當前位置:首頁 » 操作系統 » 貪心演算法設計

貪心演算法設計

發布時間: 2023-04-03 16:21:09

1. 一個關於貪心演算法的課程設計

string sdx2 = "\u996d";
是按unicode編碼輸出的
「飯」的unicode編碼是「996d」

2. 程序設計一課中提到的貪婪法基本思想是什麼啊

貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
貪婪演算法的一般方法
1、問題描述
它有n個輸入,而它的解就由這n個輸入的某個子集組成,只是這個子集必須滿足某些事先給定的條件。
2、約束條件 那些必須滿足的條件稱為約束條件。
3、可行解 滿足約束條件的子集稱為該問題的可行解。
4、目標函數 事先給定的衡量可行解優劣的量度標准,通常以函數的形式給出,稱為目標函數。
5、最優解 使目標函數取極值(極大或極小)的可行解,稱為最優解。
6、子結構模式 貪心技術中,問題的最優一般是原輸入的子集,獲取最優子集的貪心方法為子結構模式
7、有序模式 通過計算已有的判定而得出的最優條件,可以為下一步的判定提供依據,這種形式的貪心演算法稱為有序模式。
8、貪婪演算法求解思想(分步處理)
�8�4 根據題意,選取一種量度標准;
�8�4 然後按這種量度標准對這n個輸入排序,並按序一次輸入一個量。
�8�4 如果這個輸入和當前已構成在這種量度意義下的部分最優解加在一起不能產生一個可行解,則不把此輸入加到這部分解中。
這種能夠得到某種意義下的最優解的分級處理方法稱為貪心演算法。

3. 什麼是貪心演算法

貪心演算法的基本思想就是分級處理。

貪心演算法是一種分級處理的方法。用貪心法設計演算法的特點是一步一步的進行,根據某個優化測度(可能是目標函數,也可能不是目標函數),每一步上都要保證能獲得局部最優解。每一步只考慮一個數據,它的選取應滿足握檔局部優化條件。若下一個數據與部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加為止。

3、還有一個函數檢查是否一個候選對象的集合是可行的,也即是否可能往該集合上添加更多的候選對象以獲得一個解。和上一個函數一樣,此時不考慮解決方法的最優性。

4、選搜歲擇函數可以指出哪一個剩餘的候選對象最有希望構成問題的解。

5、最後,目標函數給出解的值。

4. (三) 貪心演算法

貪心演算法的思想非常簡單且演算法效率很高,在一些問題的解決上有著明顯的優勢。

假設有3種硬幣,面值分別為1元、5角、1角。這3種硬幣各自的數量不限,現在要找給顧客3元6角錢,請問怎樣找才能使得找給顧客的硬幣數量最少呢?

你也許會不假思索的說出答案:找給顧客3枚1元硬幣,1枚5角硬幣,1枚1角硬幣。其實也可以找給顧客7枚5角硬幣,1枚1角硬幣。可是在這里不符合題意。在這里,我們下意識地應用了所謂貪心演算法解決這個問題。

所謂貪心演算法,就是 總是做出在當前看來是最好的選擇(未從整體考慮) 的一種方法。以上述的題目為例,為了找給顧客的硬幣數量最少,在選擇硬幣的面值時,當然是盡可能地選擇面值大的硬幣。因此,下意識地遵循了以下方案:
(1)首先找出一個面值不超過3元6角的最大硬幣,即1元硬幣。
(2)然後從3元6角中減去1元,得到2元6角,再找出一個面值不超過2元6角的最大硬幣,即1元硬幣。
(3)然後從2元6角中減去1元,得到1元6角,再找出一個面值不超過1元6角的最大硬幣,即1元硬幣。
(4)然後從1元6角中減去1元,得到6角,再找出一個面值不超過6角的最大硬幣,即5角硬幣。
(5)然後從6角中減去5角,得到1角,再找出一個面值不超過1角的最大硬幣,即1角硬幣。
(6)找零錢的過程結束。
這個過程就是一個典型的貪心演算法思想。

貪心策略總是做出在當前看來是最優的選擇,也就是說貪心策略並不是從整體上加以考慮,它所做出的選擇只是在某種意義上的 局部最優解 ,而許多問題自身的特性決定了該問題運用貪心策略可以得到最優解或較優解。(註:貪心演算法不是對所有問題都能得到整體最優解,但對范圍相當廣泛的許多問題它能產生整體最優解。但其解必然是最優解的很好近似解。)

貪心演算法沒有固定的演算法框架,演算法設計的關鍵是 貪心策略的選擇 。選擇的貪心策略必須具備無後效性。

貪心策略 適用的前提 是:

嚴格意義上講,要使用貪心演算法求解問題,該問題應當具備以下性質:

注意 :對於一個給定的問題,往往可能有好幾種量度標准。初看起來,這些量度標准似乎都是可取的,但實際上,用其中的大多數量度標准作貪婪處理所得到該量度意義下的最優解並不是問題的最優解,而是次優解。

因此, 選擇能產生問題最優解的最優量度標準是使用貪婪演算法的核心 。

實際上,貪心演算法 適用的情況很少 。一般,對一個問題分析是否適用於貪心演算法,可以先選擇該問題下的幾個實際數據進行分析,就可做出判斷。

最優解問題大部分都可以拆分成一個個的子問題(多階段決策問題),把解空間的遍歷視作對子問題樹的遍歷,則以某種形式對樹整個的遍歷一遍就可以求出最優解,大部分情況下這是不可行的。

貪心演算法和動態規劃本質上是對子問題樹的一種修剪,兩種演算法要求問題都具有的一個性質就是子問題最優性(組成最優解的每一個子問題的解,對於這個子問題本身肯定也是最優的)。

動態規劃方法代表了這一類問題的一般解法, 自底向上 構造子問題的解,對每一個子樹的根,求出下面每一個葉子的值,並且以其中的最優值作為自身的值,其它的值舍棄。

而貪心演算法是動態規劃方法的一個特例,可以證明每一個子樹的根的值不取決於下面葉子的值,而只取決於當前問題的狀況。換句話說,不需要知道一個節點所有子樹的情況,就可以求出這個節點的值。由於貪心演算法的這個特性,它對解空間樹的遍歷不需要自底向上,而只需要自根開始( 自頂向下 ),選擇最優的路,一直走到底就可以了。

一個問題分為多個階段,每個階段可以有n種決策,各個階段的決策構成一個決策序列,稱為一個策略。
這兩種演算法都是選擇性演算法,在進行決策的選擇時:

前提是這個問題得具有貪心選擇性質,需要證明(數學歸納法(第一、第二)),如果不滿足那就只能使用動態規劃解決。(一旦證明貪心選擇性質,用貪心演算法解決問題比動態規劃具有更低的時間復雜度和空間復雜度。)

從范疇上來看:
Greedy ⊂ DP ⊂ Searching (貪心是動規的特例)
即所有的貪心演算法問題都能用DP求解,更可以歸結為一個搜索問題,反之不成立。

貪心演算法所作的選擇可以依賴於以往所作過的選擇,但決不依賴於將來的選擇,也不依賴於子問題的解,這使得演算法在編碼和執行的過程中都有著一定的速度優勢。如果一個問題可以同時用幾種方法解決,貪心演算法應該是最好的選擇之一。但是貪心演算法並不是對所有的問題都能得到整體最優解或最理想的近似解,與回溯法等比較,它的適用區域相對狹窄許多,因此正確地判斷它的應用時機十分重要。

一步一步地進行,常 以當前情況為基礎根據某個優化測度作最優選擇,而不考慮各種可能的整體情況 ,它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。

它採用 自頂向下 ,以 迭代 的方法做出相繼的貪心選擇,每做一次貪心選擇就將所求問題簡化為一個規模更小的子問題,通過每一步貪心選擇,可得到問題的一個最優解,雖然每一步上都要保證能獲得局部最優解,但由此產生的全局解有時不一定是最優的,所以 貪心法不需要回溯 。

【問題描述】
馬的遍歷問題。在8×8方格的棋盤上,從任意指定方格出發,為馬尋找一條走遍棋盤每一格並且只經過一次的一條最短路徑。

【貪心演算法】
其實馬踏棋盤的問題很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一個有名的演算法。在每個結點對其子結點進行選取時,優先選擇『出口』最小的進行搜索,『出口』的意思是在這些子結點中它們的可行子結點的個數,也就是『孫子』結點越少的越優先跳,為什麼要這樣選取,這是一種局部調整最優的做法,如果優先選擇出口多的子結點,那出口少的子結點就會越來越多,很可能出現『死』結點(顧名思義就是沒有出口又沒有跳過的結點),這樣對下面的搜索純粹是徒勞,這樣會浪費很多無用的時間,反過來如果每次都優先選擇出口少的結點跳,那出口少的結點就會越來越少,這樣跳成功的機會就更大一些。

5. 大學課程《演算法分析與設計》中動態規劃和貪心演算法的區別和聯系

對於,大學課程《演算法分析與設計》中動態規劃和貪心演算法的區別和聯系這個問題,首先要來聊聊他們的聯系:1、都是一種推導演算法;2、將它們分解為子問題求解,它們都需要有最優子結構。這兩個特徵師門的聯系。

拓展資料:

貪婪演算法是指在解決問題時,它總是在當前做出最佳選擇。也就是說,在不考慮全局優化的情況下,該演算法在某種意義上獲得了局部最優解。貪婪演算法不能得到所有問題的全局最優解。關鍵是貪婪策略的選擇。

動態規劃是運籌學的一個分支,是解決決策過程優化的過程。20世紀50年代初,美國數學家R·貝爾曼等人在研究多階段決策過程的最優化問題時,提出了著名的最優化原理,建立了動態規劃。動態規劃在工程技術、經濟、工業生產、軍事和自動控制等領域有著廣泛的應用,在背包問題、生產經營問題、資金管理問題、資源分配問題、最短路徑問題和復雜系統可靠性問題上都取得了顯著的成果。

6. 設計貪心演算法

就是這個圖片放大看吧

7. 找零錢問題的貪心演算法

問題描述:
當前有面值分別為2角5分,1角,5分,1分的硬幣,請給出找n分錢的最佳方案(要求找出的硬幣數目最少)
問題分析:
根據常識,我們到店裡買東西找錢時,老闆總是先給我們最大面值的,要是不夠再找面值小一點的,直到找滿為止。如果老闆都給你找分數的或者幾角的,那你肯定不幹,另外,他也可能沒有那麼多零碎的錢給你找。其實這就是一個典型的貪心選擇問題。
問題的演算法設計與實現:
先舉個例子,假如老闆要找給我99分錢,他有上面的面值分別為25,10,5,1的硬幣數,為了找給我最少的硬幣數,那麼他是不是該這樣找呢,先看看該找多少個25分的, 99/25=3,好像是3個,要是4個的話,我們還得再給老闆一個1分的,我不幹,那麼老闆只能給我3個25分,由於還少給我24,所以還得給我2個10分的和4個1分。
具體實現
//找零錢演算法
//By falcon
//輸入:數組m,依次存放從大到小排列的面值數,n為需要找的錢數,單位全部為分
//輸出:數組num,對照數組m中的面值存放不同面值的硬幣的個數,即找錢方案

8. 試設計解決tsp問題的貪心演算法,分析時間復雜度,試分析是否存在o的有效演算法5分

貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。貪心演算法不是對所有問題都能得咐遲禪到整體最優解,但對范圍相當廣泛的許多問題他能產生整體最旦蠢優解或者是整體最優解的近似解。

比如最小生成樹Kruskal演算法,每次在不構成環的前衡塵提下,總是選擇權最小的邊。
找零錢問題:以人民幣1元,2元,5元,10元,20元,50元,100元為例,要求所找的張數最少 背包問題:假設物體重量W1,W2...Wn其對應的價值為P1,P2...Pn,物體可分割,求裝入重量限制為m的背包中的物體價值最大.

熱點內容
內置存儲卡可以拆嗎 發布:2025-05-18 04:16:35 瀏覽:336
編譯原理課時設置 發布:2025-05-18 04:13:28 瀏覽:378
linux中進入ip地址伺服器 發布:2025-05-18 04:11:21 瀏覽:612
java用什麼軟體寫 發布:2025-05-18 03:56:19 瀏覽:32
linux配置vim編譯c 發布:2025-05-18 03:55:07 瀏覽:107
砸百鬼腳本 發布:2025-05-18 03:53:34 瀏覽:944
安卓手機如何拍視頻和蘋果一樣 發布:2025-05-18 03:40:47 瀏覽:742
為什麼安卓手機連不上蘋果7熱點 發布:2025-05-18 03:40:13 瀏覽:803
網卡訪問 發布:2025-05-18 03:35:04 瀏覽:511
接收和發送伺服器地址 發布:2025-05-18 03:33:48 瀏覽:372