遺傳演算法流程
Ⅰ Python實現基於遺傳演算法的排課優化
排課問題的本質是將課程、教師和學生在合適的時間段內分配到合適的教室中,涉及到的因素較多,是一個多目標的調度問題,在運籌學中被稱為時間表問題(Timetable Problem,TTP)。設一個星期有n個時段可排課,有m位教師需要參與排課,平均每位教師一個星期上k節課,在不考慮其他限制的情況下,能夠推出的可能組合就有 種,如此高的復雜度是目前計算機所無法承受的。因此眾多研究者提出了多種其他排課演算法,如模擬退火,列表尋優搜索和約束滿意等。
Github : https://github.com/xiaochus/GeneticClassSchele
遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳演算法的流程如下所示:
遺傳演算法首先針對待解決問題隨機生成一組解,我們稱之為種群(Population)。種群中的每個個體都是問題的解,在優化的過程中,演算法會計算整個種群的成本函數,從而得到一個與種群相關的適應度的序列。如下圖所示:
為了得到新的下一代種群,首先根據適應度對種群進行排序,從中挑選出最優的幾個個體加入下一代種群,這一個過程也被稱為精英選拔。新種群餘下的部分通過對選拔出來的精英個體進行修改得到。
對種群進行修改的方法參考了生物DAN進化的方法,一般使用兩種方法: 變異 和 交叉 。 變異 的做法是對種群做一個微小的、隨機的改變。如果解的編碼方式是二進制,那麼就隨機選取一個位置進行0和1的互相突變;如果解的編碼方式是十進制,那麼就隨機選取一個位置進行隨機加減。 交叉 的做法是隨機從最優種群中選取兩個個體,以某個位置為交叉點合成一個新的個體。
經過突變和交叉後我們得到新的種群(大小與上一代種群一致),對新種群重復重復上述過程,直到達到迭代次數(失敗)或者解的適應性達到我們的要求(成功),GA演算法就結束了。
演算法實現
首先定義一個課程類,這個類包含了課程、班級、教師、教室、星期、時間幾個屬性,其中前三個是我們自定義的,後面三個是需要演算法來優化的。
接下來定義cost函數,這個函數用來計算課表種群的沖突。當被測試課表沖突為0的時候,這個課表就是個符合規定的課表。沖突檢測遵循下面幾條規則:
使用遺傳演算法進行優化的過程如下,與上一節的流程圖過程相同。
init_population :隨機初始化不同的種群。
mutate :變異操作,隨機對 Schele 對象中的某個可改變屬性在允許范圍內進行隨機加減。
crossover :交叉操作,隨機對兩個對象交換不同位置的屬性。
evolution :啟動GA演算法進行優化。
實驗結果
下面定義了3個班,6種課程、教師和3個教室來對排課效果進行測試。
優化結果如下,迭代到第68次時,課程安排不存在任何沖突。
選擇1203班的課表進行可視化,如下所示,演算法合理的安排了對應的課程。
Ⅱ 遺傳演算法的優缺點
優點:
1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。
另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。
2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。
3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。
另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。
4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。
5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。
缺點:
1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。
2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。
3、遺傳演算法效率通常低於其他傳統的優化方法。
4、遺傳演算法容易出現過早收斂的問題。
(2)遺傳演算法流程擴展閱讀
遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。
函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。
為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。
Ⅲ 遺傳演算法理解
遺傳演算法是一種進化演算法,進化是什麼哪?就是種群逐漸適應生存環境,種群中個體不斷得到改良的過程。
遺傳演算法是一種對生物遺傳的模擬、在演算法中,初始化一個種群,種群中的每個染色體個體都是一種解決方案,我們通過適應性fitness來衡量這個解決方案的好壞。並對它們進行選擇、變異、交叉的操作,找到最優的解決方案。
總結一下遺傳演算法的基本的步驟:
1.初始化一個種群,並評估每條染色體所對應個體的適應度。
2.選擇、交叉、變異,產生新的種群
3.再評估每個個體的適應值,如果適應值達到要求或者達到最大循環次數,否則重復2,不斷產生新種群。
知道了GA的大致流程之後、來具體分析一下細節,怎麼實現吧
我們知道遺傳演算法起源於生物遺傳,因此在種群中每個個體就是一個染色體,那如何對染色體進行編碼,讓它表示我們的解決方案那(就是把現實要優化的參數用編碼表示成一個染色體)。這里就遇到了一個編碼、解碼的問題,我們將需要優化的目標編碼成染色體,然後再解碼為我們可以用來計算fitness的解;
一般在進行參數優化時,一般有兩種方式:實數編碼、二進制編碼
實數編碼:基因直接用實數進行表示,這樣的表示方法比較簡單,不用特意解碼了,但是在交叉和變異時,容易過早收斂,陷入局部最優。
二進制編碼:將基因用二進制的形式表示,將參數的值轉化為二進制形式,這樣交叉、變異時更好操作,多樣性好,但是佔用的存儲空間大,需要解碼。
染色體就稱為個體。對於一次實驗,個體就是需要優化參數的一種解、許多這樣的個體就構成了種群。
在面對群體中那麼多個體時,如何判斷個體的好壞呢,就是通過適應值函數了,將解帶入適應值函數,適應值越大、解越好。
在遺傳演算法中,我們怎麼使得裡面的個體變得越來越優秀呢?
核心思想就是:選擇優秀的、淘汰不好的,並且為了生成更好的解,我們要嘗試交叉、變異,帶來新的解。
選擇就是從當前的種群中選擇出比較好的個體、淘汰不好的個體
常見的選擇方法有:輪盤賭選擇、錦標賽選擇、最佳保留選擇等等
輪盤賭選擇就是根據每個個體fitness和種群所有fitness之和比較,確定每個個體被選中的概率,然後進行n次選擇,選擇n個個體構成新種群,是一種放回抽樣的方式。
錦標賽就是每次從種群中選擇m個個體,選擇最優的,放入新種群,重復選擇,直到新種群中個體數目達到n。
最佳保留選擇就是在輪盤賭的基礎上,將fitness個體先加進新種群,因為輪盤賭是一種概率模型,可能存在最優個體沒有進入新種群的情況。
在選擇之後,就要考慮產生新的、更優秀的解,為種群帶來新的血液。遺傳演算法的思路是交叉兩個優秀的解,往往get好的解。
交叉通過在經過選擇的種群中,隨機選擇一對父母,將它們的染色體進行交叉,生成新的個體,替代原來的解。
常用的交叉方法有:單點交叉、多點交叉等等。
交叉就像生物裡面,染色體交換基因一樣的~但是並不是種群中所有個體都進行交叉的,實現時可以,設置一個交叉率和交叉概率,隨機選擇種群中兩個體、隨機一個數,小於交叉率就進行交叉操作,並根據交叉概率判斷交叉的程度,從而生成新個體,反之就保留這兩個體。
變異也是一種產生新個體的方式,通過改變個體上基因,期望產生更好的解。比如在以二進制編碼的個體上,將裡面的0、1進行等位變化啥的,就是0變1、1變0這樣。同樣也要考慮變異率、變異產生的新解是不可控的,可能很好,也可能很壞,不能像交叉一樣,確保一定的效果,所以往往變異率設置的比較小。
Ⅳ 神經網路遺傳演算法函數極值尋優
對於未知的非線性函數,僅通過函數的輸入輸出數據難以准確尋找函數極值。這類問題可以通過神經網路結合遺傳演算法求解,利用神經網路的非線性擬合能力和遺傳演算法的非線性尋優能力尋找函數極值。本文用神經網路遺傳演算法尋優如下非線性函數極值,函數表達式為
函數圖形如下圖1所示。
從函數方程和圖形可以看出,該函數的全局最小值為0,對應的坐標為(0,0)。雖然從函數方程和圖形中很容易找出函數極值及極值對應坐標,但是在函數方程未知的情況下函數極值及極值對應坐標就很難找到。
神經網路遺傳演算法函數極值尋優主要分為BP神經網路訓練擬合和遺傳演算法極值尋優兩步,演算法流程如下圖2所示。
神經網路訓練擬合根據尋優函數的特點構建合適的BP神經網路,用非線性函數的輸出數據訓練BP網路,訓練後的BP神經網路就可以預測函數輸出。遺傳演算法極值尋優把訓練後的BP神經網路預測結果作為個體適應度值,通過選擇、交叉和變異操作尋找函數的全局最優值及對應輸入值。
本文根據非線性函數有2個輸入參數、1個輸出參數,確定BP神經網路結構為2-5-1.取函數的4 000組輸入輸出數據,從中隨機選取3 900組數據訓練網路,100組數據測試網路性能,網路訓練好後用於預測非線性函數輸出。
遺傳演算法中個體採用實數編碼,由於尋優函數只有2個輸入參數,所以個體長度為2。個體適應度值為BP神經網路預測值,適應度值越小。交叉概率為0.4,變異概率為0.2。
用函數輸入輸出數據訓練BP神經網路,使訓練後的網路能夠擬合非線性函數輸出,保存訓練好的網路用語計算個體適應度值。根據非線性函數方程隨機得到該函數的4 000組輸入輸出數據,存儲於data.mat中,其中input為函數輸入數據,output為函數對應輸出數據,從中隨機抽取3 900組訓練數據訓練網路,100組測試數據測試網路擬合性能。最後保存訓練好的網路。
把訓練好的BP神經網路預測輸出作為個體適應度值。
BP神經網路擬合結果分析
本文中個體的適應度值為BP神經網路預測值,因此BP神經網路預測精度對於最優位置的尋找具有非常重要的意義。由於尋優非線性函數有2個輸入參數、1個輸出參數,所以構建的BP神經網路的結構為2-5-1。共取非線性函數4 000組輸入輸出數據,從中隨機選擇3 900組數據訓練BP神經網路,100組數據作為測試數據測試BP神經網路擬合性能,BP神經網路預測輸出和期望輸出對比如下圖3所示。
從BP神經網路預測結果可以看出,BP神經網路可以准確預測非線性函數輸出,可以把網路預測近似看成函數實際輸出。
遺傳演算法尋優結果分析 BP神經網路訓練結束後,可以利用遺傳演算法尋找該非線性函數的最小值。遺傳演算法的迭代次數是100次,種群規模是20,交叉概率為0.4,變異概率為0.2,採用浮點數編碼,個體長度為21,優化過程中最優個體適應度值變化曲線如下圖4所示。
本文所使用的方法有比較重要的工程應用價值,比如對於某項試驗來說,試驗目的是獲取到最大試驗結果對應的實驗條件,但是由於時間和經費限制,該試驗只能進行有限次,可能單靠試驗結果找不到最優的試驗條件。這時可以在已知試驗數據的基礎上,通過本文介紹的神經網路遺傳演算法尋找最優試驗條件。
思路就是先根據試驗條件數和試驗結果數確定BP神經網路結構;然後把試驗條件作為輸入數據,試驗結果作為輸出數據訓練BP網路,使得訓練後的網路可以預測一定試驗條件下的試驗結果;最後把試驗條件作為遺傳演算法中的種群個體,把網路預測的試驗結果作為個體適應度值,通過遺傳演算法推導最優試驗結果及其對應試驗條件。
Ⅳ 優化演算法筆記(六)遺傳演算法
遺傳演算法(Genetic Algorithms,GA)是一種粗衡模擬自然中生物的遺傳、進化以適應環境的智能演算法。由於其演算法流程簡單,參數較少優化速度較快,效果較好,在圖像處理、函數優化、信號處理、模式識別等領域有著廣泛的應用。
在遺傳演算法(GA)中,每一個待求問題的候選解被抽象成為種群中一個個體的基因。種群中個體基因的好壞由表示個體基因的候選解在待求問題中的所的得值來評判。種群中的個體通過與其他個體交叉產生下一代,每一代中個體均只進行一次交叉。兩個進行交叉的個體有一定幾率交換一個或者多個對應位的基因來產生新的後代。每個後代都有一定的概率發生變異。發生變異的個體的某一位或某幾位基因會變異成其他值。最終將以個體的適應度值為概率選取個體保留至下一代。
遺傳演算法啟發於生物的繁殖與dna的重組,本次的主角選什麼呢?還是根據大家熟悉的孟德爾遺傳規律選豌豆吧,選動物的話又會有人疑車,還是植物比較好,本次的主角就是它了。
遺傳演算法包含三個操作(運算元):交叉,變異和選擇操作。下面我們將詳細介紹這三個操作。
大多數生物的遺傳信息都儲存在DNA,一種雙螺旋結構的復雜有機化合物。其含氮鹼基為腺嘌呤、鳥嘌呤、胞嘧啶及胸腺嘧啶。
表格中表示了一個有10個基因的個體,它們每一個基因的值為0或者1。
生物的有性生殖一般伴隨著基因的重組。遺傳演算法中父輩和母輩個體產生子代個體的過程稱為交叉。
表中給出了兩個豌豆的基因,它們均有10個等位基因(即編號相同的基因)。
遺傳演算法的交叉過程會在兩個個體中隨機選擇1位或者n位基因進行交叉,即這兩個個體交換等位基因。
如,A豌豆和B豌豆在第6位基因上進行交叉,則其結果如下
當兩個個體交叉的等位基因相同時,交叉過程也有可能沒有產生新慧衡的個體,如交叉A豌豆和B豌豆的第2位基因時,交叉操作並沒有產生新的基因。
一般的會給群體設定一個交叉率,crossRate,表示會在群體中選取一定比例的個體進行交叉,交叉率相對較大,一般取值為0.8。
基因的變異是生物進化的一個主要因素。
遺傳演算法中變異操作相對簡單,只需要將一個隨機位基因的值修改就行了,因為其值只為0或1,那麼當基因為0時,變異操作會將其值設為1,當基因值為1時,變異操作會將其值設為0。
上圖表示了A豌豆第3位基因變異後的基因編碼。
與交叉率相似,變異操作也有變異率,alterRate,但是變異率會遠低於交叉率,否則會產生大量的隨機基因。一般變異率為0.05。
選擇操作是遺傳演算法中的一個關鍵操作,它的主要作用就是根據一定的策略隨機選擇個體保留至下一代。適應度越優的岩碧做個體被保留至下一代的概率越大。
實現上,我們經常使用「輪盤賭」來隨機選擇保留下哪個個體。
假設有4個豌豆A、B、C、D,它們的適應度值如下:
適應度值越大越好,則它們組成的輪盤如下圖:
但由於輪盤賭選擇是一個隨機選擇過程,A、B、C、D進行輪盤賭選擇後產生的下一代也有可能出現A、A、A、A的情況,即雖然有些個體的適應度值不好,但是運氣不錯,也被選擇留到了下一代。
遺產演算法的三個主要操作介紹完了,下面我們來看看遺傳演算法的總體流程:
前面我們說了遺傳演算法的流程及各個操作,那麼對於實際的問題我們應該如何將其編碼為基因呢?
對於計算機來所所有的數據都使用二進制數據進行存放,如float類型和double類型的數據。
float類型的數據將保存為32位的二進制數據:1bit(符號位) 8bits(指數位) 23bits(尾數位)
如-1.234567f,表示為二進制位
Double類型的數據將保存為64位的二進制數據:1bit(符號位) 11bits(指數位) 53bits(尾數位)
如-1.234567d,表示為二進制為
可以看出同樣的數值不同的精度在計算機中存儲的內容也不相同。之前的適應度函數 ,由於有兩個double類型的參數,故其進行遺傳演算法基因編碼時,將有128位基因。
雖然基因數較多,但好在每個基因都是0或者1,交叉及變異操作非常簡單。
相比二進制編碼,十進制編碼的基因長度更短,適應度函數 有兩個輸入參數,那麼一個個體就有2個基因,但其交叉、變異操作相對復雜。
交叉操作
方案1:將一個基因作為一個整體,交換兩個個體的等位基因。
交換前
交換第1位基因後
方案2:將兩個個體的等位基因作為一個整體,使其和不變,但是值隨機
交換前
交換第1位基因後
假設A、B豌豆的第一位基因的和為40,即 ,第一位基因的取值范圍為0-30,那麼A、B豌豆的第一位基因的取值范圍為[10,30],即 為[0,30]的隨機數, 。
變異操作,將隨機的一位基因設置為該基因取值范圍內的隨機數即可。
這個過程說起來簡單但其實現並不容易。
我們要將它們的值映射到一個軸上才能進行隨機選擇,畢竟我們無法去繪制一個輪盤來模擬這個過程
如圖,將ABCD根據其值按順序排列,取[0,10]內的隨機數r,若r在[0,1]內則選擇A,在(1,3]內則選擇B,在(3,6]內則選擇C,在(6,10]則選擇D。
當然這仍然會有問題,即當D>>A、B、C時,假如它們的值分布如下
那麼顯然,選D的概率明顯大於其他,根據輪盤賭的選擇,下一代極有可能全是D的後代有沒有辦法均衡一下呢?
首先我想到了一個函數,
不要問我為什麼我不知道什麼是神經什麼網路的,什麼softmax、cnn統統沒聽說過。
這樣一來,它們之間的差距沒有之前那麼大了,只要個體適應度值在均值以上那麼它被保留至下一代的概率會相對較大,當然這樣縮小了個體之間的差距,對真正優秀的個體來說不太公平,相對應,我們可以在每次選擇過程中保留當前的最優個體到下一代,不用參與輪盤賭這個殘酷的淘汰過程。
最令人高興的環節到了,又可以愉快的湊字數了。
由於遺傳演算法的收斂速度實在是太慢,區區50代,幾乎得不到好的結果,so我們把它的最大迭代次數放寬到200代。
使用二進制編碼來進行求解
參數如下:
求解過程如上圖,可以看出基因收斂的很快,在接近20代時就圖中就只剩一個點了,之後的點大概是根據變異操作產生。看一下最後的結果。
可以看出最好的結果已經得到了最優解,但是10次實驗的最差值和平均值都差的令人發指。為什麼會這樣呢?
問題出在二進制編碼上,由於double類型的編碼有11位指數位和52位小數位,這會導致交叉、變異操作選到指數位和小數位的概率不均衡,在小數位上的修改對結果的影響太小而對指數為的修改對結果的影響太大,
如-1.234567d,表示為二進制為
對指數為第5位進行變異操作後的結果為-2.8744502924382686E-10,而對小數位第5為進行變異操作後的結果為-1.218942。可以看出這兩部分對數值結果的影響太不均衡,得出較好的結果時大概率是指數位與解非常相近,否則很難得出好的結果,就像上面的最差值和均值一樣。
所以使用上面的二進制編碼不是一個好的基因編碼方式,因此在下面的實驗中,將使用十進制來進行試驗。
使用:十進制編碼來進行求解
參數如下:
我們可以看到直到40代時,所有的個體才收束到一點,但隨後仍不斷的新的個體出現。我們發現再後面的新粒子總是在同一水平線或者豎直線上,因為交叉操作直接交換了兩個個體的基因,那麼他們會相互交換x坐標或者y坐標,導致新個體看起來像在一條直線上。
我們來看看這次的結果。
這次最優值沒有得到最優解,但是最差值沒有二進制那麼差,雖然也不容樂觀。使用交換基因的方式來進行交叉操作的搜索能力不足,加之輪盤賭的選擇會有很大概率選擇最優個體,個體總出現在矩形的邊上。
下面我們先改變輪盤賭的選擇策略,使用上面的sigmod函數方案,並且保留最優個體至下一代。
使用:十進制編碼來進行求解
參數如下:
看圖好像跟之前的沒什麼區別,讓我們們看看最終的結果:
可以看出,最優值沒有什麼變化,但是最差值和平均值有了較大的提升,說明該輪盤賭方案使演算法的魯棒性有了較大的提升。在每次保留最優個體的情況下,對於其他的個體的選擇概率相對平均,sigmod函數使得即使適應度函數值相差不太大的個體被選到的概率相近,增加了基因的多樣性。
使用:十進制編碼來進行求解,改變交叉方案,保持兩個個體等位基因和不變的情況下隨機賦值。
參數如下:
上圖可以看出該方案與之前有明顯的不同,在整個過程中,個體始終遍布整個搜索空間,雖然新產生的個體大多還是集中在一個十字架型的位置上,但其他位置的個體比之前的方案要多。
看看結果,
這次的結果明顯好於之前的所有方案,但仍可以看出,十進制的遺傳演算法的精度不高,只能找到最優解的附近,也有可能是演算法的收斂速度實在太慢,還沒有收斂到最優解。
遺傳演算法的探究到此也告一段落,在研究遺傳演算法時總有一種力不從心的感覺,問題可能在於遺傳演算法只提出了一個大致的核心思想,其他的實現細節都需要自己去思考,而每個人的思維都不一樣,一萬個人能寫出一萬種遺傳演算法,其實不僅是遺傳演算法,後面的很多演算法都是如此。
為什麼沒有對遺傳演算法的參數進行調優,因為遺傳演算法的參數過於簡單,對結果的影響的可解釋性較強,意義明顯,實驗的意義不大。
遺傳演算法由於是模仿了生物的進化過程,因此我感覺它的求解速度非常的慢,而且進化出來的結果不一定是最適應環境的,就像人的闌尾、視網膜結構等,雖然不是最佳的選擇但是也被保留到了今天。生物的進化的隨機性較大,要不是恐龍的滅絕,也不會有人類的統治,要不是人類有兩只手,每隻手有5根手指,也不會產生10進制。
以下指標純屬個人yy,僅供參考
目錄
上一篇 優化演算法筆記(五)粒子群演算法(3)
下一篇 優化演算法筆記(七)差分進化演算法
優化演算法matlab實現(六)遺傳演算法matlab實現
Ⅵ 遺傳演算法是什麼
遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。
遺傳演算法(Genetic Algorithms簡稱GA)是由美國Michigan大學的John Holland教授於20世紀60年代末創建的。它來源於達爾文的進化論和孟德爾、摩根的遺傳學理論,通過模擬生物進化的機制來構造人工系統。遺傳演算法作為一種全局優化方法,提供了一種求解復雜系統優化問題的通用框架,它不依賴於問題的具體領域,對優化函數的要求很低並且對不同種類的問題具有很強的魯棒性,所以廣泛應用於計算機科學、工程技術和社會科學等領域。John Holland教授通過模擬生物進化過程設計了最初的遺傳演算法,我們稱之為標准遺傳演算法。
標准遺傳演算法流程如下:
1)初始化遺傳演算法的群體,包括初始種群的產生以及對個體的編碼。
2)計算種群中每個個體的適應度,個體的適應度反映了其優劣程度。
3)通過選擇操作選出一些個體,這些個體就是母代個體,用來繁殖子代。
4)選出的母代個體兩兩配對,按照一定的交叉概率來進行交叉,產生子代個體。
5)按照一定的變異概率,對產生的子代個體進行變異操作。
6)將完成交叉、變異操作的子代個體,替代種群中某些個體,達到更新種群的目的。
7)再次計算種群的適應度,找出當前的最優個體。
8)判斷是否滿足終止條件,不滿足則返回第3)步繼續迭代,滿足則退出迭代過程,第7)步中得到的當前最優個體,通過解碼,就作為本次演算法的近似最優解。
具體你可以到網路文庫去搜索遺傳演算法相關的論文,很多的。
你也可以參考網路里對遺傳演算法的介紹。
Ⅶ 進化演算法的基本步驟
進化計算是基於自然選擇和自然遺傳等生物進化機制的一種搜索演算法。與普通的搜索方法一樣,進化計算也是一種迭代演算法,不同的是進化計算在最優解的搜索過程中,一般是從原問題的一組解出發改進到另一組較好的解,再從這組改進的解出發進一步改進。而且在進化問題中,要求當原問題的優化模型建立後,還必須對原問題的解進行編碼。進化計算在搜索過程中利用結構化和隨機性的信息,使最滿足目標的決策獲得最大的生存可能,是一種概率型的演算法。
一般來說,進化計算的求解包括以下幾個步驟:給定一組初始解;評價當前這組解的性能;從當前這組解中選擇一定數量的解作為迭代後的解的基礎;再對其進行操作,得到迭代後的解;若這些解滿足要求則停止,否則將這些迭代得到的解作為當前解重新操作。
以遺傳演算法為例,其工作步驟可概括為:
(1) 對工作對象——字元串用二進制的0/1或其它進制字元編碼 。
(2) 根據字元串的長度L,隨即產生L個字元組成初始個體。
(3) 計算適應度。適應度是衡量個體優劣的標志,通常是所研究問題的目標函數。
(4) 通過復制,將優良個體插入下一代新群體中,體現「優勝劣汰」的原則。
(5) 交換字元,產生新個體。交換點的位置是隨機決定的
(6) 對某個字元進行補運算,將字元1變為0,或將0變為1,這是產生新個體的另一種方法,突變字元的位置也是隨機決定的。
(7) 遺傳演算法是一個反復迭代的過程,每次迭代期間,要執行適應度計算、復制、交換、突變等操作,直至滿足終止條件。
將其用形式化語言表達,則為:假設α∈I記為個體,I記為個體空間。適應度函數記為Φ:I→R。在第t代,群體P(t)={a1(t),a2(t),…,an(t)}經過復制r(reproction)、交換c(crossover)及突變m(mutation)轉換成下一代群體。這里r、c、m均指宏運算元,把舊群體變換為新群體。L:I→{True, Flase}記為終止准則。利用上述符號,遺傳演算法可描述為:
t=0
initialize P(0):={ a1(0),a2(0),…,an(0)};
while(l(P(t))≠True) do
evaluate P(t):{ Φ(a1(t)), Φ(a2(t)),…,Φ(an(t))};
reproction: P′(t):=r(P(t));
crossover: P″(t):=c(P′(t));
mutation: P(t+1):= m(P″(t));
t=t+1;
end
Ⅷ 關於遺傳演算法
遺傳演算法(Genetic Algorithm,簡稱GA)是美國 Michigan大學的 John Golland提出的一種建立在自然選擇和群體遺傳學機理基礎上的隨機、迭代、進化、具有廣泛適用性的搜索方法。現在已被廣泛用於學習、優化、自適應等問題中。圖4-1 給出了 GA搜索過程的直觀描述。圖中曲線對應一個具有復雜搜索空間(多峰空間)的問題。縱坐標表示適應度函數(目標函數),其值越大相應的解越優。橫坐標表示搜索點。顯然,用解析方法求解該目標函數是困難的。採用 GA時,首先隨機挑選若干個搜索點,然後分別從這些搜索點開始並行搜索。在搜索過程中,僅靠適應度來反復指導和執行 GA 搜索。在經過若干代的進化後,搜索點後都具有較高的適應度並接近最優解。
一個簡單GA由復制、雜交和變異三個遺傳運算元組成:
圖4-2 常規遺傳演算法流程圖