當前位置:首頁 » 操作系統 » 關系型資料庫與大數據

關系型資料庫與大數據

發布時間: 2023-03-29 04:14:12

Ⅰ 大數據的特徵有哪些

Volume:數據量巨大。
體量大是大數據區分於傳統數據最顯著的特徵。 一般關系型資料庫處理的數據量在TB級,大數據所處理的數據量通常在PB級以上。
Variety:數據類型多。
大數據所處理的計算機數據類型早已不是單一的文本形式或者結構化資料庫中的表,它包括訂單、日誌、BLOG、微博、音頻、視頻等各種復雜結構的數據。
Velocity:數據流動快。
速度是大數據區分桐畢銷於傳統數據的重要特徵。 在海量數據面前,需要實時分析獲數陵取需要的信息,處理數據的局游效率就是組織的生命。

Ⅱ 大數據是什麼專業學的是些什麼

大數據專業全稱「大數據採集與管理專業」。
大數據採集與管理專業是從大數據應用的數據管理、系統開發、海量數據分析與挖掘等層面系統地幫助企業掌握大數據應用中的各種典型問題的解決辦法的專業。
1、行業現狀:現在越來越多的行業對大數據應用持樂觀的態度,大數據或者相關數據分析解決方案的使用在互聯網行業,比如網路、騰訊、淘寶、新浪等公司已經成為標准。而像電信、金融、能源這些傳統行業,越來越多的用戶開始嘗試或者考慮怎麼樣使用大數據解決方案,來提升自己的業務水平。
2、課程設置:大數據專業將從大數據應用的三個主要層面(即數據管理、系統開發、海量數據分析與挖掘)系統地幫助企業掌握大數據應用中的各種典型問題的解決辦法,包括實現和分析協同過濾演算法、運行和學習分類演算法、分布式Hadoop集群的搭建和基準測試、分布式Hbase集群的搭建和基準測試、實現一個基於、Maprece的並行演算法、部署Hive並實現一個的數據操作等等,實際提升企業解決實際問題的能力備源。
3、核心技術:
(1)大數據與Hadoop生態系統。詳細介紹分析分布式文件系統HDFS、集群文件系統ClusterFS和Nosql Database技術的原理與應用;分布式計算框架Maprece、分布式資料庫HBase、分布式數據倉庫Hive。
(2)關系型資料庫技術。詳細介紹關系型資料庫的原理,掌握典型企業級配世資料庫的構建、管理、開發及應用。
(3)分布式數據處理。詳細介紹分析Map/Rece計算模型和Hadoop Map/Rece技術的原理與應用。
(4)海量數據分析與數據挖掘。詳細介紹數據挖掘技培滾肢術、數據挖掘演算法–Minhash, Jaccard and Cosine similarity,TF-IDF數據挖掘演算法–聚類演算法;以及數據挖掘技術在行業中的具體應用。
(5)物聯網與大數據。詳細介紹物聯網中的大數據應用、遙感圖像的自動解譯、時間序列數據的查詢、分析和挖掘。
(6)文件系統(HDFS)。詳細介紹HDFS部署,基於HDFS的高性能提供高吞吐量的數據訪問
(7)NoSQL。詳細介紹NoSQL非關系型資料庫系統的原理、架構及典型應用。

Ⅲ 資料庫主要分為哪兩種類型

資料庫主要分為關系資料庫和非關系型資料庫(NoSQL)。

1、關系資料庫

關系型資料庫,存儲的格式可以直觀地反映實體間的關系。關系型資料庫和常見的表格比較相似,關系型資料庫中表與表之間是有很多復雜的關聯關系的。

常見的關系型資料庫有Mysql,SqlServer等。在輕量或者小型的應用中,使用不同的關系型資料庫對系統的性能影響不大,但是在構建大型應用時,則需要根據應用的業務需求和性能需求,選擇合適的關系型資料庫。

2、非關系型資料庫(NoSQL)

指分布式的、非關系型的、不保證遵循ACID原則的數據存儲系統。NoSQL資料庫技術與CAP理論、一致性哈希演算法有密切關系。NoSQL資料庫適合追求速度和可擴展性、業務多變的應用場景。



(3)關系型資料庫與大數據擴展閱讀

關系資料庫分為兩類:一類是桌面資料庫,例如Access、FoxPro和dBase等;另一類是客戶/伺服器資料庫,例如SQL Server、Oracle和Sybase等。桌面資料庫用於小型的、單機的應用程序,它不需要網路和伺服器,實現起來比較方便,但它只提供數據的存取功能。

客戶/伺服器資料庫主要適用於大型的、多用戶的資料庫管理系統,應用程序包括兩部分:一部分駐留在客戶機上,用於向用戶顯示信息及實現與用戶的交互;另一部分駐留在伺服器中,主要用來實現對資料庫的操作和對數據的計算處理。

Ⅳ 請分析「大數據」的存儲方式及主要業務跟課中所講解的關系型資料庫有何區別

大數據的存儲方式主要使用noSQL
這種資料庫有幾個特點,一個是針對大數據環境,它是分布式的,另一個他的操作非常原始,只有Keyvalue讀寫
關系資料庫呢,一般都是單機的,因為關系資料庫最強大的就是事務,事物在分布式環境很難實現,所以關系資料庫通常都是單機版,另外一個是關系資料庫,它的計算層次更高,是表格上的運算

Ⅳ 傳統的關系型資料庫在應對大數據時有哪些不足又是怎樣改進的2、cap理論和應用求解答!!急!

關系型資料庫的主要特徵 1)數據集中控制,在文件管理方法中,文件是分散的,每個用戶或每種處理都有各自的文件,這些文件之間一般是沒有聯系的,

Ⅵ 大數據與關系型資料庫水火不容嗎

不沖突,各有用處。
很多大數據應用還是基於關系型資料庫。
大數據一般和具體應用相關,關系型資料庫是一種工具。

Ⅶ 請問大數據的關鍵技術有哪些

分布式計算,非結構化資料庫,分類、聚類等演算法。

大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。

(7)關系型資料庫與大數據擴展閱讀:

大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。

大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

Ⅷ 大數據三大核心技術:拿數據、算數據、賣數據!

大數據的由來

對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

1

麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大數據的應用領域

大數據無處不在,大數據應用於各個行業,包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂 等在內的 社會 各行各業都已經融入了大數據的印跡。

製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

汽車 行業,利用大數據和物聯網技術的無人駕駛 汽車 ,在不遠的未來將走入我們的日常生活。

互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。

電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

能源行業,隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。

物流行業,利用大數據優化物流網路,提高物流效率,降低物流成本。

城市管理,可以利用大數據實現智能交通、環保監測、城市規劃和智能安防。

體育 娛樂 ,大數據可以幫助我們訓練球隊,決定投拍哪種 題財的 影視作品,以及預測比賽結果。

安全領域,政府可以利用大數據技術構建起強大的國家安全保障體系,企業可以利用大數據抵禦網路攻擊,警察可以藉助大數據來預防犯罪。

個人生活, 大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為習慣,為其提供更加周到的個性化服務。

大數據的價值,遠遠不止於此,大數據對各行各業的滲透,大大推動了 社會 生產和生活,未來必將產生重大而深遠的影響。

大數據方面核心技術有哪些?

大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。首先給出一個通用化的大數據處理框架,主要分為下面幾個方面:數據採集與預處理、數據存儲、數據清洗、數據查詢分析和數據可視化。

數據採集與預處理

對於各種來源的數據,包括移動互聯網數據、社交網路的數據等,這些結構化和非結構化的海量數據是零散的,也就是所謂的數據孤島,此時的這些數據並沒有什麼意義,數據採集就是將這些數據寫入數據倉庫中,把零散的數據整合在一起,對這些數據綜合起來進行分析。數據採集包括文件日誌的採集、資料庫日誌的採集、關系型資料庫的接入和應用程序的接入等。在數據量比較小的時候,可以寫個定時的腳本將日誌寫入存儲系統,但隨著數據量的增長,這些方法無法提供數據安全保障,並且運維困難,需要更強壯的解決方案。

Flume NG

Flume NG作為實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據,同時,對數據進行簡單處理,並寫到各種數據接收方(比如文本,HDFS,Hbase等)。Flume NG採用的是三層架構:Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數據源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數據,讀取成功之後會刪除channel中的信息。

NDC

Logstash

Logstash是開源的伺服器端數據處理管道,能夠同時從多個來源採集數據、轉換數據,然後將數據發送到您最喜歡的 「存儲庫」 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數據來源捕捉事件,能夠以連續的流式傳輸方式,輕松地從您的日誌、指標、Web 應用、數據存儲以及各種 AWS 服務採集數據。

Sqoop

Sqoop,用來將關系型資料庫和Hadoop中的數據進行相互轉移的工具,可以將一個關系型資料庫(例如Mysql、Oracle)中的數據導入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數據導入到關系型資料庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapRece 作業(極其容錯的分布式並行計算)來執行任務。Sqoop 的另一大優勢是其傳輸大量結構化或半結構化數據的過程是完全自動化的。

流式計算

流式計算是行業研究的一個熱點,流式計算對多個高吞吐量的數據源進行實時的清洗、聚合和分析,可以對存在於社交網站、新聞等的數據信息流進行快速的處理並反饋,目前大數據流分析工具有很多,比如開源的strom,spark streaming等。

Strom集群結構是有一個主節點(nimbus)和多個工作節點(supervisor)組成的主從結構,主節點通過配置靜態指定或者在運行時動態選舉,nimbus與supervisor都是Storm提供的後台守護進程,之間的通信是結合Zookeeper的狀態變更通知和監控通知來處理。nimbus進程的主要職責是管理、協調和監控集群上運行的topology(包括topology的發布、任務指派、事件處理時重新指派任務等)。supervisor進程等待nimbus分配任務後生成並監控worker(jvm進程)執行任務。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。

Zookeeper

Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。它的作用主要有配置管理、名字服務、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那麼對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數據的可靠和一致性,同時它可以通過名字來獲取資源或者服務的地址等信息,可以監控集群中機器的變化,實現了類似於心跳機制的功能。

數據存儲

Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。

HBase

HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。HBase是一種Key/Value系統,部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用伺服器,來增加計算和存儲能力。

Phoenix

Phoenix,相當於一個Java中間件,幫助開發工程師能夠像使用JDBC訪問關系型資料庫一樣訪問NoSQL資料庫HBase。

Yarn

Yarn是一種Hadoop資源管理器,可為上層應用提供統一的資源管理和調度,它的引入為集群在利用率、資源統一管理和數據共享等方面帶來了巨大好處。Yarn由下面的幾大組件構成:一個全局的資源管理器ResourceManager、ResourceManager的每個節點代理NodeManager、表示每個應用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。

Mesos

Mesos是一款開源的集群管理軟體,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應用架構。

Redis

Redis是一種速度非常快的非關系資料庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內存的鍵值對數據持久化到硬碟中,使用復制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。

Atlas

Atlas是一個位於應用程序與MySQL之間的中間件。在後端DB看來,Atlas相當於連接它的客戶端,在前端應用看來,Atlas相當於一個DB。Atlas作為服務端與應用程序通訊,它實現了MySQL的客戶端和服務端協議,同時作為客戶端與MySQL通訊。它對應用程序屏蔽了DB的細節,同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動後會創建多個線程,其中一個為主線程,其餘為工作線程。主線程負責監聽所有的客戶端連接請求,工作線程只監聽主線程的命令請求。

Ku

Ku是圍繞Hadoop生態圈建立的存儲引擎,Ku擁有和Hadoop生態圈共同的設計理念,它運行在普通的伺服器上、可分布式規模化部署、並且滿足工業界的高可用要求。其設計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數據分析能力。Ku不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數據分析的要求。Ku的應用場景很廣泛,比如可以進行實時的數據分析,用於數據可能會存在變化的時序數據應用等。

在數據存儲過程中,涉及到的數據表都是成千上百列,包含各種復雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數據進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁碟上的存儲。

數據清洗

MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算,」Map(映射)」和」Rece(歸約)」,是它的主要思想。它極大的方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統中。

隨著業務數據量的增多,需要進行訓練和清洗的數據會變得越來越復雜,這個時候就需要任務調度系統,比如oozie或者azkaban,對關鍵任務進行調度和監控。

Oozie

Oozie是用於Hadoop平台的一種工作流調度引擎,提供了RESTful API介面來接受用戶的提交請求(提交工作流作業),當提交了workflow後,由工作流引擎負責workflow的執行以及狀態的轉換。用戶在HDFS上部署好作業(MR作業),然後向Oozie提交Workflow,Oozie以非同步方式將作業(MR作業)提交給Hadoop。這也是為什麼當調用Oozie 的RESTful介面提交作業之後能立即返回一個JobId的原因,用戶程序不必等待作業執行完成(因為有些大作業可能會執行很久(幾個小時甚至幾天))。Oozie在後台以非同步方式,再將workflow對應的Action提交給hadoop執行。

Azkaban

Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務之間的依賴關系問題。azkaban主要是由三部分構成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數的狀態信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調度以及對工作流執行過程中的監控等;Azkaban Executor Server用來調度工作流和任務,記錄工作流或者任務的日誌。

流計算任務的處理平台Sloth,是網易首個自研流計算平台,旨在解決公司內各產品日益增長的流計算需求。作為一個計算服務平台,其特點是易用、實時、可靠,為用戶節省技術方面(開發、運維)的投入,幫助用戶專注於解決產品本身的流計算需求

數據查詢分析

Hive

Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數據,它完全依賴於HDFS和MapRece。可以將Hive理解為一個客戶端工具,將SQL操作轉換為相應的MapRece jobs,然後在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapRece程序的過程,它的出現可以讓那些精通SQL技能、但是不熟悉MapRece 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規模數據集上很方便地利用SQL 語言查詢、匯總、分析數據。

Hive是為大數據批量處理而生的,Hive的出現解決了傳統的關系型資料庫(MySql、Oracle)在大數據處理上的瓶頸 。Hive 將執行計劃分成map->shuffle->rece->map->shuffle->rece…的模型。如果一個Query會被編譯成多輪MapRece,則會有更多的寫中間結果。由於MapRece執行框架本身的特點,過多的中間過程會增加整個Query的執行時間。在Hive的運行過程中,用戶只需要創建表,導入數據,編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。

Impala

Impala是對Hive的一個補充,可以實現高效的SQL查詢。使用Impala來實現SQL on Hadoop,用來進行大數據實時查詢分析。通過熟悉的傳統關系型資料庫的SQL風格來操作大數據,同時數據也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapRece批處理,而是通過使用與商用並行關系資料庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統計函數查詢數據,從而大大降低了延遲。Impala將整個查詢分成一執行計劃樹,而不是一連串的MapRece任務,相比Hive沒了MapRece啟動時間。

Hive 適合於長時間的批處理查詢分析,而Impala適合於實時互動式SQL查詢,Impala給數據人員提供了快速實驗,驗證想法的大數據分析工具,可以先使用Hive進行數據轉換處理,之後使用Impala在Hive處理好後的數據集上進行快速的數據分析。總的來說:Impala把執行計劃表現為一棵完整的執行計劃樹,可以更自然地分發執行計劃到各個Impalad執行查詢,而不用像Hive那樣把它組合成管道型的map->rece模式,以此保證Impala有更好的並發性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。

Spark

Spark擁有Hadoop MapRece所具有的特點,它將Job中間輸出結果保存在內存中,從而不需要讀取HDFS。Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。Spark 是在 Scala 語言中實現的,它將 Scala 用作其應用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數據集。

Nutch

Nutch 是一個開源Java 實現的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。

Solr

Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業級搜索應用的全文搜索伺服器。它對外提供類似於Web-service的API介面,用戶可以通過http請求,向搜索引擎伺服器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,並得到XML格式的返回結果。

Elasticsearch

Elasticsearch是一個開源的全文搜索引擎,基於Lucene的搜索伺服器,可以快速的儲存、搜索和分析海量的數據。設計用於雲計算中,能夠達到實時搜索,穩定,可靠,快速,安裝使用方便。

還涉及到一些機器學習語言,比如,Mahout主要目標是創建一些可伸縮的機器學習演算法,供開發人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數據流圖進行數值計算的開源軟體庫TensorFlow等,常用的機器學習演算法比如,貝葉斯、邏輯回歸、決策樹、神經網路、協同過濾等。

數據可視化

對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。主流的BI平台比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內的SmallBI和新興的網易有數等。

在上面的每一個階段,保障數據的安全是不可忽視的問題。

基於網路身份認證的協議Kerberos,用來在非安全網路中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網路環境下通信,向另一個實體以一種安全的方式證明自己的身份。

控制許可權的ranger是一個Hadoop集群許可權框架,提供操作、監控、管理復雜的數據許可權,它提供一個集中的管理機制,管理基於yarn的Hadoop生態圈的所有數據許可權。可以對Hadoop生態的組件如Hive,Hbase進行細粒度的數據訪問控制。通過操作Ranger控制台,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、資料庫、表、欄位許可權。這些策略可以為不同的用戶和組來設置,同時許可權可與hadoop無縫對接。

簡單說有三大核心技術:拿數據,算數據,賣數據。

Ⅸ 大數據處理伺服器配置和關系型資料庫伺服器配置哪個高

關系型資料庫簡介關系型資料庫以行和列的形式存儲數據,以便於用戶理解。這一系列的行和列被稱為表,一組表組成了資料庫。用戶用查詢(Query)來檢索資料庫中的數據。一個Query是一個用於指定資料庫中行和列的SELECT語句。關系型資料庫通常包含下列組件:客戶端應用程序(Client)資料庫伺服器(Server)資料庫(Database)StructuredQueryLanguage(SQL)Client端和Server端的橋梁,Client用SQL來象Server端發送請求,Server返回Client端要求的結果。現在流行的大型關系型資料庫有IBMDB2、IBMUDB、Oracle、SQLServer、SyBase、Informix等。關系型資料庫並不是唯一的高級資料庫模型,也完全不是性能最優的模型,但是關系型資料庫確實是現今使用最廣泛、最容易理解和使用的資料庫模型。大多數的企業級系統資料庫都採用關系型資料庫,關系型資料庫的概念是掌握資料庫開發的基礎,所以本節的問題也成為.NET面試中頻繁出現的問題之一。所涉及的知識點關系型資料庫的概念關系型資料庫的優點分迅配缺析問題關系型資料庫的概念所謂關系型資料庫,是指採用了關系模型來組織數據的資料庫。關系模型是在1970年由IBM的研究員E.F.Codd博士首先提出,在之後的幾十年中,關系模型的概念得到了充分的發展並逐漸成為資料庫架構的主流模型。簡單來說,關系模型指的就是二維表格模型,而一個關系型資料庫就是由二維表及其之間的聯系組成的一個數據組織。下面列出了關系模型中的常用概念。關系:可以理解為一張二維表,每個關系都具有一個關系名,就是通常說的表名。元組:可以理解為二維表中的一行,在資料庫中經常被稱為記錄。屬性:可以理解為二維表中的一列,在資料庫中經常被稱為欄位。域:屬性的取值范圍,也就是資料庫中某一列的取值限制。關鍵字:一組可以唯一標識元組的屬性。資料庫中常稱為主鍵,由一個或多個列組成。關系模式:指對關系的描述,其格式為:關系名(屬性1,屬性2,…,屬性N)。在資料庫中通常稱為表結構。關系型資料庫的優點關系型資料庫相比其他模型的資料庫而言,有著以下優點:容易理解:二維表結構是非常貼近邏輯世界的一個概念,關系模型相對網狀、層次等其他模型來說更容易理解。使用方便:通用的SQL語言使得操作關系型資料庫非常方便,程序員甚至於數據管理員可以方便地在邏輯層面操作資料庫,而完畝辯全不必理解其底層實現。易於維護:豐富的完整性(實體完整性、參照完整性和用戶定義的完整性)大大降低了數據冗餘和數據不一致的概率。近幾年來,非關系型資料庫在理論上得到了飛快的發展,例如:網狀模型、對象模型、半結構化模型等。網狀模型擁有性能較高的優點,通常應用在對性能要求較高的系統中;對象模型符合面向對象應用程序的賣猛思想,可以完美地和程序銜接,而不需要另外的中間轉換組件,例如現在很多的O\RMapping組件;半結構化模型隨著XML的發展而得到發展,現在已經有了很多半結構化的資料庫模型。但是,憑借其理論的成熟、使用的便捷以及現有應用的廣泛,關系型資料庫仍然是系統應用中的主流方案。

Ⅹ 資料庫一體機與大數據技術區別何在

資料庫一體機與大數據技術區別何在
作為近期信息管理領域最為熱門的兩項技術,資料庫一體機與大數據技術的硬體架構基本相同,但軟體體系有著本質的區別,這也導致了兩者擁有不同的特徵表現。
隨著企業數據量的快速增長,以及用戶對服務水平要求的不斷提高,相當長的一段時間以來,傳統關系資料庫技術在生產實踐中表現出明顯的能力不足。如何以合理的成本獲得海量數據的高可用性已經成為現代IT領域的重大挑戰。為了應對這一挑戰,近年來,IT市場中相繼出現了許多新的技術手段,其中最為引人注目的便是由主流資料庫廠商主導的資料庫一體機(例如Oracle ExaData以及IBM Netezza等),以及以開源力量為主的大數據技術。
不過,雖然資料庫一體機與大數據技術都是當今的熱門話題,並都已經被廣泛應用,但卻有相當一部分用戶仍然無法深入了解兩者之間的本質區別與關系。同時,很多用戶也在為如何在企業內部對這兩者進行正確定位而感到困惑。為此,本文特別對資料庫一體機(也可稱新一代主流關系型資料庫)和大數據技術(例如Hadoop,主要指MapRece與NoSQL)的相關技術特點進行對比。
硬體與軟體
從本質上來講,資料庫一體機與大數據技術的硬體架構基本相同,同樣是採用x86伺服器集群的分布式並行模式,以應對大規模的數據與計算。但是,資料庫一體機的賣家們通常會對其產品的硬體體系進行面向產品化的、系統性的整體調優,同時也會有各自的特色手段。比方說Oracle ExaData的Infiniband、Flash Cache,IBM Nettezza的FPGA(現場可編程邏輯門陣)等。[page] 資料庫一體機與大數據技術最為核心的區別是在軟體體繫上。資料庫一體機的核心是SQL體系,這不只是指SQL解析,更重要的是指包括SQL優化引擎、索引、鎖、事務、日誌、安全以及管理等在內的完整而龐大的技術體系。這一體系是成熟的、面向產品的。
大數據技術軟體體系中的MapRece則提供了一個面向海量數據處理的分布式編程框架,使用者需要自行編制所需要的計算邏輯。MapRece對數據的讀寫是批量連續的,而不是隨機的。而大數據技術的另一體系NoSQL則大都只是提供了海量數據的分布式存儲,以及基於索引的快速讀取機制,為使用者提供的大多是編程API(雖然也有類SQL的語言,但其本質並不是完整的SQL體系)。
由於SQL體系的復雜性與處理邏輯的整體關聯性,導致資料庫一體機在擴展性上遠不及大數據技術體系,雖然前者已經在很大程度上改善了傳統關系資料庫垂直擴展的瓶頸。MapRece與NoSQL的單個集群往往可以擴展到數千個節點,而資料庫一體機如果在硬體上擴展到這個規模,從軟體上來講,已經是沒有意義的了。
特徵與本質
基於軟體體系的不同,導致了資料庫一體機和大數據技術有著不同的特徵表現。資料庫一體機往往適合於存儲關系復雜的數據模型(例如企業核心業務數據),並且需要限制為基於二維表的關系模型。同時,資料庫一體機適合進行一致性與事務性要求高的計算,以及復雜的BI計算。
大數據技術則更適合於存儲較簡單的數據模型,並且可以不受模式的約束。因而其可存儲管理的數據類型更加豐富。大數據技術還適合進行一致性與事務性要求不高的計算(主要是指NoSQL的查詢操作),以及對超大規模海量數據的、批量的分布式並行計算(基於MapRece)。
需要注意的是,NoSQL資料庫由於擺脫了繁瑣的SQL體系約束,其查詢與插入的效率比資料庫一體機更高。大數據技術比資料庫一體機所能處理的數據量也相對大些,這主要是因為其集群可以擴展得更大。
從本質上講,MapRece是對海量數據分布式計算領域的一個重要創新,但也只是在適合於並行處理的大規模批量處理問題上更占優勢,而對一些復雜操作,則不一定具有優勢。NoSQL則可以看作是對傳統關系資料庫進行簡化的結果。由於NoSQL資料庫的設計思想只是提取出關系型資料庫的索引機制,並加了上分布式存儲,把SQL體系中那些對「某些特殊問題」而言並不需要的東西統統刪去,由此實現了更優秀的效率、擴展性與靈活性。[page] 因此,我們可以明顯地看到,在實踐中,有很多問題(特別是流行的大數據問題),關系資料庫中的許多設計並不需要,這才是NoSQL發展壯大的根本立足點。
關系與協作
通過前面的分析,我們不難得出這樣的結論:大數據技術與資料庫一體機應該是相輔相成,並非互相替代的。它們針對不同的應用場景設計,並相互補充與合作。具體來說,大數據技術可以實現:
■處理企業內海量的、模型簡單、類型多樣的非結構化與半結構化數據(例如社會化數據、各種日誌甚至圖片、視頻等),其處理結果可以被直接使用;
■以上處理結果也同時可以被當成是新的輸入存儲到企業級數據倉庫中,這時大數據機相當於是面向大數據源的、新的ETL(提取-轉換-載入)手段;
■面向海量數據的、不太適合SQL的存儲或計算。
而資料庫一體機則應該還是作為企業數據倉庫的主流技術,至少在很長一段時間內應該是這樣。它負責存儲與計算最主要的、有重大價值的企業關鍵業務數據。
現存的誤區
有些人認為,雖然大數據技術的原始開源狀態還不適合充當企業級數據倉庫主平台的要求,但經過開發、補充,應該是可以的。其實這個觀點沒有錯。但實際上,對開源的大數據技術進行補充開發,所要補充的正是大數據技術在原始設計上就去除了的、那些本屬於關系型資料庫體系的東西。
如果進行這樣的補充開發,企業不僅會面臨龐大的、難於估計的開發工作量,同時也難以像專業資料庫廠商那樣實現這些工作的理論化、產品化與體系化。雖然從純技術的角度上講,開發什麼都有可能。但是如果企業真的准備這樣做,是要開發另一個商業化的關系資料庫嗎?很明顯,這違背了大數據技術的設計初衷。

熱點內容
用解壓造句 發布:2025-05-19 17:01:55 瀏覽:340
openwrt編譯取消跑碼 發布:2025-05-19 16:50:28 瀏覽:125
知道了寬頻賬號密碼如何連接 發布:2025-05-19 16:49:49 瀏覽:656
時間輪資料庫 發布:2025-05-19 16:45:20 瀏覽:269
ipad緩存垃圾怎麼清理 發布:2025-05-19 16:44:46 瀏覽:536
視頻加解壓 發布:2025-05-19 16:35:28 瀏覽:7
c語言大學教程第六版 發布:2025-05-19 16:04:21 瀏覽:741
androidvr播放器 發布:2025-05-19 15:55:32 瀏覽:965
我的世界pc如何創建伺服器 發布:2025-05-19 15:51:24 瀏覽:734
搶腳本 發布:2025-05-19 15:47:14 瀏覽:407