當前位置:首頁 » 操作系統 » 演算法異化

演算法異化

發布時間: 2023-03-20 18:49:06

❶ 什麼是演算法

演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。

❷ 關於java新聞網站的演算法

(一) 演算法倫理的研究
1.演算法內涵界定。演算法源於數學,但現代演算法又遠遠不止於傳統數學的計算范疇。演算法多被理解為是計算機用於解決問題的程序或步驟,是現代人工智慧系統的運行支柱。《計算主義:一種新的世界觀》(李建會等,2012)中將演算法定義為能行的方法,在外界的常識性理解中所謂演算法就是能感受到的一套運算規則,這個規則的特點在於運算時間的有限性、計算步驟的有窮性、輸入結果的確切性,它是機械步驟或能行可算計程序。該定義點明了演算法應具備的兩個基本屬性——有限性與有窮性。《用計算的觀點看世界》( 酈全民,2016) 則從信息傳播的角度解讀演算法,認為演算法實質上是信息處理方法。
2.演算法倫理研究
倫理關乎道德價值真理及其判斷。存在於自然界、社會中的人,其行為應遵循一定的倫理道德規范。倫理的效應要導向善。倫理道德關注對個體存在的尊重、個體的自由、公平正義以及組織團體的延續與發展等問題。在一定程度上可以說,當今的人類社會已經不能脫離智能演算法系統而運行了。
演算法無時無處不在對世界產生影響,因而演算法也會必然的觸碰到倫理道德。和鴻鵬(2017)已指出,演算法系統在人類社會生活中的廣泛應用,會陷入諸多如人類面臨且無法迴避的倫理兩難選擇困境之中。而當演算法與倫理發生關聯時,學界一般認為會引出職業倫理和技術倫理兩種倫理問題。
職業倫理主要與演算法系統的開發者有關,指開發者是帶有個性價值觀、倫理道德觀去研發演算法系統的行為體,因而演算法系統一開始便會摻雜著設計人主觀性的倫理道德觀。設計者出於何種目的開發某演算法系統、面對不同問題設計者持有的倫理道德態度,這些都會在演算法系統的運行中得到體現。
技術倫理是演算法系統在一定意義上可稱之為一種科學技術,這種技術自身及其運作結果都會負載著倫理價值。其實在一些情況下,職業倫理與技術倫理之間並沒有很明確的界別,關於這一點,劉則淵跟王國豫已做過論述。
本文將主要從技術倫理的角度對演算法關涉倫理這一問題嘗試做深入研究。
(二)網路新聞傳播的演算法倫理研究
演算法與技術的融合不斷英語於網路新聞傳播領域中,從數據新聞到機器寫作,從演算法推送到輿情到分析,國內新聞傳媒領域的機器新聞和相關研究逐漸發展,金兼斌在《機器新聞寫作:一場正在發生的革命》(2014),作者較早的將眼光聚焦於基於演算法的新聞內容生產和編輯。認為在自動化新聞生產大發展的前提下,諸如新聞生產或分發中勞動密集型的基礎性工作與環節都將被技術取代。張超、鍾新在《從比特到人工智慧:數字新聞生產的演算法轉向》(2017) 認為演算法正在從比特形式走向人工智慧階段,這種轉向使得數字新聞與傳統新聞的邊界進一步明晰,促使數字新聞生產也產生了變革。胡萬鵬在《智能演算法推薦的倫理風險及防範策略》中總結了從演算法推送方面:針對新聞的價值觀所受到的負面影響;以及新聞的公共性、客觀性和真實性受到的削弱進行分析;從受眾方面:將具體對信息繭房現象以及受眾的知情權和被遺忘權展開探討;從社會影響方面,則針對社會群體、社會公共領域和社會文化所受到的消極影響展開論述。
根據以上文獻的梳理可以看出,國內目前對網路新聞傳播的演算法倫理研究主要集中在新聞業態演算法倫理失范的相關問題,因為與其他失范問題相比,這是比較容易發現的。但目前關於網路新聞傳播的演算法倫理的國內研究還存在不足:國內演算法倫理和網路新聞傳播演算法倫理的研究還是在起步階段,比較成熟的系統性研究還未出現;關於演算法開發人員和平台的責任機制的研究都比較薄弱,總上所述,演算法推送新聞的倫理問題研究是有必要繼續加強的。
2.新聞推薦演算法的興起、發展與原理
2.1 新聞推薦演算法的興起
隨著計算機技術的信息處理的維度越來越高,信息處理的能力不斷提升,演算法技術可以從大數據中篩選出用戶最關心最感興趣的信息,改變了原有的新聞信息傳播方式,重塑了新的媒介生態和傳播格局。
但反過來看,在人人都能生產信息的背景下,信息的生產、傳播和反饋的速度都是呈幾何倍數增長,用戶面對的信息越來越多。由於設備的局限性和信息海量,用戶無法集中注意力看自己感興趣的內容,也無法及時抓取對自己有用的信息,於是出現了「注意力經濟」。美國經濟學家邁克爾·戈德海伯(1997)認為,當今社會是一個信息極大豐富甚至泛濫的社會,而互聯網的出現,加快了這一進程,信息非但不是稀缺資源,相反是過剩的。相對於過剩的信息,只有一種資源是稀缺的,那就是人們的注意力。換句話說,信息不能夠一味追求量,還要有價值,價值就在於用戶對信息的注意力,誰獲得了用戶的注意力就可以有市場的發展空間,通過「販賣」用戶的注意力能夠使新媒體聚合平台獲得利潤,維持發展。再加上現在生活節奏越來越快,人們對信息獲取的量和效率要求提高,不想把時間浪費在自己不感興趣的信息,從而用戶獲取信息的「個性化」特徵變得明顯起來。
基於此背景下,演算法推送新聞的傳播機制應運而生,用戶不需要特意搜索自己需要的信息,而是海量的信息會自行「找到」用戶,為用戶節省搜索時間之餘,又能做到真正為用戶提供有用的信息。
2.2新聞推薦演算法的發展現狀
演算法推薦是依據用戶數據為用戶推薦特定領域的信息,根據受眾使用反饋不斷修正並完善推薦方案。目前主要有兩類新聞機構使用演算法推送,其一是新型的互聯網新聞聚合類平台,國內主要是以今日頭條和一點資訊等演算法類平台為代表,在我國新聞客戶端市場上擁有極高的佔有率。張一鳴創建今日頭條是依靠大數據和演算法為用戶推薦信息,提供連接人與信息的服務,演算法會以關鍵詞等元素判斷用戶的興趣愛好,從全網抓取內容實現個性化推薦。國外則是以Facebook、Instagram等平台為代表,這些APP都是通過演算法挖掘用戶的數據,以用戶個性化需求為導向對用戶進行新聞推送。另一種則是專業新聞生產的傳統媒體,為積極應對新聞市場的競爭和提高技術水平而轉型到新聞全媒體平台,如國內的「人民日報」等,國外利用演算法推送向用戶推送新聞的傳統媒體則有美國的美聯社、華盛頓郵報和英國的BBC等,他們利用演算法監督受眾的數量還有閱讀行為,使他們的新聞報道能夠更加受受眾的喜歡,增加用戶的粘性。
2.2 新聞推薦演算法的原理
2.2.1 新聞推薦演算法的基本要素
演算法推送有三個基本要素,分別是用戶、內容和演算法。用戶是演算法推送系統的服務對象,對用戶的理解和認知越是透徹,內容分法的准確性和有效性就越准確。內容是演算法推送系統的基本生產資料,對多種形式內通的分析、組織、儲存和分發都需要科學的手段與方法。演算法是演算法推送技術上的支持,也是最核心的。系統中大量用戶與海量的信息是無法自行匹配的,需要推送演算法把用戶和內容連接起來,在用戶和內容之間發揮橋梁作用,高效把合適的內容推薦給合適的用戶。
2.2.2 新聞推薦演算法的基本原理
演算法推送的出現需要具備兩個條件:足夠的信息源和精確的演算法框架。其中,演算法的內容生產源與信息分發最終效果密切相關:是否有足夠多的信息可供抓取與信息是否有足夠的品質令用戶滿意都將對信息的傳播效果產生影響。與此同時,分發環節也在向前追溯,改變著整個傳播的生態。目前,國內新聞傳播領域所使用的演算法推送主要有三大類——協同過濾推送、基於內容推送和關聯規則推送。
協同過濾推送分為基於用戶的協同過濾和基於模型的協同過濾。前者主要考慮的是用戶和用戶之間的相似度,只要找出相似用戶喜歡的新聞文章類別,並預測目標用戶對該文章的喜歡程度,就可以將其他文章推薦給用戶;後者和前者是類似的,區別在此時轉向找到文章和文章之間的相似度,只有找到了目標用戶對某類文章的喜愛程度,那麼我們就可以對相似度高的類似文章進行預測,將喜愛程度相當的相似文章推薦給用戶。因此,前者利用用戶歷史數據在整個用戶資料庫中尋找相似的推送文章進行推薦,後者通過用戶歷史數據構造預測模型,再通過模型進行預測並推送。
基於內容的推送即根據用戶歷史進行文本信息特徵抽取、過濾,生成模型,向用戶推薦與歷史項目內容相似的信息。它的優點之一就是解決了協同過濾中數據稀少時無法准確判斷分發的問題。但如果長期只根據用戶歷史數據推薦信息,會造成過度個性化,容易形成「信息繭房」。
關聯規則推送就是基於用戶歷史數據挖掘用戶數據背後的關聯,以分析用戶的潛在需求,向用戶推薦其可能感興趣的信息。基於該演算法的信息推薦流程主要分為兩個步驟,第一步是根據當前用戶閱讀過的感興趣的內容,通過規則推導出用戶還沒有閱讀過的可能感興趣的內容;第二是根據規則的重要程度,對內容排序並展現給用戶。關聯規則推送的效果依賴規則的數量和質量,但隨著規則數量的增多,對系統的要求也會提高。
2.2.3 演算法推送的實現流程
在信息過載的時代,同一個新聞選題有很多同質化的報道,因此分發前需要對新聞內容進行消重,消重後的新聞內容便等待推送,此時的推送有三個類別:啟動推送、擴大推送和限制推送。
第一類是啟動推送,先對用戶精準推送,即將其訂閱賬號的更新內容第一時間向用戶推薦;然後根據用戶的歷史瀏覽數據,把相似的文本特徵歸類後推送給其他用戶;最後是給關注用戶的相似人群進行推薦。第二類擴大推送是指對於某個點擊率、閱讀時長都明顯高於平均水平的新聞內容,系統會將它自動篩選出來,並向更多的人進行推薦。但在擴大推薦的過程中,系統會依據用戶的反饋進行調整。第三為限制推送,指某個點擊率、閱讀時長都明顯低於平均水平的新聞內容,會被系統自動篩選出來,遏制推送,這樣的內容會被縮小推薦范圍。

3. 「今日頭條」新聞推薦演算法分析
「今日頭條」是國內一款資訊類的媒體聚合平台,每天有超過1.2億人使用。從「你關心的,才是頭條!」到如今的「信息創造價值!」,產品slogan的變化也意味著今日頭條正逐漸擺脫以往單一、粗暴的流量思維,而開始注重人與信息的連接,在促進信息高效、精準傳播的同時注重正確的價值引導。
在2018年初,「今日頭條」的資深演算法架構師曹歡歡博士在一場分享交流會上公開了其演算法運行原理。在他的敘述中,非常詳細地介紹了「今日頭條」的演算法推薦系統概述以及演算法推薦系統的操作原理。

3.1.1-1 曹歡歡博士的今日頭條演算法建模
上圖用數學形式化的方法去描述「今日頭條」的演算法推送,實際上就是一個能夠得出用戶對內容滿意程度的函數:即y為用戶對內容的滿意度,Xi,Xc,Xu分別是今日頭條公開的演算法推送的三個維度:Xi是用戶,包括用戶的性別、年齡、職業和興趣標簽,還有其他演算法模型刻畫的隱形用戶偏好等;Xc是環境,這也是移動互聯網時代新聞推送的特點,由於用戶隨時隨地在不停移動,移動終端也在移動,用戶在不同的工作場合、旅行等場景信息推送偏好也會不同;Xu是內容,今日頭條本身就是信息聚合類平台,平台上涵蓋各種不同形式的內容。本章將以該函數為基礎,逐一分析今日頭條的推薦演算法。
3.1 推薦維度之一:內容分析
內容分析原指第二次世界大戰期間,傳播學家拉斯韋爾等研究學家組織了「戰士通訊研究」的工作,以德國公開出版的戰時報紙為分析研究對象,弄清報紙內容本質性的事實和趨勢,揭示隱含的隱性情報內容,獲取了許多軍情機密情報並且對事態發展作出情報預測。在「今日頭條」中,內容分析則是對文章、視頻內容提取關鍵要素,通過對文本、視頻標題關鍵字進行語義識別,給內容進行分類。「今日頭條」的推送系統是典型的層次化文本分類演算法,來幫助每篇新聞找到合適的分類,比如:第一大分類是政治、科技、財經、娛樂、體育等,體育類可以下分籃球、足球、網球等,足球又可以下分中國足球和國際足球,中國足球最後下分為甲、中超、國家隊等。這一步是對文章進行對這個工作主要目的是對文章進行分類,方便以後對客戶推薦。
想要內容分析實現效果,則需要海量的內容信息給演算法系統提供有效的篩選和分類。「今日頭條」既然是依賴於演算法推送新聞,那它背後的資料庫必然是強大的,「網頁蜘蛛」和「頭條號」就是支撐今日頭條平台消息來源的重要渠道,其消息來源極其豐富,何時何地有何新鮮事,都能高效率抓取信息。
第一個消息來源的渠道是「網頁蜘蛛」,「網頁蜘蛛」又叫網頁爬蟲,頭條使用的就是搜索引擎爬蟲叫「Bytespider」。它能按照一定的規則,自動爬行抓取互聯網的信息或腳本,就像蜘蛛通過蛛網進行捕食,當發現新的信息資源,蜘蛛會立刻出動抓取信息內容並將其收入自己的資料庫中。和微信的垂直搜索不同,Bytespider是能夠抓取全網內容的全新搜索引擎,因此「今日頭條」的搜索引擎功能很全面,搜索的資源很廣,資源包容性極高。
Bytespider信息抓取的基本流程如下:首先是網頁抓取。Bytespider順著網頁中的超鏈接,從這個網站爬到另一個網站,通過超鏈接分析連續訪問抓取更多網頁。被抓取的網頁被稱之為網頁快照。由於互聯網中超鏈接的應用很普遍,理論上,從一定范圍的網頁出發,就能搜集到絕大多數的網頁。第二步是處理網頁。搜索引擎抓到網頁後,還要做大量的預處理工作,才能提供檢索服務。其中,最重要的就是提取關鍵詞,建立索引庫和索引。其他還包括消除重復網頁、判斷網頁類型、分析超鏈接、計算網頁的重要度、豐富度等。第三步提供檢索服務。用戶輸入關鍵詞進行檢索,搜索引擎從索引資料庫中找到匹配該關鍵詞的網頁,為了用戶便於判斷,除了網頁標題和URL外,還會提供一段來自網頁的摘要以及其他信息。
第二個消息來源渠道是「頭條號」。與「今日頭條」不同,它是今日頭條針對媒體、國家機構、企業以及自媒體推出的專業信息發布平台。致力於幫助生產者在移動互聯網上高效率地獲得更多的曝光和關注。簡單來說頭條號是媒體在上面撰寫並發布文章、視頻後,會在今日頭條(包括今日頭條極速版)平台展示。通過頭條號後台,媒體可以看到具體文章推薦量、閱讀量、粉絲閱讀量、評論量、轉發量和收藏量,最後通過這些可以量化的用戶閱讀行為的反饋,演算法系統進一步對目標用戶進行內容推薦。
3.2 推薦維度之二:用戶分析
用戶分析通過提取用戶的有效數據,如用戶經常瀏覽的文字類型、經常搜索的關鍵字、注冊時登記信息的內容等,演算法系統可以將每個用戶的瀏覽記錄、瀏覽時間、留言、評論和轉發等行為進行關鍵字提取,最終形成用戶畫像,以便之後對用戶進行文章和視頻的精準推送。舉個例子,給喜歡閱讀「體育」的用戶標上「體育」標簽;給喜歡「娛樂」的用戶標上「娛樂」的標簽,這一步的作用是給用戶的興趣進行建模,包括用戶對文章和視頻的全局熱度、分類熱度,主題熱度,以及關鍵詞熱度等。熱度信息在大的推薦系統能夠解決新聞冷啟動問題,幫助新聞實現推送。
用戶分析還具有協同特徵,它可以在部分程度上幫助解決所謂演算法越推越窄的問題。協同特徵也就是「聯想式」的推送方法,並非只考慮用戶已有歷史,而是通過用戶行為分析不同用戶間相似性,比如點擊相似、興趣分類相似、主題相似、興趣詞相似,甚至向量相似,從而擴展模型的探索能力。根據用戶之間計算數據的相似程度,把用戶細化分類成為不同的目標群體,再向目標群體集中的推送其感興趣的新聞內容
內容分析和用戶分析是相輔相成的,如果沒有分析的文本標簽,無法得到用戶興趣標簽,沒有用戶的興趣標簽就無法給用戶定位實現精準推送。
3.3 推薦維度之三:環境分析
環境分析就是根據文章的時效性和接近性推送給相應的用戶,比如獲取用戶當前所在位置是否在旅遊區,這個可以通過獲取用戶的實時位置來實現。還會不斷與用戶之前經常出現的所在地進行對比等方式確認當前狀態,分析出用戶是在常住地區還是在旅行。這時若系統檢測到用戶正在泰山及周邊遊玩,則可能會相應推送泰山的相關文章、周邊的交通新聞和天氣信息等等。
通過上面三個推薦維度可以作為數據基礎,分析當前用戶處於什麼環境,結合用戶畫像以及文章的內容分類來推薦,盡量做到推送的內容都是用戶所感興趣的。演算法系統還會通過內容分類、分析抽取,把文本相似度高的文章,包括新聞主題、內容相似的文章進行消重,解決推送重復的問題,進一步對目標用戶進行精確且不重復的內容推薦。最後過濾質量低俗色情的內容,以免造成平台會有負面傾向。
3.4 「今日頭條」新聞推薦演算法的價值取向
3.4.1 「用戶為上」
「今日頭條」的演算法推送是站在用戶的立場上的,以滿足用戶個性化和推送的精準性,「今日頭條」也重新衡量了新聞價值標准:以用戶為上,用戶對新聞內容和閱讀方式的滿意度便是平台推送新聞的價值宗旨。傳統媒體時代,只有報紙和電視,有什麼受眾就得看什麼,而如今「今日頭條」根據用戶興趣去進行推送。演算法推送平台用戶范圍廣,很多用戶熱衷關注負面,也有許多用戶都有窺視欲和好奇心,喜歡無聊八卦和無聊新聞,而且在好奇心作用下用戶都有從眾心理。這使得生產者過度去迎合受眾,只要是用戶喜歡看就可以發表在「今日頭條」上。
3.4.2 「演算法主導」
「今日頭條」更注重技術分發,生產者是用戶,受眾者也是用戶,這樣一來內容監管和分發就很困難。演算法推送機制根據用戶愛好進行推送,這樣生產的內容快、也無疑會加速內容配送效率。在演算法推送模型中,用戶點擊頻率、閱讀時間、點贊評論以及轉發在演算法時代都是可以進行量化的目標。在這樣情況下生產的內容,想要獲得較大點擊率和推送率,需要標題才能吸引用戶,因為用戶在平台一眼能看到的就是標題和配圖。標題和配圖決定用戶是否會打開你的內容,這導致許多內容生產者在編輯新聞標題時陷入標題黨的怪圈,還有導致低俗內容的呈現,以製造沖突製造懸念貼標簽等方式引用戶點擊,意圖把自己的文章做成爆文。對於海量的信息內容,即使今日頭條數據和智能推薦做的再好,目前來說也難以抵擋海量的垃圾信息。
4.演算法推送新聞引發的倫理問題
在如今網路時代的傳播思維中,「用戶為上」、「演算法主導」的新聞價值取向已經在演算法聚合類平台成為了普遍,演算法推送技術作為吸引用戶的手段,搭建起一個充滿誘導的媒介環境,以此增加用戶對平台的粘性。演算法推送技術在獲取信息、傳播速度等方面與以往相比有著跨時代的進步,但與此同時,由於演算法推送技術的加入,衍生出新的倫理問題,並且日漸復雜化。
4.1 演算法推送引發的倫理問題
4.1.1 演算法推送過於機械化,沒有思考能力
單向的演算法推薦對用戶來說經常會帶來內容雜亂無章、信息量過大、信息價值低等問題。從邏輯講,演算法只是從關鍵字的檢索匹配來完成統計推薦,但對新聞報道或文學作品具有藝術性、專業性的內容來說,是不能保證推送的質量的。演算法方面,目前主要基於匹配檢索與統計,大部分都是個人關注的信息類型和標簽,難以達到較好的推送效果。一千個人眼裡有一千個哈姆雷特,但是計算機只有隻有一個。演算法技術過於注重機械化的統計,只根據關鍵詞來推薦用戶,對我們中國具有博大精深的中國文字文化底蘊,推薦演算法是遠遠不夠的。整個新聞客戶端顯得像是一個菜市場,沒有態度、沒有風格,閱讀感受單一化,呈現了碎片化的特點。新聞不只是讓用戶能夠了解身邊發生的新鮮事,還有宣傳正面思想和傳播正能量的作用,新聞應該還要給人們帶來新的思考。讓機器做出正確判斷很簡單,但是讓機器綜合心理學、社會學、乃至某細分領域內的規則做出判斷還要正確地引導受眾則很難,正如現在演算法技術還不能完成一篇富有人文性、文學性和批判性的深度報道,它止步在了碎片式的、表層的傳播范疇。
4.1.2 容易引起「信息繭房」效應
「信息繭房」這一概念是凱斯.桑斯坦在《信息烏托邦》一書中提出的。意指受眾在過度的信息自我選擇之中,這樣會降低接觸外界其他信息的可能,從而將自己的生活桎梏於蠶繭一般的「蠶房」中的現象。人們的信息領域會習慣性被自己的興趣引導,信息窄化帶來了受眾對信息接收的單一性,這種單一性的可能會使受眾陷入循環,加重受眾信息同質化。
在互聯網的普及初期,受眾主要是從主流媒體和門戶網站獲取新聞信息,主流媒體能夠保障新聞的質量;對於其他資訊的獲取,由於技術的限制,此時的繭房並沒有過度被放大,受眾是有適當的自主選擇性閱讀新聞的。但到了如今以智能技術的互聯網時代,情況發生了改變,信息繭房的現象越來越明顯,用戶被標簽的情況下,演算法系統進行大量的主動推送,使受眾被動地成為信息的接收者。用戶的閱讀興趣不可能涵蓋所有的知識領域,演算法分發的核心邏輯是根據用戶的行為數據來進行精確推薦的,但同時演算法又會自動過濾掉「不感興趣」「不認同」的信息,實現「看我想看,聽我想聽」。在此過程中,因為演算法技術的力量將用戶的信息選擇效果放大了倍數,進而將受眾困住在信息繭房當中,受眾也很難憑借自身力量打破繭房,甚至在不知覺中受到更多負面的影響。

4.1.3 演算法推送的「偽中立性」
客觀和全面是新聞倫理的基本要求,新聞從業者必須從可好信息源來獲取真實的信息,以客觀的態度反應現實。我們慣常認為,互聯網技術服務商是技術中立者,不需要承擔約束大眾媒體的社會責任,然而當信息把關人又新聞編輯轉變為演算法工程師,傳統的媒介倫理似乎已經失效。演算法具有商業傾向性,「中立性」是演算法平台用以逃避媒體責任的理由,給大眾媒介造成傳播亂象,如此一來更像是一場演算法平台「肆意妄為又不想負責」的詭辯。
演算法平台的信息源是經過選擇和過濾的,「頭條號」的內容占「今日頭條」整個信息系統的絕大部分,然而在「人人都可以做新聞人」的時代,頭條號平台是一個開放的網路媒介環境,存在大量的偏見和錯誤的認知。無論是「今日頭條」平台設立的演算法規則,還是其他爬蟲的抓取的關鍵詞,演算法系統的信息源很多是具有目的性的、有偏見和非客觀的信息,所以信息源不能直接作用於用戶。因此,篩選演算法系統的信息源與傳統的人工編輯相比較,范圍極廣且很難把關,若演算法被惡意利用,那麼使整個傳播系統將會被輕易控制。
4.1.4 演算法推送里的「議程設置」
原議程設置功能揭示的重要內涵是:「受眾對新聞的看法雖然被大眾媒體議程設置功能所主導,但其更深刻的是議程設置給大眾媒體新聞帶來放大與延伸,從而使受眾對新聞選擇做出能動性修正,讓受眾在滿足需求和媒介依賴中逐漸培養出的潛在認同感」。
推送演算法技術在互聯網平台的運用,使原來傳統媒體主導的議程設置過程發生了變化,伴隨著傳播權的轉移、公眾參與度的提高和信息量劇增等原因導致議程設置功逐漸能減弱。過往傳統新聞的內容是由編輯有選擇地進行報道後再呈現在受眾面前的,而個性化新聞推送是用戶自己來選擇看哪一方面的內容,而這一環節中,天然的技術賦權將傳播權從傳統媒體下放至平台的用戶,使得受眾和社會的連接無需依賴傳統媒介,新聞媒體作為把關人的作用和議程設置功能都在減弱。
4.2 演算法新聞治理缺陷下的演算法權利異化
演算法作為人工智慧的基石之一,是「一種有限、確定、有效並適合用計算機程序來實現的解決問題的方法,是計算機科學的基礎」。近年來,伴隨人工智慧深度學習演算法取得的重大突破和大數據時代的到來,人工智慧的應用場景不斷拓展,人工智慧時代正逐漸從想像成為現實。藉助於海量的大數據和具備強大計算能力的硬體設備,擁有深度學習演算法的人工智慧機器可以通過自主學習和強化訓練來不斷提升自身的能力,解決很多人類難以有效應對的治理難題。伴隨人工能演算法在國家和社會治理中重要性的日漸凸顯,國家和社會對於演算法的依賴也逐漸加深,一種新型的權力形態——演算法權力也隨之出現。
可以把演算法權利分為四種:數據主權、演算法設計權、研發的資本權和演算法控制權。由於前三種權利都是單向的、演算法開發者賦予演算法的權利,是屬於演算法開發者的,與演算法分發平台呈現的效果沒有直接的影響,所以本文將著重論述演算法控制權。
演算法控制權是雙向的,用戶是演算法技術數據行為的提供者,同時又是被演算法技術控制的受害者。例如我們看到「今日頭條」會通過推送演算法來監管用戶的發布和瀏覽行為,同時平台會通過演算法決策系統來實現內容的發布去引導用戶。演算法控制權當然是一種天然技術賦予的權利,但演算法控制權是在用戶提供數據行為的情況下才得以實現的,因此演算法控制權既存在內容生產權,同時有要尊重和保護演算法相對人的義務。
正因為如此,演算法技術被認為是一種雙刃劍,一方面演算法能夠做出精準的行為預測,可以為管理者提供非常好的循環干預機制;對於公共行為主體來說,可以通過對大數據的應用來解決社會治理問題,對於私人主體來說可以藉助數據來提供個性化和定製化的服務;另一方面,演算法技術存在著諸如利益和風險不對稱等問題,而且由於演算法技術發展的超前性,新科技的創造者具備不對稱的信息和技術優勢,能夠按照自身利益的需求來塑造在平台上的演算法推送邏輯和社會系統,這帶來了監管的不確定性。人們要通過集體行為去承擔社會責任,通過這樣的方式規制演算法權利,可以讓我們能夠對演算法分發系統的意義和價值得到更深刻的思考。

❸ 最懂你的「演算法」,如何不淪為「算計」

來源 摘編自《平台治理2.0:共同富裕時代數字經濟治理轉型》,電子工業出版社,2022年4月出版。

文 於鳳霞 國家信息中心信息化和產業發展部處長

隨著互聯網、大數據、演算法與人工智慧等的發展日新月異,平台經濟的崛起使得追求物美價廉、方便快捷的消費者與世界各地的商品和服務之間的距離只是點擊幾下滑鼠而已。網路世界、新興技術正在使我們更加便利、舒適,我們每天都在享受平台經濟繁榮發展帶來的福利。大數據和演算法等技術功不可沒。

克里斯托弗·斯坦納在其著作《演算法帝國》里對演算法推崇備至,認為構建演算法模仿、超越並最終取代人類,是21世紀最重要的能力,未來屬於演算法及其創造者。 科技 哲學家凱文·凱利在其著作《失控》中提到:「人們在將自然邏輯輸入機器的同時,也把技術邏輯帶到了生命之中……機器人、經濟體、計算機程序等人造物也越來越具有生命屬性。」

隨著平台經濟在人類經濟 社會 各領域的快速滲透,我們的生活已經悄悄地被演算法和數據控制,演算法與數據接管了整個 社會 。演算法為人類行為賦能,但受所輸入數據的質量及演算法模型本身的限制,內在地嵌入了人類正面或負面的價值觀,並能動地製造著各種風險。

阿里爾·扎拉奇在其《演算法的陷阱:超級平台、演算法壟斷與場景欺騙》一書中寫道,精妙的演算法與數據運算改變了市場競爭的本質,復雜多變的市場現實已在悄無聲息中將權力移交到少數人的手中,因此,必須由監管機構及時採取可行的方法和政策,有效化解演算法帶來的各種風險,促使創新能夠真正為 社會 帶來正面意義。

經過長期的數據沉澱和演算法優化,你的手機、你的常用App在某些方面確實會比你的家人、好友甚至你本人更了解你。這就意味著,當我們在利用演算法的時候,也不自覺地成了被演算法計算的對象。

「大數據殺熟」意指同樣的產品或者服務,老客戶看到的價格反倒比新客戶所看到的更高。而且還存在同一用戶信息在不同網路平台之間被共享的問題,許多用戶都遇到過這樣的情形:在一個網站瀏覽或搜索的內容很快會被另一個網站進行推薦或成為其廣告客戶。

在傳統銷售模式下,通常是老客戶能夠享受到更多的優惠,這些優惠往往通過會員卡、積分制等不同形式來實現,也廣為大眾所接受。

然而,通過網路平台開展的許多銷售活動,卻出現了相反的情況:隨著用戶在某個平台上消費次數的增加、消費金額的不斷提高,其最開始能夠享受到的各種優惠卻會逐漸消失,甚至變成老用戶可能要付出更高的價錢獲得服務,而新用戶則能夠享受到各類優惠。

這種問題在美國早就引起過熱議,2000年亞馬遜曾對68款碟片進行類似的定價機制。新顧客購買價格為22.74美元,老顧客卻需要26.24美元。在引起消費者廣泛質疑後,亞馬遜CEO貝佐斯回應這只是隨機價格的一種測試,並向高價客戶退還差價,這次風波才得以平息。2012年《華爾街日報》又爆料一家名為Staples的文具店的「差別定價」事件。

從某種意義上說,「大數據殺熟」屬於大數據營銷,部分平台在有了大數據這個強大的用戶畫像工具後,實現了千人千面的定價機制。利用大數據技術對用戶資料進行細分,根據用戶習慣建立用戶畫像,然後通過畫像給用戶推薦相應的產品與服務,並且進行差異化定價。

根據《中華人民共和國價格法》第十四條規定,經營者提供相同商品或者服務,不得對具有同等交易條件的其他經營者實行價格歧視。由於該法未針對「同等交易條件」進行詳細解釋,嚴格說來,網路平台依據大數據分析所做的「差別定價」並不能完全和「價格歧視」畫等號。

人們之所以會對「大數據殺熟」產生懷疑甚至憤怒,根本上是因為平台定價機制和供需匹配規則不透明。

基於用戶注冊及個人信息、地理位置、消費記錄、搜索習慣等行為數據,平台能夠針對不同的用戶形成獨特的用戶畫像。這一畫像有助於平台為用戶提供精準的個性化服務,但也埋下了「大數據殺熟」的潛在風險。

針對新老用戶或不同消費習慣的用戶,一些平台提供的同一產品或服務,存在較為嚴重的價格歧視現象,引發廣泛爭議。平台定價機制和供需匹配規則的不透明,還使得消費者在權益遭到損害時陷入舉證難、維權難的境地。

演算法引發的第二個問題可以被稱為「信息繭房」和「回聲室效應」。

「信息繭房」可能帶來的後果是,長期被禁錮在其中的個人,其思維甚至是生活可能呈現出一種定式化、程序化的狀態,失去了解不同事物的能力和接觸機會;另外,還可能加劇人與人的差異性、分化,甚至很有可能帶來一大批 社會 極端分子,從而帶來安全威脅,影響 社會 的穩定。

經濟學家安東尼·唐恩斯認為,人們容易從觀點相似的人那裡獲取信息,從而減少信息成本。網路虛擬社群一方面使愛好相似的人們聚集到一起,但高度同質化的聚集也減少了他們接受多元化聲音的可能,從而形成封閉的「回聲室」。

演算法給用戶推薦的信息內容,如新聞標題、內容、圖片、評論等,都會影響用戶的情緒,甚至改變用戶的思想和觀點。在這些場景中,演算法本身只是從優化業務的角度出發進行推薦和內容分發,這些演算法的長期高頻率使用,在客觀上深刻地影響著用戶的思想和行為,甚至影響整個 社會 的價值傳播。

因此,演算法作為一種技術工具,或許是中立的無所謂正向或負向價值觀,但如果演算法技術與商業利益密切聯系,或者被應用於與人和 社會 相關的場景時,必然會引發一系列 社會 問題,不容迴避。

演算法引發的第三個主要問題是流量造假和流量劫持。

一些平台或商家通過人為或機器操作手段提高關鍵詞搜索量、平台用戶數、廣告點擊量、視頻播放量、產品購買量、服務評論數等,還有部分平台通過強制跳轉、妨礙破壞等技術手段,或者使用定向引流、廣告混淆等非技術手段劫持本應屬於競爭對手的流量,誘導用戶使用己方的產品或服務。

在直播電商領域中,2020年新華社曾報道,山東臨沂電商從業者孫玲玲,在某電商平台經營一家銷售糖果類產品的店鋪,一個月內,孫玲玲找了多位帶貨主播,這些主播粉絲數量都超過百萬,但幾乎每場帶貨都以賠錢收場,流量造假問題也相當突出。

當前關於規范惡意流量競爭的制度尚不健全。一是法律規定較為模糊,尤其是對於流量不正當競爭行為的構成要件與法律責任缺乏明確界定;二是平台企業流量競爭手段越來越隱蔽和復雜,導致不正當競爭行為的舉證、認定及對損害和賠償額度的確定都存在較大難度。

隨著網路技術的進步與平台經濟的發展,如何規制流量惡意競爭等新型不正當競爭行為、營造公平競爭的市場環境,成為亟須深入研究的重要課題。

此外,還有操縱榜單和控制熱搜等問題。「熱搜」原本反映的是當前輿論最關切的熱點問題,但在實踐中我們發現,其後台演算法有可能被濫用,出現操縱榜單、控制熱搜、人為製造輿論熱點等問題,嚴重影響著民眾對熱搜的信任。

卓別林的電影《摩登時代》對機器操控產業工人的諷刺,以及馬克思著作《1844年經濟學哲學手稿》對機器工業化時代人類「異化」的警示,無不提醒我們,就像機器流水線有可能凌駕於勞動工人之上一樣,當今無處不在的演算法若應用不當,也有可能成為一種凌駕於人之上的力量,為人和 社會 的發展帶來新的風險。

為此,有效加強演算法監管,積極應對新技術發展帶來的挑戰,讓人類更好地享受新技術發展的福利,是順應平台經濟發展趨勢的必然要求。

針對演算法應用這一全新的治理課題,我國正在不斷加強相關領域的制度建設和規范。如早在2018年,我國資管新規《關於規範金融機構資產管理業務的指導意見》就提出要避免智能演算法的順周期性風險,要求金融機構,應當根據不同產品投資策略,研發對應的人工智慧演算法或者程序化交易,避免演算法同質化加劇投資行為的順周期性,並針對由此可能引發的市場波動風險制訂應對預案。

此外,新規提出,因演算法同質化、編程設計錯誤、對數據利用深度不夠等人工智慧演算法模型缺陷或者系統異常,導致「羊群效應」、影響金融市場穩定運行的,金融機構應當及時採取人工干預措施,強制調整或者終止人工智慧業務。

2020年12月中共中央印發的《法治 社會 建設實施綱要(2020-2025年)》提出,制定完善對網路直播、自媒體、知識社區問答等新媒體業態和演算法推薦、深度偽造等新技術應用的規范管理辦法;加強對大數據、雲計算和人工智慧等新技術研發應用的規范引導。

尤其是2021年出台的系列制度,從反壟斷等不正當競爭、保護消費者權益、保護個人信息安全等不同角度和側重點,對演算法應用引發的「大數據殺熟」行為提出了規范要求。

2021年2月,《關於平台經濟領域的反壟斷指南》規定,基於大數據和演算法,根據交易相對人的支付能力、消費偏好、使用習慣等,實行差異性交易價格或者其他交易條件;對新老交易相對人實行差異性交易價格或者其他交易條件;實行差異性標准、規則、演算法;實行差異性付款條件和交易方式等,都可能被認定為「大數據殺熟」等不正當競爭行為而面臨更嚴格的監管。

2021年8月,國家市場監督管理總局公布的《禁止網路不正當競爭行為規定(公開徵求意見稿)》第二十一條指出,經營者不得利用數據、演算法等技術手段,通過收集、分析交易相對方的交易信息、瀏覽內容及次數、交易時使用的終端設備的品牌及價值等方式,對交易條件相同的交易相對方不合理地提供不同的交易信息,侵害交易相對方的知情權、選擇權、公平交易權等,擾亂市場公平交易秩序。

從監管的角度來看,反不正當競爭法對「大數據殺熟」行為的規制的最大特點在於,企業並不需要具備市場支配地位,無論平台企業的市場地位如何,經營者利用技術手段,實施「二選一」行為,或者利用數據、演算法等技術手段,侵害交易相對方的知情權、選擇權、公平交易權等,擾亂市場公平交易秩序,實施「大數據殺熟」的行為,均會受到反不正當競爭法的限制。

2021年11月1日開始正式實施的個人信息保護法,第一次在法律文本中定義了「自動化決策」一詞的含義,即「通過計算機程序自動分析、評估個人的行為習慣、興趣愛好或者經濟、 健康 、信用狀況等,並進行決策的活動」。對利用個人信息進行自動化決策做了針對性的規范,要求個人信息處理者保證自動化決策的透明度和結果的公平、公正,不得通過自動化決策對個人在交易價格等交易條件上實行不合理的差別待遇,並在事前進行個人信息保護影響評估。個人認為自動化決策對其權益造成重大影響的,有權拒絕個人信息處理者僅通過自動化決策的方式做出決定。

可以說,這里的規定,更加強調對用戶人格權益的保護,旨在保護個人信息安全。

演算法規制的第二個重點是,演算法在互聯網信息服務領域的應用。

2021年8月,國家互聯網信息辦公室就《互聯網信息服務演算法推薦管理規定(徵求意見稿)》向 社會 公開徵求意見。徵求意見稿中明確,所謂的演算法推薦技術,是指應用生成合成類、個性化推送類、排序精選類、檢索過濾類、調度決策類等演算法技術向用戶提供信息內容。

這意味著,各類信息流平台、用戶生成內容(UGC)平台都在被監管范圍內。甚至在朋友圈內常見的信息流廣告,亦是推薦演算法的結果,也應該遵守相關規定。

徵求意見稿第一次區分了生成合成類、個性化推送類、排序精選類、檢索過濾類、調度決策類五類向用戶提供信息內容的演算法技術,並就演算法推薦服務提供者的責任和義務、演算法推薦服務公告和演算法備案等制度、演算法推薦未成年人模式做出了詳細規定。

在網路信息內容生態方面,徵求意見稿提出,演算法推薦服務提供者應當堅持主流價值導向,優化演算法推薦服務機制,積極傳播正能量,促進演算法應用向上向善。

強調要「建立完善人工干預和用戶自主選擇機制」,也就是說,不能依賴演算法進行內容推薦,要增加人工識別及篩選的過程,在首頁首屏、熱搜、精選、榜單類、彈窗等重點環節積極呈現符合主流價值導向的信息內容。

這意味著,在壓實互聯網信息服務平台主體責任方面,除了要求對謠言及其他不法信息進行治理,演算法決策的合規化也是一個重要抓手。

在平台演算法推薦服務過程中,依據何種演算法和邏輯使用數據,將成為平台演算法規制的重要內容。徵求意見稿對演算法推薦服務提供者在演算法規則及公示方面都提出了要求。

2021年9月,國家互聯網信息辦公室印發《關於加強互聯網信息服務演算法綜合治理的指導意見》,提出要用三年左右時間,逐步建立治理機制健全、監管體系完善、演算法生態規范的演算法安全綜合治理格局。

在健全演算法安全治理機制方面,《意見》提出要致力於打造形成政府監管、企業履責、行業自律、 社會 監督的演算法安全多元共治局面。尤其是要強化平台企業主體責任,明確提出,企業應強化責任意識,對演算法應用產生的結果負主體責任,並建立演算法安全責任制度和 科技 倫理審查制度。

在促進演算法生態規范發展方面,《意見》則提出要推動演算法公開透明,督促企業及時、合理、有效地公開演算法基本原理、優化目標、決策標准等信息,做好演算法結果解釋,暢通投訴通道。

《平台治理2.0》,於鳳霞 著

電子工業出版社,2022年4月出版

近年來數字經濟增加值在我國GDP中的佔比不斷提升,但相對經濟總量而言還是偏低;新業態新模式發展過程中也出現了新的問題和挑戰。因此,在推動和規范數字經濟發展的同時,需要重構治理體系,進一步突出競爭政策基礎地位,並構建起全方位、多層次、立體化的治理體系。本書圍繞平台治理,分析我國在數字治理、反壟斷等方面的 探索 ,平台經濟在發展過程中的挑戰和可能的應對之策。

❹ 《人生演算法》pdf下載在線閱讀全文,求百度網盤雲資源

《人生演算法》(陳楸帆)電子書網盤下載免費在線閱讀

鏈接:

提取碼: mpkm

書名:人生演算法

作者:陳楸帆

豆瓣評分:7.9

出版社:中信出版社

出版年份:2019-1-1

頁數:254

內容簡介:

即將到來的人工智慧時代,AI技術不再是單一服務於人類的工具,而將與人的命運息息相關。種種「黑科技」刺激著文明進步,也潛移默化地改變著我們的認知結構與生命歷程。人類有史以來的一切「瘋狂」與「日常」,都將隨著人工智慧的廣泛應用被顛覆、重構。

新的生殖科技將如何在不同的時代改變人類的生育方式,應對隨之帶來的倫理、心理和哲學沖擊?

AI能否進行攝影藝術創作,又如何與觀看者之間形成新的互動聯系?

當人進入AI的愛情圖靈測試游戲,將如何撥開雲霧覓得真愛?人類對愛的定義在機器時代是否仍然成立,機器懂得愛嗎?

在暴力成為日常的世界,AI如何通過製造恐懼來控制人類的行為?

當交易與支付完成數字化,區塊鏈以無法想像的方式改變人類社會時,一場黑客攻擊將如何影響每一個人?

工業革命以來習慣異化的人類,在技術的又一次洪水面前會否再度踏上「諾亞方舟」?AI打開的新世界大門,是通往理想家園,抑或指向毀滅的深淵?

6篇小說,6個概念,6種未來。作為科幻現實主義的代表人物,陳楸帆為我們描繪了在或近或遠的未來,人類正面臨的和可能遇到的挑戰。

作者簡介:

陳楸帆,畢業於北京大學,中文系及藝術系雙學位,科幻作家、編劇、譯者。世界科幻作家協會(SFWA)成員,世界華人科幻作家協會(CSFA)會長,Xprize基金會科幻顧問委員會(SFAC)成員。曾多次獲得星雲獎、銀河獎、世界奇幻科幻翻譯獎等國內外獎項,作品被譯為多國語言,在許多歐美 科幻雜志均為首位發表作品的中國作家,代表作《荒潮》《未來病史》等。曾在Google、網路及科技創業公司諾亦騰有超過十年的管理經驗,現為傳茂文化創始人,聚焦泛科幻領域的IP開發、科幻科普傳播,以及科技與文化藝術產業的跨界合作。

❺ 大數據最常用的演算法有哪些

奧地利符號計算研究所(Research Institute for Symbolic Computation,簡稱RISC)的Christoph Koutschan博士在自己的頁面上發布了一篇文章,提到他做了一個調查,參與者大多數是計算機科學家,他請這些科學家投票選出最重要的演算法,以下是這次調查的結果,按照英文名稱字母順序排序。

大數據等最核心的關鍵技術:32個演算法

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法

11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的最大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-最大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-最大演算法在概率模型中尋找可能性最大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其最大可能估計值;第二步是最大化,最大化在第一步上求得的最大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化演算法。

15、哈希演算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

19、最大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到最大的流。它優勢被定義為找到這樣一個流的值。最大流問題可以看作更復雜的網路流問題的特定情況。最大流與網路中的界面有關,這就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的最大流。

20、合並排序(Merge Sort)。

21、牛頓法(Newton』s method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密演算法。首個適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Sch?nhage-Strassen演算法——在數學中,Sch?nhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。

27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待最大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合並:聯合或合並兩個組為一個組。

32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

以上就是Christoph博士對於最重要的演算法的調查結果。你們熟悉哪些演算法?又有哪些演算法是你們經常使用的?

❻ 演算法壓榨的經濟根源

演算法壓榨的經濟根源是資本對勞動力的壓榨,然後演算法工程師來實時推動。
以推薦演算法為例,除了咨詢服務以外,人們還會收到商品、美食乎芹、音樂等各類不同的興趣推薦,讓每個人置身於"整個世界都在圍繞自己而轉"肢謹的錯覺,彷佛最了解自己的不是家人,而是手機各種程序,從而成為重度手機依賴者,越來越難以離開手機,人也變得歷頃基越來越懶惰和貪婪,從而資本達到網路獲利。

熱點內容
解壓拓展有哪些 發布:2024-06-15 00:00:12 瀏覽:315
edm源碼 發布:2024-06-15 00:00:11 瀏覽:485
模擬退火演算法流程圖 發布:2024-06-14 23:59:18 瀏覽:339
電腦上的開機密碼在哪裡改的 發布:2024-06-14 23:54:06 瀏覽:885
cf手游刷級腳本 發布:2024-06-14 23:26:40 瀏覽:921
android顏色識別 發布:2024-06-14 23:20:44 瀏覽:692
osg編譯max 發布:2024-06-14 23:11:00 瀏覽:938
15個鏡頭的腳本 發布:2024-06-14 22:38:08 瀏覽:510
如何打開伺服器的防火牆 發布:2024-06-14 22:36:36 瀏覽:812
安卓版的第5人格怎麼賣 發布:2024-06-14 22:36:28 瀏覽:904