優化問題遺傳演算法
㈠ 如何用遺傳演算法實現多變數的最優化問題
將多個變數的數值編碼編排進去,進行組合,只需要增長基因個體的燃搭長度,但是要明確每個變數具體的位置,然後讓每個變數轉化成二進制的等長編碼,組合在一起,就可以來運算了。
㈡ 遺傳演算法的有效性和復雜度
遺傳演算法其實就是二重迭代,時間復雜度不超過n平方遺傳演算法是一種全局優化概率演算法,主要的優點有
1.遺傳算叢衫法對所求解的優化問題沒有太多的數學要求,由於他的進化特性,搜素過程中不需要問題的內在性質,對於任意形式的目標函數和約束,無論是線性的還是非線性的,離散的還是連續的都可處理。
2.進化運算元的各態歷經性使得遺傳演算法能夠春檔非常有效地進行概率意義的全局搜素。
3.遺傳演算法對於各種特殊問題可以提供極大的靈活性來混合構造領域獨立的啟發式,從而保證演算法的有效性。
目標函數就是你希望得到的優化結果,比如函數最大值或者最小值.而適應度函數是為了計算個體的適配值. 適配值是非負的,而且要求適配值越大則該個體越優越.而目標函數則有正有負,它們之間關系多種多樣,比如求最小值時,目標函數最小,則適配值越大,求最大值時目標值越大,適配值越大。
只要目標函數是遞增或者遞減的就可以,但是目標函數值要為正,目標函數對遺傳演算法影響很大的,所以要經過滲森腔不斷的嘗試得出正確的結果,建議你把每一次的結果平均值都記錄下來,然後畫出圖形觀察遺傳演算法的有效性。
㈢ 遺傳演算法屬於數學優化理論嗎
算的
遺傳演算法是一種利用自然遺傳規律來搜索最優解的數學優化工具。其基本過程及原理簡單概括如下:
遺傳演算法是具有「生成+檢測」迭代過程的搜索演算法,是一種群體型操作。操作以群體中的所有個體為對象。它有三個基本操作運算元:選擇、變異和交叉。遺傳演算法中包含五個基本要素:參數編碼;初始群體設定;適應度函數設計;遺傳操作設計;控制參數設定(主要指群體大小和使用遺傳操作的概率等)。這五個要素構成了遺傳演算法的核心內容。參數編碼就是將優化問題變數通過一定的變換映射到染色體基因上面。初始群體設定應使其具有足夠的規模和隨機性。遺傳演算法根據染色體基因值來計算染色體適應度,並根據適應度值決定染色體的交配概率,適應度大的染色體交配概率大。染色體交配之後應對染色體進行變異,這樣可以避免演算法過早收斂。變異之後的群體就是子代,它將作為下一代群體的父代,進行同樣的遺傳操作,如此循環。在演算法執行過程中,控制參數的設定直接影響演算法的精度和效率,因此選定合適的控制參數是提高演算法效率的關鍵之一。一般採用觀察法來選定合適的控制參數
㈣ 用遺傳演算法工具箱求解一個多目標優化問題,現在需要一個matlab程序,求高人指點
用遺傳演算法工具箱求解一個多目標優化問題的步驟:
1、根據題意,建立自定義目標函數,ga_fun1(x)
2、在命令窗口中,輸入
>> optimtool %調用遺傳演算法工具箱
3、在遺傳演算法工具箱界面中,分別對Fitnessfunction框內輸入@ga_fun1();A框內輸入[1,1,1];b框內輸入16;Aeq框內輸入[];beq框內輸入[];Lower框內輸入[0,0,0];Upper框內輸入[];
4、單擊Start。得到x=4.508 y=2.513 z=1.912值。
㈤ 關於遺傳演算法優化BP神經網路的問題
程序:
1、未經遺傳演算法優化的BP神經網路建模
clear;
clc;
%%%%%%%%%%%%%輸入參數%%%%%%%%%%%%%%
N=2000; %數據總個數
M=1500; %訓練數據
%%%%%%%%%%%%%訓練數據%%%%%%%%%%%%%%
for i=1:N
input(i,1)=-5+rand*10;
input(i,2)=-5+rand*10;
end
output=input(:,1).^2+input(:,2).^2;
save data input output
load data.mat
%從1到N隨機排序
k=rand(1,N);
[m,n]=sort(k);
%找出訓練數據和預測數據
input_train=input(n(1:M),:)';
output_train=output(n(1:M),:)';
input_test=input(n((M+1):N),:)';
output_test=output(n((M+1):N),:)';
%數據歸一化
[inputn,inputs]=mapminmax(input_train);
[outputn,outputs]=mapminmax(output_train);
%構建BP神經網路
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;
%BP神經網路訓練
net=train(net,inputn,outputn);
%測試樣本歸一化
inputn_test=mapminmax('apply',input_test,inputs);
%BP神經網路預測
an=sim(net,inputn_test);
%%網路得到數據反歸一化
BPoutput=mapminmax('reverse',an,outputs);
figure(1)
%plot(BPoutput,':og');
scatter(1:(N-M),BPoutput,'rx');
hold on;
%plot(output_test,'-*');
scatter(1:(N-M),output_test,'o');
legend('預測輸出','期望輸出','fontsize',12);
title('BP網路預測輸出','fontsize',12);
xlabel('樣本','fontsize',12);
xlabel('優化前輸出的誤差','fontsize',12);
figure(2)
error=BPoutput-output_test;
plot(1:(N-M),error);
xlabel('樣本','fontsize',12);
ylabel('優化前輸出的誤差','fontsize',12);
%save net net inputs outputs
2、遺傳演算法優化的BP神經網路建模
(1)主程序
%清空環境變數
clc
clear
%讀取數據
load data.mat
%節點個數
inputnum=2;
hiddennum=5;
outputnum=1;
%訓練數據和預測數據
input_train=input(1:1500,:)';
input_test=input(1501:2000,:)';
output_train=output(1:1500)';
output_test=output(1501:2000)';
%選連樣本輸入輸出數據歸一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%構建網路
net=newff(inputn,outputn,hiddennum);
%% 遺傳演算法參數初始化
maxgen=10; %進化代數,即迭代次數
sizepop=30; %種群規模
pcross=[0.3]; %交叉概率選擇,0和1之間
pmutation=[0.1]; %變異概率選擇,0和1之間
%節點總數
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
lenchrom=ones(1,numsum);
bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %數據范圍
%------------------------------------------------------種群初始化------------------------------%------------------
--------
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %將種群信息定義為一個結構體
%avgfitness=[]; %每一代種群的平均適應度
bestfitness=[]; %每一代種群的最佳適應度
bestchrom=[]; %適應度最好的染色體
%初始化種群
for i=1:sizepop
%隨機產生一個種群
indivials.chrom(i,:)=Code(lenchrom,bound); %編碼
x=indivials.chrom(i,:);
%計算適應度
indivials.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
%avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
%trace=[avgfitness bestfitness];
%% 迭代求解最佳初始閥值和權值
% 進化開始
for i=1:maxgen
i
% 選擇
indivials=Select(indivials,sizepop);
% avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,i,maxgen,bound);
% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:); %解碼
indivials.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);
end
%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
%avgfitness=sum(indivials.fitness)/sizepop;
% trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%% 遺傳演算法結果分析
%figure(3)
%[r c]=size(trace);
%plot([1:r]',trace(:,2),'b--');
%title(['適應度曲線 ' '終止代數=' num2str(maxgen)]);
%xlabel('進化代數');ylabel('適應度');
%legend('平均適應度','最佳適應度');
disp('適應度 變數');
x=bestchrom;
%% 把最優初始閥值權值賦予網路預測
% %用遺傳演算法優化的BP網路進行值預測
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x
(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%% BP網路訓練
%網路進化參數
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;
%網路訓練
[net,per2]=train(net,inputn,outputn);
%% BP網路預測
%數據歸一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
%figure(4);
hold on;plot(1:500,error,'r');
legend('優化前的誤差','優化後的誤差','fontsize',12)
(2)編碼子程序code.m
function ret=Code(lenchrom,bound)
%本函數將變數編碼成染色體,用於隨機初始化一個種群
% lenchrom input : 染色體長度
% bound input : 變數的取值范圍
% ret output: 染色體的編碼值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %線性插值,編碼結果以實數向量存入ret中
flag=test(lenchrom,bound,ret); %檢驗染色體的可行性
end
(3)適應度函數fun.m
function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%該函數用來計算適應度值
%x input 個體
%inputnum input 輸入層節點數
%outputnum input 隱含層節點數
%net input 網路
%inputn input 訓練輸入數據
%outputn input 訓練輸出數據
%error output 個體適應度值
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net=newff(inputn,outputn,hiddennum);
%網路進化參數
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%網路權值賦值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%網路訓練
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));
(4)選擇操作Select.m
function ret=select(indivials,sizepop)
% 該函數用於進行選擇操作
% indivials input 種群信息
% sizepop input 種群規模
% ret output 選擇後的新種群
%求適應度值倒數
[a bestch]=min(indivials.fitness);
%b=indivials.chrom(bestch);
%c=indivials.fitness(bestch);
fitness1=10./indivials.fitness; %indivials.fitness為個體適應度值
%個體選擇概率
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
%採用輪盤賭法選擇新個體
index=[];
for i=1:sizepop %sizepop為種群數
pick=rand;
while pick==0
pick=rand;
end
for i=1:sizepop
pick=pick-sumf(i);
if pick<0
index=[index i];
break;
end
end
end
%index=[index bestch];
%新種群
indivials.chrom=indivials.chrom(index,:); %indivials.chrom為種群中個體
indivials.fitness=indivials.fitness(index);
%indivials.chrom=[indivials.chrom;b];
%indivials.fitness=[indivials.fitness;c];
ret=indivials;
(5)交叉操作cross.m
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函數完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色體的長度
% chrom input : 染色體群
% sizepop input : 種群規模
% ret output : 交叉後的染色體
for i=1:sizepop %每一輪for循環中,可能會進行一次交叉操作,染色體是隨機選擇的,交叉位置也是隨機選擇的,%但該輪for循環中是否進行交叉操作則由交叉概率決定(continue控制)
% 隨機選擇兩個染色體進行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率決定是否進行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 隨機選擇交叉位
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %隨機選擇進行交叉的位置,即選擇第幾個變數進行交叉,注意:兩個染色體交叉的位置相同
pick=rand; %交叉開始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉結束
flag1=test(lenchrom,bound,chrom(index(1),:)); %檢驗染色體1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %檢驗染色體2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果兩個染色體不是都可行,則重新交叉
end
end
ret=chrom;
(6)變異操作Mutation.m
function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)
% 本函數完成變異操作
% pcorss input : 變異概率
% lenchrom input : 染色體長度
% chrom input : 染色體群
% sizepop input : 種群規模
% opts input : 變異方法的選擇
% pop input : 當前種群的進化代數和最大的進化代數信息
% bound input : 每個個體的上屆和下屆
% maxgen input :最大迭代次數
% num input : 當前迭代次數
% ret output : 變異後的染色體
for i=1:sizepop %每一輪for循環中,可能會進行一次變異操作,染色體是隨機選擇的,變異位置也是隨機選擇的,
%但該輪for循環中是否進行變異操作則由變異概率決定(continue控制)
% 隨機選擇一個染色體進行變異
pick=rand;
while pick==0
pick=rand;
end
index=ceil(pick*sizepop);
% 變異概率決定該輪循環是否進行變異
pick=rand;
if pick>pmutation
continue;
end
flag=0;
while flag==0
% 變異位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick*sum(lenchrom)); %隨機選擇了染色體變異的位置,即選擇了第pos個變數進行變異
pick=rand; %變異開始
fg=(rand*(1-num/maxgen))^2;
if pick>0.5
chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;
else
chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;
end %變異結束
flag=test(lenchrom,bound,chrom(i,:)); %檢驗染色體的可行性
end
end
ret=chrom;
㈥ 遺傳演算法屬於數學優化理論嗎
遺傳演算法 (Genetic Algorithm, GA) 是一種基於遺傳學原理的優化演算法。它是一種模擬自然界中生物進化過程的演算法。遺傳算則纖法通過模擬遺傳進化的過程來解決優化問題,是一種進化塌棗演算法。
遺傳演算法屬於數學優化理論的范疇, 數學優團盯拆化理論主要研究的是從數學的角度對優化問題進行研究的理論,包括非線性規劃,凸優化,線性規劃等。遺傳演算法就是這一理論的一個重要的分支。
㈦ 遺傳演算法怎麼解決單目標優化問題
是不是像求函數最值那樣子?建議你了解一下遺傳演算法的實數編碼,這個對於求函數最值很方便,不用像二進制那樣需要轉換。 簡單介紹一下思路: 最重要的是確定適應度函數,只要確定這個函數就很容易了,就用你不會編程,直接調用matlab的工具箱就行了。 1st.設置種群規模,並初始化種群p,並計算各個個體的適應度。 例如,20個個體,每個個體包含5個變數,x1,x2,x3,x4,x5. 如果你用matlab來編程的話,這個可以很容易實現,會用到random('unif',a,b)這個函數吧。 例如x1的取值范圍是[0,1],那麼x1=random('unif',0,1). 2nd.採用輪盤賭選出可以產生後代的父本,p_parents。 額,輪盤賭的實質就是適應度大的被選出的概率大。這個不難,但說起來比較長,你可以自己去看一下。 3rd.雜交過程的思路隨機將p_parents中的個體隨機兩兩配對,然後隨機產生一個1到n的數(n為變數的個數),設為i,交換每對父本中i之後的變數值。交換以後的p_parents成為後代p_offspring. 這里變起來有點點復雜,不過只要耐心一點,編好配對過程和交換過程。 4th.變異過程,這個比較簡單,不過需要自己把握的較好。 基本的思路是設置一個概率,例如0.05,然後產生一個隨機數如果隨機數比0.05小那麼這個變數值就要產生微小的增加或減少。 這個變異過程要歷遍p_offspring所有的變數喔。 5th.將p和p_offspring合並起來,然後選出適應度大的,重新構成一個如原始種群規模相等的種群。
㈧ 遺傳演算法中,種群規模越小,一般優化結果越好
遺傳演算法是一種進化演算法,它通過模擬自然進化過程來尋找最優解。在遺傳演算法中,種群規模通常越大,隨機性越強,因此越容易找到全局最優解。然而,當種群規模較小時,遺傳演算法可能會更快地找到伍檔本地最優解,因為它更容易被陷入局部最優解。因此,種群規模對遺傳演算法的性能有很大影響。
在實際應用中,種群規模的選擇取決於問題的復雜性和優化目標。如果問題具有多個局部最優解,則需鏈遲要更大的種群腔喚亂規模來尋找全局最優解。如果問題具有高度非線性性,則需要更小的種群規模來降低隨機性。
綜上所述,種群規模越小並不一定優化結果越好,種群規模的選擇應該根據具體問題來確定。
㈨ 遺傳演算法具體應用
1、函數優化
函數優化是遺傳演算法的經典應用領域,也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。
2、組合優化
隨著問題規模的增大,組合優化問題的搜索空間也急劇增大,有時在目前的計算上用枚舉法很難求出最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。
此外,GA也在生產調度問題、自動控制、機器人學、圖象處理、人工生命、遺傳編碼和機器學習等方面獲得了廣泛的運用。
3、車間調度
車間調度問題是一個典型的NP-Hard問題,遺傳演算法作為一種經典的智能演算法廣泛用於車間調度中,很多學者都致力於用遺傳演算法解決車間調度問題,現今也取得了十分豐碩的成果。
從最初的傳統車間調度(JSP)問題到柔性作業車間調度問題(FJSP),遺傳演算法都有優異的表現,在很多算例中都得到了最優或近優解。
(9)優化問題遺傳演算法擴展閱讀:
遺傳演算法的缺點
1、編碼不規范及編碼存在表示的不準確性。
2、單一的遺傳演算法編碼不能全面地將優化問題的約束表示出來。考慮約束的一個方法就是對不可行解採用閾值,這樣,計算的時間必然增加。
3、遺傳演算法通常的效率比其他傳統的優化方法低。
4、遺傳演算法容易過早收斂。
5、遺傳演算法對演算法的精度、可行度、計算復雜性等方面,還沒有有效的定量分析方法。
㈩ 優化演算法筆記(六)遺傳演算法
遺傳演算法(Genetic Algorithms,GA)是一種粗衡模擬自然中生物的遺傳、進化以適應環境的智能演算法。由於其演算法流程簡單,參數較少優化速度較快,效果較好,在圖像處理、函數優化、信號處理、模式識別等領域有著廣泛的應用。
在遺傳演算法(GA)中,每一個待求問題的候選解被抽象成為種群中一個個體的基因。種群中個體基因的好壞由表示個體基因的候選解在待求問題中的所的得值來評判。種群中的個體通過與其他個體交叉產生下一代,每一代中個體均只進行一次交叉。兩個進行交叉的個體有一定幾率交換一個或者多個對應位的基因來產生新的後代。每個後代都有一定的概率發生變異。發生變異的個體的某一位或某幾位基因會變異成其他值。最終將以個體的適應度值為概率選取個體保留至下一代。
遺傳演算法啟發於生物的繁殖與dna的重組,本次的主角選什麼呢?還是根據大家熟悉的孟德爾遺傳規律選豌豆吧,選動物的話又會有人疑車,還是植物比較好,本次的主角就是它了。
遺傳演算法包含三個操作(運算元):交叉,變異和選擇操作。下面我們將詳細介紹這三個操作。
大多數生物的遺傳信息都儲存在DNA,一種雙螺旋結構的復雜有機化合物。其含氮鹼基為腺嘌呤、鳥嘌呤、胞嘧啶及胸腺嘧啶。
表格中表示了一個有10個基因的個體,它們每一個基因的值為0或者1。
生物的有性生殖一般伴隨著基因的重組。遺傳演算法中父輩和母輩個體產生子代個體的過程稱為交叉。
表中給出了兩個豌豆的基因,它們均有10個等位基因(即編號相同的基因)。
遺傳演算法的交叉過程會在兩個個體中隨機選擇1位或者n位基因進行交叉,即這兩個個體交換等位基因。
如,A豌豆和B豌豆在第6位基因上進行交叉,則其結果如下
當兩個個體交叉的等位基因相同時,交叉過程也有可能沒有產生新慧衡的個體,如交叉A豌豆和B豌豆的第2位基因時,交叉操作並沒有產生新的基因。
一般的會給群體設定一個交叉率,crossRate,表示會在群體中選取一定比例的個體進行交叉,交叉率相對較大,一般取值為0.8。
基因的變異是生物進化的一個主要因素。
遺傳演算法中變異操作相對簡單,只需要將一個隨機位基因的值修改就行了,因為其值只為0或1,那麼當基因為0時,變異操作會將其值設為1,當基因值為1時,變異操作會將其值設為0。
上圖表示了A豌豆第3位基因變異後的基因編碼。
與交叉率相似,變異操作也有變異率,alterRate,但是變異率會遠低於交叉率,否則會產生大量的隨機基因。一般變異率為0.05。
選擇操作是遺傳演算法中的一個關鍵操作,它的主要作用就是根據一定的策略隨機選擇個體保留至下一代。適應度越優的岩碧做個體被保留至下一代的概率越大。
實現上,我們經常使用「輪盤賭」來隨機選擇保留下哪個個體。
假設有4個豌豆A、B、C、D,它們的適應度值如下:
適應度值越大越好,則它們組成的輪盤如下圖:
但由於輪盤賭選擇是一個隨機選擇過程,A、B、C、D進行輪盤賭選擇後產生的下一代也有可能出現A、A、A、A的情況,即雖然有些個體的適應度值不好,但是運氣不錯,也被選擇留到了下一代。
遺產演算法的三個主要操作介紹完了,下面我們來看看遺傳演算法的總體流程:
前面我們說了遺傳演算法的流程及各個操作,那麼對於實際的問題我們應該如何將其編碼為基因呢?
對於計算機來所所有的數據都使用二進制數據進行存放,如float類型和double類型的數據。
float類型的數據將保存為32位的二進制數據:1bit(符號位) 8bits(指數位) 23bits(尾數位)
如-1.234567f,表示為二進制位
Double類型的數據將保存為64位的二進制數據:1bit(符號位) 11bits(指數位) 53bits(尾數位)
如-1.234567d,表示為二進制為
可以看出同樣的數值不同的精度在計算機中存儲的內容也不相同。之前的適應度函數 ,由於有兩個double類型的參數,故其進行遺傳演算法基因編碼時,將有128位基因。
雖然基因數較多,但好在每個基因都是0或者1,交叉及變異操作非常簡單。
相比二進制編碼,十進制編碼的基因長度更短,適應度函數 有兩個輸入參數,那麼一個個體就有2個基因,但其交叉、變異操作相對復雜。
交叉操作
方案1:將一個基因作為一個整體,交換兩個個體的等位基因。
交換前
交換第1位基因後
方案2:將兩個個體的等位基因作為一個整體,使其和不變,但是值隨機
交換前
交換第1位基因後
假設A、B豌豆的第一位基因的和為40,即 ,第一位基因的取值范圍為0-30,那麼A、B豌豆的第一位基因的取值范圍為[10,30],即 為[0,30]的隨機數, 。
變異操作,將隨機的一位基因設置為該基因取值范圍內的隨機數即可。
這個過程說起來簡單但其實現並不容易。
我們要將它們的值映射到一個軸上才能進行隨機選擇,畢竟我們無法去繪制一個輪盤來模擬這個過程
如圖,將ABCD根據其值按順序排列,取[0,10]內的隨機數r,若r在[0,1]內則選擇A,在(1,3]內則選擇B,在(3,6]內則選擇C,在(6,10]則選擇D。
當然這仍然會有問題,即當D>>A、B、C時,假如它們的值分布如下
那麼顯然,選D的概率明顯大於其他,根據輪盤賭的選擇,下一代極有可能全是D的後代有沒有辦法均衡一下呢?
首先我想到了一個函數,
不要問我為什麼我不知道什麼是神經什麼網路的,什麼softmax、cnn統統沒聽說過。
這樣一來,它們之間的差距沒有之前那麼大了,只要個體適應度值在均值以上那麼它被保留至下一代的概率會相對較大,當然這樣縮小了個體之間的差距,對真正優秀的個體來說不太公平,相對應,我們可以在每次選擇過程中保留當前的最優個體到下一代,不用參與輪盤賭這個殘酷的淘汰過程。
最令人高興的環節到了,又可以愉快的湊字數了。
由於遺傳演算法的收斂速度實在是太慢,區區50代,幾乎得不到好的結果,so我們把它的最大迭代次數放寬到200代。
使用二進制編碼來進行求解
參數如下:
求解過程如上圖,可以看出基因收斂的很快,在接近20代時就圖中就只剩一個點了,之後的點大概是根據變異操作產生。看一下最後的結果。
可以看出最好的結果已經得到了最優解,但是10次實驗的最差值和平均值都差的令人發指。為什麼會這樣呢?
問題出在二進制編碼上,由於double類型的編碼有11位指數位和52位小數位,這會導致交叉、變異操作選到指數位和小數位的概率不均衡,在小數位上的修改對結果的影響太小而對指數為的修改對結果的影響太大,
如-1.234567d,表示為二進制為
對指數為第5位進行變異操作後的結果為-2.8744502924382686E-10,而對小數位第5為進行變異操作後的結果為-1.218942。可以看出這兩部分對數值結果的影響太不均衡,得出較好的結果時大概率是指數位與解非常相近,否則很難得出好的結果,就像上面的最差值和均值一樣。
所以使用上面的二進制編碼不是一個好的基因編碼方式,因此在下面的實驗中,將使用十進制來進行試驗。
使用:十進制編碼來進行求解
參數如下:
我們可以看到直到40代時,所有的個體才收束到一點,但隨後仍不斷的新的個體出現。我們發現再後面的新粒子總是在同一水平線或者豎直線上,因為交叉操作直接交換了兩個個體的基因,那麼他們會相互交換x坐標或者y坐標,導致新個體看起來像在一條直線上。
我們來看看這次的結果。
這次最優值沒有得到最優解,但是最差值沒有二進制那麼差,雖然也不容樂觀。使用交換基因的方式來進行交叉操作的搜索能力不足,加之輪盤賭的選擇會有很大概率選擇最優個體,個體總出現在矩形的邊上。
下面我們先改變輪盤賭的選擇策略,使用上面的sigmod函數方案,並且保留最優個體至下一代。
使用:十進制編碼來進行求解
參數如下:
看圖好像跟之前的沒什麼區別,讓我們們看看最終的結果:
可以看出,最優值沒有什麼變化,但是最差值和平均值有了較大的提升,說明該輪盤賭方案使演算法的魯棒性有了較大的提升。在每次保留最優個體的情況下,對於其他的個體的選擇概率相對平均,sigmod函數使得即使適應度函數值相差不太大的個體被選到的概率相近,增加了基因的多樣性。
使用:十進制編碼來進行求解,改變交叉方案,保持兩個個體等位基因和不變的情況下隨機賦值。
參數如下:
上圖可以看出該方案與之前有明顯的不同,在整個過程中,個體始終遍布整個搜索空間,雖然新產生的個體大多還是集中在一個十字架型的位置上,但其他位置的個體比之前的方案要多。
看看結果,
這次的結果明顯好於之前的所有方案,但仍可以看出,十進制的遺傳演算法的精度不高,只能找到最優解的附近,也有可能是演算法的收斂速度實在太慢,還沒有收斂到最優解。
遺傳演算法的探究到此也告一段落,在研究遺傳演算法時總有一種力不從心的感覺,問題可能在於遺傳演算法只提出了一個大致的核心思想,其他的實現細節都需要自己去思考,而每個人的思維都不一樣,一萬個人能寫出一萬種遺傳演算法,其實不僅是遺傳演算法,後面的很多演算法都是如此。
為什麼沒有對遺傳演算法的參數進行調優,因為遺傳演算法的參數過於簡單,對結果的影響的可解釋性較強,意義明顯,實驗的意義不大。
遺傳演算法由於是模仿了生物的進化過程,因此我感覺它的求解速度非常的慢,而且進化出來的結果不一定是最適應環境的,就像人的闌尾、視網膜結構等,雖然不是最佳的選擇但是也被保留到了今天。生物的進化的隨機性較大,要不是恐龍的滅絕,也不會有人類的統治,要不是人類有兩只手,每隻手有5根手指,也不會產生10進制。
以下指標純屬個人yy,僅供參考
目錄
上一篇 優化演算法筆記(五)粒子群演算法(3)
下一篇 優化演算法筆記(七)差分進化演算法
優化演算法matlab實現(六)遺傳演算法matlab實現