選取一個其距離值為最小的頂點W且不在S中,加入S
3.對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值縮短,則修改此距離值
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
九:動態規劃演算法
動態規劃(Dynamicprogramming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表。這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
1.最優子結構性質。如果問題的最優解所包含的子問題的解也是最優的,我們就稱該問題具有最優子結構性質(即滿足最優化原理)。最優子結構性質為動態規劃演算法解決問題提供了重要線索。
2.子問題重疊性質。子問題重疊性質是指在用遞歸演算法自頂向下對問題進行求解時,每次產生的子問題並不總是新問題,有些子問題會被重復計算多次。動態規劃演算法正是利用了這種子問題的重疊性質,對每一個子問題只計算一次,然後將其計算結果保存在一個表格中,當再次需要計算已經計算過的子問題時,只是在表格中簡單地查看一下結果,從而獲得較高的效率。
十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下,如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
通過掌握以上演算法,能夠幫你迅速提高編程能力,成為一名優秀的程序員。
㈦ 必背的基本演算法有哪些阿
樹和圖中關於遍歷,最短路徑,最小生成樹的問題,拓撲排序,最大聯通分量等等
棧和隊列的基本操作
基本排序:插入排序,希爾排序,冒泡排序,堆排序,快速排序,歸並排序等等,這都是很基本的演算法。
查找:二叉排序樹,B樹,AVL樹,哈希表的基本處理
一開始鏈表的部分很多題目也是比較難的,融會貫通吧。
KMP演算法
就記得這么多了
㈧ 計算機程序語言包括哪幾個基本演算法
冒泡排序、選擇排序、、插入排序、希爾排序、歸並排序、堆排序
Java版代碼:
package com.kevin;
/**
* 七種排序演算法Java版
*
* @author Administrator
*
*/
public class Sort {
/**
* 列印數組
*
* @param data
*/
public static void displayData(int[] data) {
for (int d : data) {
System.out.print(d + " ");
}
System.out.println();
}
/**
* 冒泡排序演算法,時間復雜度O(n2),演算法具有穩定性,堆排序和快速排序演算法不具有穩定性,即排序後相同元素的順序會發生變化
*
* @param src
*/
public static void bubbleSort(int[] src) {
if (src.length > 0) {
int length = src.length;
for (int i = 1; i < length; i++) {
for (int j = 0; j < length - i; j++) {
if (src[j] > src[j + 1]) {
int temp = src[j];
src[j] = src[j + 1];
src[j + 1] = temp;
}
}
}
}
}
/**
* 快速排序,時間復雜度O(nlogn),最壞時間復雜度O(n2),平均時間復雜度O(nlogn),演算法不具穩定性
*
* @param src
* @param begin
* @param end
*/
public static void quickSort(int[] src, int begin, int end) {
if (begin < end) {
int key = src[begin];
int i = begin;
int j = end;
while (i < j) {
while (i < j && src[j] > key) {
j--;
}
if (i < j) {
src[i] = src[j];
i++;
}
while (i < j && src[i] < key) {
i++;
}
if (i < j) {
src[j] = src[i];
j--;
}
}
src[i] = key;
quickSort(src, begin, i - 1);
quickSort(src, i + 1, end);
}
}
/**
* 選擇排序,分為簡單選擇排序、樹形選擇排序(錦標賽排序)、堆排序 此演算法為簡單選擇排序
*
* @param a
*/
public static void selectSort(int[] a) {
int length = a.length;
for (int i = 0; i < length; i++) {
int minIndex = i;
for (int j = i + 1; j < a.length; j++) {
if (a[j] < a[minIndex]) {
minIndex = j;
}
}
if (minIndex != i) {
int temp = a[minIndex];
a[minIndex] = a[i];
a[i] = temp;
}
}
}
/**
* 插入排序,適用於少量數據的排序,時間復雜度O(n2),是穩定的排序演算法,原地排序
*
* @param a
*/
public static void insertSort(int[] a) {
int length = a.length;
for (int i = 1; i < length; i++) {
int temp = a[i];
int j = i;
for (; j > 0 && a[j - 1] > temp; j--) {
a[j] = a[j - 1];
}
a[j] = temp;
}
}
/**
* 歸並排序演算法,穩定排序,非原地排序,空間復雜度O(n),時間復雜度O(nlogn)
*
* @param a
* @param low
* @param high
*/
public static void mergeSort(int a[], int low, int high) {
if (low < high) {
mergeSort(a, low, (low + high) / 2);
mergeSort(a, (low + high) / 2 + 1, high);
merge(a, low, (high + low) / 2, high);
}
}
/**
* 歸並排序輔助方法,合並
*
* @param a
* @param low
* @param mid
* @param high
*/
private static void merge(int[] a, int low, int mid, int high) {
int[] b = new int[high - low + 1];
int s = low;
int t = mid + 1;
int k = 0;
while (s <= mid && t <= high) {
if (a[s] <= a[t])
b[k++] = a[s++];
else
b[k++] = a[t++];
}
while (s <= mid)
b[k++] = a[s++];
while (t <= high)
b[k++] = a[t++];
for (int i = 0; i < b.length; i++) {
a[low + i] = b[i];
}
}
/**
* 希爾排序的一種實現方法
*
* @param a
*/
public static void shellSort(int[] a) {
int temp;
for (int k = a.length / 2; k > 0; k /= 2) {
for (int i = k; i < a.length; i++) {
for (int j = i; j >= k; j -= k) {
if (a[j - k] > a[j]) {
temp = a[j - k];
a[j - k] = a[j];
a[j] = temp;
}
}
}
}
}
/**
* 堆排序,最壞時間復雜度O(nlog2n),平均性能接近於最壞性能。由於建初始堆所需的比較次數多,故堆不適合記錄較少的比較 堆排序為原地不穩定排序
*
* @param array
*/
public static void heapSort(int[] array) {
for (int i = 1; i < array.length; i++) {
makeHeap(array, i);
}
for (int i = array.length - 1; i > 0; i--) {
int temp = array[i];
array[i] = array[0];
array[0] = temp;
rebuildHeap(array, i);
}
}
/**
* 堆排序輔助方法---創建堆
*
* @param array
* @param k
*/
private static void makeHeap(int[] array, int k) {
int current = k;
while (current > 0 && array[current] > array[(current - 1) / 2]) {
int temp = array[current];
array[current] = array[(current - 1) / 2];
array[(current - 1) / 2] = temp;
current = (current - 1) / 2;
}
}
/**
* 堆排序輔助方法---堆的根元素已刪除,末尾元素已移到根位置,開始重建
*
* @param array
* @param size
*/
private static void rebuildHeap(int[] array, int size) {
int currentIndex = 0;
int right = currentIndex * 2 + 2;
int left = currentIndex * 2 + 1;
int maxIndex = currentIndex;
boolean isHeap = false;
while (!isHeap) {
if (left < size && array[currentIndex] < array[left]) {
maxIndex = left;
}
if (right < size && array[maxIndex] < array[right]) {
maxIndex = right;
}
if (currentIndex == maxIndex) {
isHeap = true;
} else {
int temp = array[currentIndex];
array[currentIndex] = array[maxIndex];
array[maxIndex] = temp;
currentIndex = maxIndex;
right = currentIndex * 2 + 2;
left = currentIndex * 2 + 1;
}
}
}
public static void main(String[] args) {
int data[] = { 2, -1, 5, 4, 6, 8, 7, -3 };
Sort.displayData(data);
Sort.bubbleSort(data);
Sort.displayData(data);
}
}
㈨ 數據結構中有哪些基本演算法
數據結構中最基本的演算法有:查找、排序、快速排序,堆排序,歸並排序,,二分搜索演算法
等等。
1、用的最多也是最簡單的數據結構是線性表。
2、有前途的又難數據結構是圖 。
3、常用的80%演算法是排序和查找。
㈩ 數據結構有哪些基本演算法
一、排序演算法 1、有簡單排序(包括冒泡排序、插入排序、選擇排序) 2、快速排序,很常見的 3、堆排序, 4、歸並排序,最穩定的,即沒有太差的情況 二、搜索演算法 最基礎的有二分搜索演算法,最常見的搜索演算法,前提是序列已經有序 還有深度優先和廣度有限搜索;及使用剪枝,A*,hash表等方法對其進行優化。 三、當然,對於基本數據結構,棧,隊列,樹。都有一些基本的操作 例如,棧的pop,push,隊列的取隊頭,如隊;以及這些數據結構的具體實現,使用連續的存儲空間(數組),還是使用鏈表,兩種具體存儲方法下操作方式的具體實現也不一樣。 還有樹的操作,如先序遍歷,中序遍歷,後續遍歷。 當然,這些只是一些基本的針對數據結構的演算法。 而基本演算法的思想應該有:1、回溯2、遞歸3、貪心4、動態規劃5、分治有些數據結構教材沒有涉及基礎演算法,lz可以另外找一些基礎演算法書看一下。有興趣的可以上oj做題,呵呵。演算法真的要學起來那是挺費勁。