線度檢測演算法
① 感測器的發展歷史
感測器的發展歷程大體可以分為以下三個階段:
第一階段:結構型感測器
主要利用結構參量變化來感受和轉化信號。例如:電阻應變式感測器,它是利用金屬材料發生彈性形變時電阻的變化來轉化電信號的。
第二階段:固體感測器
由70年代開始發展起來,這種感測器由半導體、電介質、磁性材料等固體元件構成,是利用材料某些特性製成的。例如:利用熱電效應、霍爾效應、光敏效應,分別製成熱電偶感測器、霍爾感測器、光敏感測器等。
70年代後期,隨著集成技術、分子合成技術、微電子技術及計算機技術的發展,出現集成感測器。集成感測器包括2種類型:感測器本身的集成化和感測器與後續電路的集成化。例如:電荷藕合器件,集成溫此稿度感測器AD590集成霍爾感測器UGN3501等。這類感測器主要具有成本低、可靠性高性能好、介面靈活等特點集成感測器發展非常迅速,現已佔感測器市場的2/3左右,它正向著低價格、多功能和系列化方向發展。
第三階段:智能感測器
由80年代發展起來的,所謂智能感測器是指其對外界信息具有一定檢測、自診斷、數據處理以及自適應能力,是微型計告笑算機技術與檢測技術相結合的產物。80年代智能化測量主要以微處理器為核心,把感測器信號調節電路微計算機、存貯器及介面集成到一塊晶元上,使感測器具有一定的人工智慧。
90年代智能化測量技術有了進一步的提高,在感測器一級水平實現智能化,使其具有自診斷功能、記憶功能、多參量測量功能以及聯網通信功能等。
(1)線度檢測演算法擴展閱讀:
感測器是一種檢測裝置,能感受到被測量的信息,並能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。
感測器廣泛應用於社會發展及人類生活的各個領域,如工業自動化、農業現代化、航天技術、軍事工程、機器人技術、資源開發、海洋探測、環境監測、安全保衛、醫療診斷、交通運輸、家襪扒含用電器等。
感測器的特點包括:微型化、數字化、智能化、多功能化、系統化、網路化,它不僅促進了傳統產業的改造和更新換代,而且還可能建立新型工業,從而成為21世紀新的經濟增長點。微型化是建立在微電子機械繫統技術基礎上的,已成功應用在硅器件上做成硅壓力感測器。
通常據其基本感知功能可分為熱敏元件、光敏元件、氣敏元件、力敏元件、磁敏元件、濕敏元件、聲敏元件、放射線敏感元件、色敏元件和味敏元件等十大類。
② 科學家從什麼得到啟示發明了什麼
鳥和飛機
魚和潛水艇
蝙蝠和雷達
海豚和聲納
下面是我查到的資料
~~~~~~~~~~~~
在我國,早就有著模仿生物的事例。相傳在公元前三千多年,我們的祖先有巢氏模仿鳥類在樹上營巢,以防禦猛獸的傷害;四千多年前,我們的祖先「見飛蓬轉而知為車」,即見到隨風旋轉的飛蓬草而發明輪子,做有裝成輪子的車。古代廟宇中大殿之前的山門的建造,就其建築結構來看,頗有點像大象的架勢,柱子又圓又粗,彷彿像大象的腿。
我國古代勤勞勇敢的勞動人民對於絢麗的天空、翱翔的蒼鷹早就有著各種美妙的幻想。根據秦漢時期史書記載,兩千多年前,我國人民就發明了風箏,並且應用於軍事聯絡。春秋戰國時代,魯國匠人魯班,本名公輸般,首先開始研製能飛的木鳥;並且他從一種能劃破皮膚的帶齒的草葉得到啟示而發明了鋸子。據《杜陽雜編》記載,唐朝有個韓志和,「善雕木作鸞、鶴、鴉、鵲之狀,飲啄動靜與真無異,以關戾置於腹內,發之則凌雲奮飛,可高達三丈至一二百步外,始卻下。」西漢時期,有人用鳥的羽毛做成翅膀,從高台上飛下來,企圖模仿鳥的飛行。以上幾例,足以說明我國古代勞動人民對鳥類的撲翼和飛行,進行了細致的觀察和研究,這也是最早的仿生設計活動之一。明代發明的一種火箭武器「神火飛鴉」,也反映了人們向鳥類借鑒的願望。
我國古代勞動人民對水生動物——魚類的模仿也卓有成效。通過對水中生活的魚類的模仿,古人伐木鑿船,用木材做成魚形的船體,仿照魚的胸鰭和尾鰭製成雙槳和單櫓,由此取得水上運輸的自由。後來隨製作水平提高而出現的龍船,多少受到了不少動物外形的影響。古代水戰中使用的火箭武器 「火龍出水」,多少有點模仿動物的意思。以上事例說明,我國古代勞動人民早期的仿生設計活動,為開發我國光輝燦爛的古代文明,創造了非凡的業績。
外國的文明史上,大致也經歷了相似的過程。在包含了豐富生產知識的古希臘神話中,有人用羽毛和蠟做成翅膀,逃出迷宮;還有泰爾發明了鋸子,傳說這是從魚背骨和蛇的齶骨的形狀受到啟示而創造出來的。十五世紀時,德國的天文學家米勒製造了一隻鐵蒼蠅和一隻機械鷹,並進行了飛行表演。
一八ОΟ年左右,英國科學家、空氣動力學的創始人之一—凱利,模仿鱒魚和山鷸的紡錘形,找到阻力小的流線型結構。凱利還模仿鳥翅設計了一種機翼曲線,對航空技術的誕生起了很大的促進作用。同一時期,法國生理學家馬雷,對鳥的飛行進行了仔細的研究,在他的著作《動物的機器》一書中,介紹了鳥類的體重與翅膀面積的關系。德國人亥姆霍茲也從研究飛行動物中,發現飛行動物的體重與身體的線度的立方成正比。亥姆霍茲的研究指出了飛行物體身體大小的局限。人們通過對鳥類飛行器官的詳細研究和認真的模仿,根據鳥類飛行機構的原理,終於製造了能夠載人飛行的滑翔機。
後來,設計師又根據鶴的體態設計出了掘土機的懸臂,在一戰期間,人們從毒氣戰倖存的野豬身上中獲得啟示,模仿野豬的鼻子設計出了防毒面具。在海洋中浮沉靈活的潛水艇又是運用了哪些原理?雖然我們無據考察潛艇設計師在設計潛艇時是否請教了生物界,但是不難設想,設計師一定懂得魚鰾是魚類用來改變身體同水的比重,使之能在水中沉浮的重要器官。青蛙是水陸兩棲動物,體育工作者就是認真研究了青蛙在水中的運動姿勢,總結出一套既省力、又快速的游泳動作——蛙泳。另外,為潛水員製作的蹼,幾乎完全按照青蛙的後肢形狀做成,這就大大提高了潛水員在水中的活動能力
蒼蠅與宇宙飛船
令人討厭的蒼蠅,與宏偉的航天事業似乎風馬牛不相及,但仿生學卻把它們緊密地聯系起來了。
蒼蠅是聲名狼藉的「逐臭之夫」,凡是腥臭污穢的地方,都有它們的蹤跡。蒼蠅的嗅覺特別靈敏,遠在幾千米外的氣味也能嗅到。但是蒼蠅並沒有「鼻子」,它靠什麼來充當嗅覺的呢? 原來,蒼蠅的「鼻子」——嗅覺感受器分布在頭部的一對觸角上。
每個「鼻子」只有一個「鼻孔」與外界相通,內含上百個嗅覺神經細胞。若有氣味進入「鼻孔」,這些神經立即把氣味刺激轉變成神經電脈沖,送往大腦。大腦根據不同氣味物質所產生的神經電脈沖的不同,就可區別出不同氣味的物質。因此,蒼蠅的觸角像是一台靈敏的氣體分析儀。
仿生學家由此得到啟發,根據蒼蠅嗅覺器的結構和功能,仿製成功一種十分奇特的小型氣體分析儀。這種儀器的「探頭」不是金屬,而是活的蒼蠅。就是把非常纖細的微電極插到蒼蠅的嗅覺神經上,將引導出來的神經電信號經電子線路放大後,送給分析器;分析器一經發現氣味物質的信號,便能發出警報。這種儀器已經被安裝在宇宙飛船的座艙里,用來檢測艙內氣體的成分。
這種小型氣體分析儀,也可測量潛水艇和礦井裡的有害氣體。利用這種原理,還可用來改進計算機的輸入裝置和有關氣體色層分析儀的結構原理中。
從螢火蟲到人工冷光
自從人類發明了電燈,生活變得方便、豐富多了。但電燈只能將電能的很少一部分轉變成可見光,其餘大部分都以熱能的形式浪費掉了,而且電燈的熱射線有害於人眼。那麼,有沒有隻發光不發熱的光源呢? 人類又把目光投向了大自然。
在自然界中,有許多生物都能發光,如細菌、真菌、蠕蟲、軟體動物、甲殼動物、昆蟲和魚類等,而且這些動物發出的光都不產生熱,所以又被稱為「冷光」。
在眾多的發光動物中,螢火蟲是其中的一類。螢火蟲約有1 500種,它們發出的冷光的顏色有黃綠色、橙色,光的亮度也各不相同。螢火蟲發出冷光不僅具有很高的發光效率,而且發出的冷光一般都很柔和,很適合人類的眼睛,光的強度也比較高。因此,生物光是一種人類理想的光。
科學家研究發現,螢火蟲的發光器位於腹部。這個發光器由發光層、透明層和反射層三部分組成。發光層擁有幾千個發光細胞,它們都含有熒光素和熒光酶兩種物質。在熒光酶的作用下,熒光素在細胞內水分的參與下,與氧化合便發出熒光。螢火蟲的發光,實質上是把化學能轉變成光能的過程。
早在40年代,人們根據對螢火蟲的研究,創造了日光燈,使人類的照明光源發生了很大變化。近年來,科學家先是從螢火蟲的發光器中分離出了純熒光素,後來又分離出了熒光酶,接著,又用化學方法人工合成了熒光素。由熒光素、熒光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充滿爆炸性瓦斯的礦井中當閃光燈。由於這種光沒有電源,不會產生磁場,因而可以在生物光源的照明下,做清除磁性水雷等工作。
現在,人們已能用摻和某些化學物質的方法得到類似生物光的冷光,作為安全照明用。
電魚與伏特電池
自然界中有許多生物都能產生電,僅僅是魚類就有500餘種 。人們將這些能放電的魚,統稱為「電魚」。
各種電魚放電的本領各不相同。放電能力最強的是電鰩、電鯰和電鰻。中等大小的電鰩能產生70伏左右的電壓,而非洲電鰩能產生的電壓高達220伏;非洲電鯰能產生350伏的電壓;電鰻能產生500伏的電壓,有一種南美洲電鰻竟能產生高達880伏的電壓,稱得上電擊冠軍,據說它能擊斃像馬那樣的大動物。
電魚放電的奧秘究竟在哪裡?經過對電魚的解剖研究, 終於發現在電魚體內有一種奇特的發電器官。這些發電器是由許多叫電板或電盤的半透明的盤形細胞構成的。由於電魚的種類不同,所以發電器的形狀、位置、電板數都不一樣。電鰻的發電器呈棱形,位於尾部脊椎兩側的肌肉中;電鰩的發電器形似扁平的腎臟,排列在身體中線兩側,共有200萬塊電板;電鯰的發電器起源於某種腺體,位於皮膚與肌肉之間,約有500萬塊電板。單個電板產生的電壓很微弱,但由於電板很多,產生的電壓就很大了。
電魚這種非凡的本領,引起了人們極大的興趣。19世紀初,義大利物理學家伏特,以電魚發電器官為模型,設計出世界上最早的伏打電池。因為這種電池是根據電魚的天然發電器設計的,所以把它叫做「人造電器官」。對電魚的研究,還給人們這樣的啟示:如果能成功地模仿電魚的發電器官,那麼,船舶和潛水艇等的動力問題便能得到很好的解決。
水母的順風耳
「燕子低飛行將雨,蟬鳴雨中天放晴。」生物的行為與天氣的變化有一定關系。沿海漁民都知道,生活在沿岸的魚和水母成批地游向大海,就預示著風暴即將來臨。
水母,又叫海蜇,是一種古老的腔腸動物,早在5億年前,它就漂浮在海洋里了。這種低等動物有預測風暴的本能,每當風暴來臨前,它就游向大海避難去了。
原來,在藍色的海洋上,由空氣和波浪摩擦而產生的次聲波 (頻率為每秒8—13次),總是風暴來臨的前奏曲。這種次聲波人耳無法聽到,小小的水母卻很敏感。仿生學家發現,水母的耳朵的共振腔里長著一個細柄,柄上有個小球,球內有塊小小的聽石,當風暴前的次聲波沖擊水母耳中的聽石時,聽石就剌激球壁上的神經感受器,於是水母就聽到了正在來臨的風暴的隆隆聲。
仿生學家仿照水母耳朵的結構和功能,設計了水母耳風暴預測儀,相當精確地模擬了水母感受次聲波的器官。把這種儀器安裝在艦船的前甲板上,當接受到風暴的次聲波時,可令旋轉360°的喇叭自行停止旋轉,它所指的方向,就是風暴前進的方向;指示器上的讀數即可告知風暴的強度。這種預測儀能提前15小時對風暴作出預報,對航海和漁業的安全都有重要意義。
蝙蝠的超聲波,發明雷達
昆蟲個體小,種類和數量龐大,占現存動物的75%以上,遍布全世界。它們有各自的生存絕技,有些技能連人類也自嘆不如。人們對自然資源的利用范圍越來越廣泛,特別是仿生學方面的任何成就,都來自生物的某種特性。
蝴蝶與仿生
五彩的蝴蝶錦色粲然,如重月紋鳳蝶、褐脈金斑蝶等,尤其是螢光翼鳳蝶,其後翅在陽光下時而金黃,時而翠綠,有時還由紫變藍。科學家通過對蝴蝶色彩的研究,為軍事防禦帶來了極大的裨益。在二戰期間,德軍包圍了列寧格勒,企圖用轟炸機摧毀其軍事目標和其他防禦設施。蘇聯昆蟲學家施萬維奇根據當時人們對偽裝缺乏認識的情況,提出利用蝴蝶的色彩在花叢中不易被發現的道理,在軍事設施上覆蓋蝴蝶花紋般的偽裝。因此,盡管德軍費盡心機,但列寧格勒的軍事基地仍安然無惹,為贏得最後的勝利奠定了堅實的基礎。根據同樣的原理,後來人們還生產出了迷彩服,大大減少了戰斗中的傷亡。
人造衛星在太空中由於位置的不斷變化可引起溫度驟然變化,有時溫差可高達兩、三網路,嚴重影響許多儀器的正常工作。科學家們受蝴蝶身上的鱗片會隨陽光的照射方向自動變換角度而調節體溫的啟發,將人造衛星的控溫系統製成了葉片正反兩面輻射、散熱能力相差很大的百葉窗樣式,在每扇窗的轉動位置安裝有對溫度敏感的金屬絲,隨溫度變化可調節窗的開合,從而保持了人造衛星內部溫度的恆定,解決了航天事業中的一大難題。
甲蟲與仿生
屁步甲炮蟲自衛時,可噴射出具有惡臭的高溫液體「炮彈」,以迷惑、刺激和驚嚇敵害。科學家將其解剖後發現甲蟲體內有3個小室,分別儲有二元酚溶液、雙氧水和生物酶。二元酚和雙氧水流到第三小室與生物酶混合發生化學反應,瞬間就成為100℃的毒液,並迅速射出。這種原理目前已應用於軍事技術中。二戰期間,德國納粹為了戰爭的需要,據此機理製造出了一種功率極大且性能安全可靠的新型發動機,安裝在飛航式導彈上,使之飛行速度加快,安全穩定,命中率提高,英國倫敦在受其轟炸時損失慘重。美國軍事專家受甲蟲噴射原理的啟發研製出了先進的二元化武器。這種武器將兩種或多種能產生毒劑的化學物質分裝在兩個隔開的容器中,炮彈發射後隔膜破裂,兩種毒劑中間體在彈體飛行的8—10秒內混合並發生反應,在到達目標的瞬間生成致命的毒劑以殺傷敵人。它們易於生產、儲存、運輸,安全且不易失效。螢火蟲可將化學能直接轉變成光能,且轉化效率達100%,而普通電燈的發光效率只有6%。人們模仿螢火蟲的發光原理製成的冷光源可將發光效率提高十幾倍,大大節約了能量。另外,根據甲蟲的視動反應機制研製成功的空對地速度計已成功地應用於航空事業中。
蜻蜓與仿生
蜻蜒通過翅膀振動可產生不同於周圍大氣的局部不穩定氣流,並利用氣流產生的渦流來使自己上升。蜻蜒能在很小的推力下翱翔,不但可向前飛行,還能向後和左右兩側飛行,其向前飛行速度可達72km/小時。此外,蜻蜒的飛行行為簡單,僅靠兩對翅膀不停地拍打。科學家據此結構基礎研製成功了直升飛機。飛機在高速飛行時,常會引起劇烈振動,甚至有時會折斷機翼而引起飛機失事。蜻蜒依靠加重的翅痣在高速飛行時安然無恙,於是人們仿效蜻蜒在飛機的兩翼加上了平衡重錘,解決了因高速飛行而引起振動這個令人棘手的問題。
為了研究滑翔飛行和碰撞的空氣動力學以及其飛行的效率,一個四葉驅動,用遠程水平儀控制的機動機翼(翅膀)模型被研製,並第一次在風洞內測試了各項飛行參數。
第二個模型試圖安裝一個以更快頻率飛行的翅膀,達到每秒18次震動的速度。有特色的是,這個模型採用了可變可調節前後兩對機翼之間相差的裝置。
研究的中心和長遠目標,是要研究使用「翅膀」驅動的飛機表現,以及與傳統的螺旋推動器驅動的飛機效率的比較等等。
蒼蠅與仿生
家蠅的特別之處在於它的快速的飛行技術,這使得它很難被人類抓住。即使在它的後面也很難接近它。它設想到了每一種情況,非常小心,並能快速移動。那麼,它是怎麼做到的呢?
昆蟲學家研究發現,蒼蠅的後翅退化成一對平衡棒。當它飛行時,平衡棒以一定的頻率進行機械振動,可以調節翅膀的運動方向,是保持蒼蠅身體平衡的導航儀。科學家據此原理研製成一代新型導航儀——振動陀螺儀,大大改進了飛機的飛行性能,可使飛機自動停止危險的滾翻飛行,在機體強烈傾斜時還能自動恢復平衡,即使是飛機在最復雜的急轉彎時也萬無一失。蒼蠅的復眼包含4000個可獨立成像的單眼,能看清幾乎360。范圍內的物體。在蠅眼的啟示下,人們製成了由1329塊小透鏡組成的一次可拍1329張高解析度照片的蠅眼照像機,在軍事、醫學、航空、航天上被廣泛應用。蒼蠅的嗅覺特別靈敏並能對數十種氣味進行快速分析且可立即作出反應。科學家根據蒼蠅嗅覺器官的結構,把各種化學反應轉變成電脈沖的方式,製成了十分靈敏的小型氣體分析儀,目前已廣泛應用於宇宙飛船、潛艇和礦井等場所來檢測氣體成分,使科研、生產的安全系數更為准確、可靠。
蜂類與仿生
蜂巢由一個個排列整齊的六稜柱形小蜂房組成,每個小蜂房的底部由3個相同的菱形組成,這些結構與近代數學家精確計算出來的——菱形鈍角109°28』,銳角70°32』完全相同,是最節省材料的結構,且容量大、極堅固,令許多專家贊嘆不止。人們仿其構造用各種材料製成蜂巢式夾層結構板,強度大、重量輕、不易傳導聲和熱,是建築及製造太空梭、宇宙飛船、人造衛星等的理想材料。蜜蜂復眼的每個單眼中相鄰地排列著對偏振光方向十分敏感的偏振片,可利用太陽准確定位。科學家據此原理研製成功了偏振光導航儀,早已廣泛用於航海事業中。
其它昆蟲與仿生
跳蚤的跳躍本領十分高強,航空專家對此進行了大量研究,英國一飛機製造公司從其垂直起跳的方式受到啟發,成功製造出了一種幾乎能垂直起落的鷂式飛機。現代電視技術根據昆蟲單復眼的構造特點,造出了大屏幕彩電,又可將一台台小彩電熒光屏組成一個大畫面,且可在同一屏幕上任意位置框出某幾個特定的小畫面,既可播映相同的畫面,又可播映不同的畫面。科學家根據昆蟲復眼的結構特點研製成功的多孔徑光學系統裝置,更易於搜索到目標,已在國外一些重要武器系統中應用。根據某些水生昆蟲的組成復眼的單眼之間相互抑制的原理,製成的側抑制電子模型,用於各類攝影系統,拍出的照片可增強圖像邊緣反差和突出輪廓,還可用來提高雷達的顯示靈敏度,也可用於文字和圖片識別系統的預處理工作。美國利用昆蟲復眼加工信息及定向導航原理,研製了具有很大實用價值的仿昆蟲復眼尋的末制導導引頭的工程模型。日本利用昆蟲形態及特性開發研製了六足機器人等工學機器和建築物的新構造方式。
未來展望
昆蟲在億萬年的進化過程中,隨著環境的變遷而逐漸進化,都在不同程度地發展著各自的生存本領。隨著社會的發展,人們對昆蟲的各種生命活動掌握得越來越多,越來越意識到昆蟲對人類的重要性,再加上信息技術特別是計算機新一代生物電子技術在昆蟲學上的應用,模擬昆蟲的感應能力而研製的檢測物質種類和濃度的生物感測器,參照昆蟲神經結構開發的能夠模仿大腦活動的計算機等等一系列的生物技術工程,將會由科學家的設想變為現實,並進入各個領域,昆蟲將會為人類做出更大的貢獻
③ 0到4的量程甲烷感測器的漂浮線度是多少
大於300mm小於200mm,甲烷感測器在煤礦安全檢測系統中用於碰答友煤礦井巷,採掘工作面、采空區、回風巷道、機電峒室等處連續監測甲烷濃度,當甲烷舉櫻濃度超限時,能自動發出聲、光報警,可供煤礦井下作業人員,甲烷檢測人員,井下管理笑槐人員等隨身攜帶使用,也可供上述場所固定使用。
④ 人從動物身上得到的啟示
鳥給人的啟示
鳥對人類的貢獻是眾所周知的。鳥類還有一種特殊的作用,這就是它啟發了人類的智慧,為人類探求理想的技術裝置或交通工具,提供了原理和藍圖。可以說,在結構、功能、通訊等方面,鳥類是人類的老師,許多現代科學技術問題,科學家常常需要去請教鳥類。
鷹擊長空,鴿翔千里,鳥類可以在空中自由飛行,這對人類是多麼大的吸引和激勵啊!傳說,在2000多年前,我國的著名工匠魯班,曾研究和製造過木鳥。據歷史文獻記載,1900多年前,我國就有人把鳥羽綁在一起,做成翅膀,能夠滑翔百步以外。400多年以前,義大利人達·芬奇根據對鳥類的觀察和研究,設計了撲翼機,試圖用腳蹬的動來撲動飛行。後來,經過許多科學家的試驗,人們才弄清鳥類定翼滑翔的機理,認識到機翼必須像鳥翼那樣前緣厚,後緣薄,構成曲面才能產生升力,再加上工業提供了輕質的金屬材料和大功率發動機,終於在1903年發明了飛機,實現了幾千年來人類渴望飛上天空的理想。
人類自從發明了飛機,飛上天空以後,就在不斷地對飛機進行革新改造,不論是體積、載重、速度,都很快超過了鳥類。現代飛機已經比任何鳥類都飛得更快、更遠、更高,尤其是近年來出現的各種飛行器,可以到星際間航行,更是鳥類所望塵莫及的。盡管這樣,在某些飛行技術和飛行器的結構上,人造的飛機仍然不如鳥類那麼完善而且精緻,更不要說消耗能源方面了。例如,金鴴可以連續在海洋上空飛行4000多公里,而體重只減少60克,如果飛機能用這種效率飛行,那將會節省許多燃料。
鳥類的翅膀具有許多特殊功能和結構,使得它們不僅善於飛行,而且會表演許多「特技」,這些特技還是目前人類的技術難以達到的。小小的蜂鳥是鳥中的「直升機」,它既可以垂直起落,又可以退著飛。在吮吸花蜜時,它不像蜜蜂那樣停落在花上,而是懸停於空中。這是多麼巧妙的飛行啊。製造具有蜂鳥飛行特性的垂直起落飛機,已經成為許多飛機設計師夢寐以求的願望。
鷹的眼睛是異常敏銳的。翱翔在兩三千米高空的雄鷹,兩眼掃視地面,它能夠從許多相對運動著的景物中發現兔子、老鼠,並且敏捷地俯沖而下,一舉捕獲。鷹眼還具有對運動目標敏感、調節迅速等特點,它能准確無誤地識別目標。現代電子光學技術的發展,使我們有可能研究一種類似鷹眼的系統,幫助飛行員識別地面目標,同時可以控制導彈。
候鳥的遷徙路程,短則幾百公里,長則幾千公里。但是,它們總能准確地到達世世代代選定的目的地。這說明候鳥有極好的導航本領。科學家們早已對這些現象展開了研究,認為鳥類所以有很好的導航本領,是因為它們都有各自的特殊感覺器官,能夠感覺和分析自然界不同地域環境因素的變化,從而辨認方向,尋找遷徙路線。有的靠辨認太陽的位置,利用太陽作定向標;有的靠辨認星星的方位,利用星象導航;有的靠感覺地球磁場的變化,利用地磁導航;還有的利用地球的重力場導航。弄清鳥類導航的原理之後,仿生學家和設計師就可以模仿製造各種小巧可靠的導航儀器,為發展航空、航海事業做出貢獻。
在企鵝的啟示下,人們設計了一種新型汽車——「企鵝牌極地越野汽車」。這種汽車用寬闊的底部貼在雪面上,用輪勺推動前進,這樣不僅解決了極地運輸問題,而且也可以在泥濘地帶行駛。
此外,鳥類所特有的生理結構和功能,還為機械繫統、儀器設備、建築結構和工藝流程的創新,提供了許多仿生學上的課題。所以,鳥既是人類的朋友,又是人類的老師。為了科學的未來和人類的幸福,我們也應當好好保護鳥類。
鳥給人類了許多無價的啟示:人們看到天空中的飛鳥,想到了一種能把我們帶到天空中飛的機器…飛機;山雕飛落地剎那間的堅定和穩重,讓人覺得自己也可以從天空中飛下,安全落地;飛翔中的蜻蜓,給人類創造直升飛機帶來了靈感;貓頭鷹靈巧無聲的飛行,改造了飛機的性能;天鵝在水面上撩飛的優雅,使水上飛機問世,。研究金翅鳥能改善飛機功能、研究鴿子可預測地震等那些肯思考的人,通過觀察天空中飛行的鳥類,獲得了靈感,而創造出來的奇跡,讓我們受益無窮
⑤ 試述x射線衍射檢測蛋白質結構的原理
X晶體衍射。首先要得到蛋白質的晶體。
通常,都是將表達蛋白的基因PCR之後克隆到一種表達載體中,然後在大腸桿菌中誘導塵空表達,提純之後摸索結晶條件,等拿到晶體之後,工作便完成的80%,將晶體進行x射線衍射,收集衍射圖譜,通過一系列的計算,很快就能得到蛋白質的原子結構。
用x射線的優點是:速度快,通常只要拿到晶體,甚至當天就能得到結構,另外不受大小限制,無論是多大的蛋白,或者復合體,無論是蛋白質還是RNA、DNA,還是結合了什麼小分子,只要飢拆能夠結晶就能夠得到其原子結構。
所以x射線方法解析蛋白的瓶頸是摸索蛋白結晶的條件。 X射線衍射方向決定於晶體的周期或晶面間隔,但是,在周期相同或晶面間隔相同的情況下,由於晶胞內原子排布方式不同,則會造成衍射點強度不同。也就是說,衍射點強度的大小包含著與分子結構有關的信息。分子結構中所有原子對每一個衍射斑點的強度都有各自的貢獻,因此,通過分析X射線衍射點的強度,可以得到有關晶胞內原子排布的信息。常用的晶體衍射強度的記錄有兩種方式。一種是將晶體所產生的衍射光束點記錄在底片上,如經典的感光膠片,然後,用掃描儀閱讀衍射強度。近年來發展起來的象板探測器,實際上是用象板取代了感光膠片,免除了顯影、定影等麻煩。另一種方法是多絲正比面探測器,先將衍射光束光子信號轉換為電子信號,再處理為衍射強度。還可以採用CCD技術,使數據採集精度和信號轉換速度得到較大的提高。這非常重要,因為生物大分子晶體結構解析的解析度和精度主要取決於晶體衍射數據採集的質量和精度。多波長反常散射法成為近年來發展較快的一種方法。生物大分子中通常含有金屬離子或重原子,不同的原子對不同波長的X射線具有特徵的反常散射效應。同步輻射光源具有強度高、單色性好、波長連續可調的特點,在進行生物大分子晶體衍射實驗時,如果晶體中含有金屬離子或重原子,則可以將同步輻射光源的波長調整到對應原子反常散射明顯的位置,獲得反常散射數據,從而進行晶體結構的解析。生物大分子的二級結構常常是螺旋結構(如蛋白質中的a螺旋和DNA的雙螺旋),其特點是每一圈螺旋中(即每一周期)包含一定數量的、散射能力相同的結構單元。具有螺旋結構的生物大分子,其X射線衍射圖有相應的特點。凡是衍射圖上具有這些特點的物質,如纖維狀蛋白質、DNA,其結構均為螺旋結構。利用從衍射圖得到的衍射數據,可以分析出晶胞內三維空間的電子密度分布,確定結構模型。下面以肌紅蛋白為例加以說明。肌紅蛋白分子量為18000,含有153個氨基酸殘基,分子中有1200個原子(不包括氫原子)。為了定出分子中所有原子的位置,需要測量大約20000個衍射點的強派肢瞎度並計算其位相角。第一階段分析到6�0�3的水平,定出多肽鏈和正鐵血紅素的位置,其中棒狀結構符合a-螺旋的特徵,推算出a-螺旋約占殘基總數的70%。進一步分析提高到2�0�3的水平,雖然不能定出每個原子的位置,但可以肯定分子的主要部分是由a-螺旋組成,而且是右手螺旋,鏈必須彎曲、盤繞。其中大約13~18個殘基不是a-螺旋,一半以上的氨基酸殘基能定出種類。再進一步分析到1.5�0�3的水平,可以完全弄清楚氨基酸排列順序。這樣,通過X射線衍射的研究,可以確定蛋白質一級、二級、三級結構。可見X射線衍射分析是研究生物大分子結構的強有力的工具。用X射線衍射技術分析分子結構時,一般有以下幾個步驟:(1)用實驗測定單個晶格的線度和從衍射圖中測量衍射點的強度;(2)根據上述數據,結合其它方法推斷原子排列,得到嘗試結構模型,計算這種結構的衍射極大值,然後與實驗觀察值比較;(3)修正所提出的模型,直到計算結果和實際所得到的數據趨於吻合。X射線晶體學方法是測定蛋白質結構的主要方法。球狀蛋白質是多肽鏈捲曲成團的蛋白質,它和纖維狀蛋白不同,構型一般比較復雜。球狀蛋白質分子量大,表面基團的構象不穩定,要獲得有序排列的晶體是比較困難的。所形成的晶體不可能是完美的堆砌,而是會在分子之間形成許多大的孔或通道。這些通道常常由占晶體體積一半以上的溶劑分子所佔有,而溶劑分子的絕大部分在晶體上又是無序的。晶體中的蛋白質分子之間僅有少量的區域發生接觸,這些區域的相互作用也是較弱的相互作用,通常是通過一個或幾個溶劑分子發生作用。蛋白質晶體的形成依賴於一些參數,如pH值、溫度、蛋白濃度、溶劑的種類、沉澱劑的種類以及金屬離子和某些蛋白的配基等。用X射線衍射圖分析DNA的空間結構,出現螺旋結構的衍射圖樣,說明每一圈螺旋有10個重復結構單元,反映了分子間的排列情況。根據DNA的X射線衍射圖結合其它技術,Watson和Crick提出了DNA的空間結構模型:兩條多核苷酸鏈組成反平行的右手雙螺旋,磷酸在外,鹼基在內;螺距為34�0�3,每圈螺旋包含10個核苷酸,每個核苷酸軸長為3.4�0�3,螺旋直徑為20�0�3;兩條鏈之間形成氫鍵。
⑥ 請給我一些關於報考專業的指導...如高分子材料與工程,數字媒體藝術,光信息科學與技術
數字媒體是個比較新的專業
【主要課程】攝影攝像判如技術、藝術設計基礎、數字媒體技術概論、程序設計基礎、資料庫設計、網頁設計與製作、互動式多媒體網站開發、數字信號處理、數據結構、演算法設計與分析、面向對象程序設計(java)、計算機圖形圖像處理、人機交互技術、多媒體資料庫、動畫設計與製作、3D造型、電視節目編導與製作、音視頻信息處理、特效製作與非線性編輯。
【特色】數字媒體技術專業的教學與出版、新聞、影視等文化媒體及其它數字媒體軟體開發和產品設計製作行業的要求相結合,培養面向數字網路時代兼具信息傳播理論、數字媒體技術和設計管理能力的復合型人才。
關於視力,個人覺得與電腦沒什麼關系,我有很多朋友每天打電腦視力卻一直很好,有不碰電腦卻高度近視的.
預防近視還是要以養成良好的用眼習慣為主.
高分子材料與工程
主幹學科:材料科學與工程�
主要課程:有機化學、物理化學、高分子化學、高分子物理、聚合物流變學、聚合物成型工藝、聚合物加工原理、高分子材料研究方法�
主要實踐性教學環節:包括金工實習、生產實習、專業實驗、計算機應用與上機實踐、課程設計、畢業設計(論文)。�
高分子材料與工程專業包括橡膠,塑料,聚合物合成等很多分支,就業也因方向不同而不同.
比如合成方面進研究所等
有的方面技術長期接觸化學品是會對身體損害很大,除非你想當居里夫人,不然女生不推薦這方面的技術操作.
光信息科學與技術
學科:高等數學、線性代數、普通物理、普通物理實驗、機械制圖、機械設計基礎、數學物理方程、計算機原理及應用、計算機程序設計、電路理論、模擬電子線路、數字邏輯電路、信號與線性系統、自動控制原理、電子測量技術、數字信號處理、數字圖像處理技術、全息技術、光學設計、光信息處理、激光原理等。
光學元器件包括:光學儀器,光電檢測儀器,光學遙感、遙測儀器,機器人視覺,光學檢測和測量、夜視和偵察,微光夜視儀,紅外夜視儀,高解析度的成像衛星,偵察相機, 高靈敏探測器平面陣列(FRA),快速三維模型測量;計量學(定位,位置,線度,準直);機器視覺(特徵,方位和缺陷);光學感測器(成分,溫度,PH值探測等)。
1. 光通信與光纖感測器件(光電感測技術、光纖通信原理與技術、光通信實驗等)
這里可包括光纖光纜,光電子材料,集成光電子器件,光電元、器件,光纖通信器件(光纖無源器件,光纖有源器件),光纖感測器件,光纖激光器,光端機,光纖通訊機及設備,光纖數據傳輸設備;光纖陀螺儀;光纖控制的相控陣雷達,光纖地面和衛星通信系統等等。
2.激光器件及應用(光學、物理光學、非線性光學、激光原理和技術、光信息處理等)
包括激光器件(光纖,半導體、固體、氣體、準分子及其它),激光加工,激光全息,激光醫療儀器,激光測距,激光雷達,激光跟蹤,激光制導,光學陀螺掘隱啟儀,交通控制系統,光導航設攜拆備與系統,目標指示器,干擾發射機和通信設備等。
3.光信息輸入與存貯(電工電子技術、計算機技術、光學基礎)如掃描儀、列印機、復印機、傳真機和數碼相機等辦公自動化設備,以及光存儲類產品,如CD-ROM、CD-RW和DVD-ROM光碟機,以及記錄用的CD-R 光碟機和可重復讀寫型的CD-RW 光碟機等
還有紅外產品與照明與能源方面
涉及廣,就業選擇也比較多,雖然現在學這方面的人多,但是只要及時調整方向,也不會撞車撞的很慘.
其實哪個專業的頂尖人材都是高需求的,無論學什麼專業,學得精,總不會找不到工作的.
⑦ 什麼是dsc測試
dsc測試指的是現代熱分析是指在程序控溫下,測量物質的物理性質隨溫度變化的一類技術。
人們通過檢測樣品本身的熱物理性質隨溫度或時間的變化,來研究物質的分子結構、聚集態結構、分子運動的變化等。
應用最多的熱分析儀器是功率補償型DSC、熱流型DSC、差熱式DTA、熱重TG等。 DSC是研究在溫度程序控制下物質隨溫度的變化其物理量(ΔQ和ΔH)的變化,即通過程序控制溫度的變化,在溫度變化的同時,測量試樣和參比物的功率差(熱流率)與溫度的關系。
將有物相變化的樣品和在所測定溫度范圍內不發生相變且沒有任何熱效應產生的參比物,在相同的條件下進行等溫加熱或冷卻,當樣品發生相變時,在樣品和參比物之間就產生一個溫度差。
放置於它們下面的一組差示熱電偶即產生溫差電勢UΔT,經差熱放大器放大後送入功率補償放大器,功率補償放大器自動調節補償加熱絲的核攔電流,使樣品和參比物之間溫差趨於零,兩者溫度始終維持相同。此補償熱量即為樣品的熱效應,以電功率形式顯示於記錄儀上。
(7)線度檢測演算法擴展閱讀:
有dH/dt的不連續變化,因此在熱譜岩舉圖上出現基線的偏移。從分子運動觀粗氏碧點來看,玻璃化轉變與非晶聚合物或結晶聚合物的非晶部分中分子鏈段的微布朗運動有關,在玻璃化溫度以下,運動基本凍結,到達Tg後,運動活波熱容量變大,基線向吸熱一側移動。
玻璃化轉變溫度的確定是基於在DSC曲線上基線的偏移,出現一個台階,一般用曲線前沿切線與基線的交點來確定Tg。
影響Tg的因素有化學結構、相對分子量、結晶度、交聯固化、樣品歷史效應(熱歷史、應力歷史、退火歷史、形態歷史)等。
具有僵硬的主鏈或帶有大的側基的聚合物將具有較高的Tg;鏈間具有較強吸引力的高分子,不易膨脹,有較高的Tg;在分子鏈上掛有鬆散的側基,使分子結構變得鬆散,即增加了自由體積,而使Tg降低。