當前位置:首頁 » 操作系統 » 資料庫中的概念模型

資料庫中的概念模型

發布時間: 2023-04-09 16:12:15

資料庫的概念模型是什麼其特點是什麼

概念模型表徵了待解釋的系統的學科共享知識。為了把現實世界中的具體事物抽象、組織為某一資料庫管理系統支持的數據模型,人們常常首先將現實世界抽象為信息世界,然後將信息世界轉換為機器世界。也就是說,首先把現實世界中的客觀對象抽象為某一種信息結構,這種信息結構並不依賴於具體的計算機系統,不是某一個資料庫管理系統(DBMS)支持的數據模型,而是概念級的模型,稱為概念模型。

特點:

1、能真實地、充分地反映現實世界,是對現實世界的一個真實模型。
2、易於理解,可以用它和不熟悉資料庫的用戶交換意見。
3、易於更改。
4、易於向關系、網狀、層次等各種數據模型轉換。

Ⅱ 請問資料庫中出現的概念層數據模型是什麼意思

概念層數據模型實際上是現實社會到機器世界的一個中間層次,它主要是它的數據模型的構建方法,下面我們就通過以下三個方面詳細介紹一下概念層數據模型:
1:對於單線程數,但變成數據模型是走向現實系統中有價值的元素以及配則關聯關系,反映著現行系統中的價值信息結構和錢並不依賴數據的組織層數據模型,該聯城數據模型用於對信息世界進行建模了,它是現實世界到信息世界的第一個抽象,是程序設計人員進行資料庫設計的工具也是資料庫設計人員與用戶之間的交流工具數畢,那麼概念層數據模型是面向用戶,面向現實世界的數據模型,設計人員可以在設計這樣開始中把主要的精力放在了解現實世界上。
2:對於他的實體和聯系模型來說由於直接將現實世界按照具體的數據模型進行組織所以必須要考慮很多因素,在設計工作中非常復雜目前效果也並不很理想因此是需要一種方法來對現實世界的信息結構進行描述的,事實上這方面已經有了一些方法,就是通過,通常使用的ER方法,這種方法由於簡單實用因此得到廣泛的應用,也是目前描述信息結構的最常用方法,他說描述了現實世界信息結構成為企業模型我們也成為這種結果成為ER模型。
3:對於他的概念已經模型特點來說它是具有實體了,實體是有公共性質並可以相互區分現實世界對象的集合,十題是具體的,第二就是它的屬性每一個時期都具有一定的特徵和性質,這樣我們才能根據實體的特徵來區分一個實例,它的特性是描述實體或者聯系性質和特徵的數據項,是屬於一個實體所有世界的具有相同的性質,第三就是它的聯系,在現實世界中事物內部以及事物之間都是有關聯的,這些聯系在信息世界中反映出時間內部的,不同的實體之間的聯系。
具體培畢棚的可以到OTPUB了解更多的資料庫概念。

Ⅲ 概念模型是什麼

也稱信息模型,它是按用戶的觀點來對數據和信息建模。 概念模型是現實世界到機器世界的一個中間層次。 表示概念模型最常用的是實體-關系圖。 概念模型是對真實世界中問題域內的事物的描述,不是對軟體設計的描述。概念的描述包括:記號、內涵、外延,其中記號和內涵(視圖)是其最具實際意義的。 概念模型基渣用於信息世界的建模,它是世界到信息世界的第一層抽象,它資料庫設計的有力工具,也是資料庫開發人員與用戶之間進行交流的語言。因此概念模型既要有較強的表達能力,應該簡單、清晰、易於理解。目前最常用的是實體-聯系模型。 在管理信息系統中,概念模型:是設計者對現實世界的認識結果的體現,是對軟體系統的整體概括描述。讓讀者更易理解,讀時有個參考的東西。 概念模型設計的常用方法是實體關系方法(E-R方法)。用實體關系方法對具體數據進行抽象加工,將實體集合抽象成實體類型,用實體間的關系反映現實世界事物間的內在關系。首先可以進行局伍蔽部E-R模型,然後把各局部E-R模型綜合成一個全局的E-R模型,最後對全局E-R模型進行優化,最後得到的。 在數據倉庫中的含義 總的來說,數據倉庫的結構採用了三級數據模型的方式,即概念模型、邏輯模型、物理模型。 概念模型:也就是業務模型,由企業決策者,商務領域知識專家和IT專家共同研究和分析企業級的跨領域業務系統需求分析的結果。 在數據倉庫項目中,物理模型設計和業務模型設計象兩個輪子一樣有力地支撐著數據倉庫的實施,兩者並行不悖,缺一不可。實際上,這有意地擴大了物理模型和業務模型的內涵和外延,因為,在這里物理模型不僅僅是數據的存儲,而且也包含了數據倉庫項目實施的方法論、資源以及軟硬體選型,而業務模型不僅僅是主題模型的確立,也包含了企業的發展戰略,行業模本等等更多的內容。 一個優秀的項目必定會兼顧業務需求和行業標准兩個方面,業務需求既包括用戶提出的實際需求,也要客觀分析它隱含的更深層次的需求,但是往往用戶的需求是不明確的,需要加以提煉甚至在商務知識專家引導下加以升華,和用戶一起進行需求分析工作。如果不能滿足用戶的需求,項目也就失去了原本的意義。 關於概念模型 概念模型設計是在原有的業務資料庫的基礎上建立了一個較為穩固的概念模型。因為數據倉庫是對原有資料庫系統中的數據進行集成和重組而形成的數據集合,所以數據倉庫的概念模型設計,首先要對原有資料庫系統加以分析理解,看在原有的資料庫系統中有什麼、怎樣組織的和如何分布的等,然後再來考慮應當如何建立數據倉庫系統腔鋒州的概念模型。 一方面,通過原有資料庫的設計文檔以及在數據字典中的資料庫關系模式,我們可以對企業現有的資料庫中的內容有一個完整而清晰的認識;另一方面,數據倉庫的概念模型是面向企業全局建立的,它為集成來自各個面向應用的資料庫的數據提供了統一的概念視圖。 它的工作主要是界定系統的邊界和確定主要的主題域。界定系統邊界將決策者的數據分析的需求用系統邊界的定義形式反映出來。確定主題域是對每個主題域的內容進行較明確的數據倉庫建模技術在行業中的應用描述,其內容包括:主題域的公共碼鍵、主題域之間的聯系以及充分代表主題的屬性組。

Ⅳ 資料庫概念模型

一、航空物探資料庫定位

資料庫是信息系統的基礎和核心,把大量的數據信息按一定的模型組織起來存儲在資料庫中,提供數據維護、數據檢索等功能,使信息系統能方便、及時、准確地從資料庫中獲得所需的信息。因此,資料庫結構設計是信息系統開發的重中之重。

經分析航空物探數據具有空間性、海量性、多源性和多尺度的特點,這說明航空物探數據具有典型的空間數據的特點,可以採用空間數據管理方式進行管理。

ESRI公司的Geodatabase(空間資料庫)是採用標准關系資料庫技術來表現地理信息的面向對象的高級GIS數據模型,是建立在DBMS之上的統一的、智能化的空間數據模型,是以一組相關聯的表來表達地理要素之間關系、有效性規則和值域。對於多源、海量的航空物探數據,Geodatabase能在一個統一的模型框架下很好地解決多源數據一體化存儲的問題,和採用標准關系資料庫技術來表現海量航空物探數據的地理信息特性。Geodatabase引入了地理空間實體的行為、有效性規則和關系,在處理Geodatabase中對象時,對象的基本行為和必須滿足的規則無需通過程序編碼實現,只需根據需要擴展其有效性規則(Geodatabase面向對象的智能化特性),即可支持航空物探數據模型擴展的需要。

因此,航空物探資料庫是空間資料庫,在航空物探資料庫建模過程中,以空間數據建模為主導,統領屬性數據建模。

二、統一空間坐標框架

為了用數學語言描述地球,人們用規則的幾何形體來替代地球表面,從地球自然表面、大地水準面、旋轉橢球面直到用簡單數學函數表達的參考橢球體,以便通過地圖投影將三維曲面轉化成二維平面。由於地球表面不同地區的地形起伏差異很大,採用單一橢球體勢必會造成某地區的誤差小而其他地區誤差很大的結果。因此,在20世紀初不同國家或地區先後採用了逼近本國或本地區地球表面的橢球體,如中國的克拉索夫斯基橢球體,美國的海福特橢球體、英國的克拉克橢球體等。這又造成了目前世界各國的地理信息空間坐標框架不統一,空間數據信息難以共享被動局面。為此,在實現數字地球計劃中,必須規范和統一世界上不同國家和地區的地球參考橢球體。

在小區域表達地球表面時,通常採用平面的方式,即投影坐標系統。如何科學地選擇投影坐標,一般要根據具體的地學應用、地理區域和范圍、比例尺條件等因素來確定,不同的國家有著不同的規定。

通過對航空物探數據的坐標系統進行分析可知,航空物探圖件的坐標框架與國家對基本比例尺制圖的規定相一致,即小比例尺編圖採用Lambert雙標准緯線等角圓錐投影;中比例尺採用Gauss 6°帶的分帶投影;大比例尺採用Gauss 3°帶的分帶投影(表2-1);對於低緯度的海上作業區通常採用Mecator等角圓柱投影。地球橢球體分別採用1954北京坐標系的Krassovsky橢球參數、WGS84橢球參數和未來的國家2000坐標系的橢球參數。

表2-1 航空物探地理坐標數據的投影方式

傳統的航空物探數據是按測區管理的,根據測區的測量比例尺來確定相應的坐標框架;因此,勘探目標不同的測區測量比例尺是不一致的,地坐標框架也不同。航空物探資料庫要將不同測區、不同比例尺、不同坐標框架的數據集中管理和可視表達,若沒有統一的空間坐標框架,就不可能正確地表達全國航空物探數據。所以,面對如此復雜的多坐標框架的航空物探數據,如何確定科學合理的空間坐標框架,將全國的航空物探數據整合到統一的空間參考框架下,實現數據的統一存儲和數據間無縫拼接,是航空物探資料庫建設的關鍵所在,是組織和管理多維、多格式、大跨度、跨平台的航空物探數據和多目標數字制圖的數學基礎。

統一的空間坐標框架必須支持我國領土覆蓋的海域和陸域航空物探數據的存儲和表達。我國領土東西跨度達70°,南北達55°,顯然採用任何投影坐標系都是不合適的。Gauss 6°投影適合6°帶內空間數據表達,若全國航物探數據採用6°分帶表達,在高緯度地區會造成6°帶間數據裂縫問題;Lambert投影可滿足數據的無縫表達,但對大比例尺數據變形較大,無法滿足數據制圖的精度要求;Mecator投影也可滿足數據的無縫表達,低緯度地區也能滿足大比例尺數據制圖的精度要求,但在我國中高緯度區存在著嚴重變形問題。所以,航空物探數據模型採用地理坐標(無投影,圖2-1)格式存放,可根據實際應用的需要將航空物探數據變換到任何方式的投影坐標系統。

航空物探資料庫模型採用Beijing_1954地理坐標系,相關參數如下:

角度單位:°(0.017453292519943299rad)

零經線:格林尼治(0.000000000000000000)

基準:D_Beijing_1954

橢球:Krasovsky_1940

長軸半徑:6378245.000 m

短軸半徑:6356863.019 m

建立統一坐標框架是空間資料庫建設的一項基礎性工作,採用Beijing_1954 地理坐標系作為航空物探資料庫統一空間坐標框架具有以下優點。

圖2-1 統一空間坐標框架示意圖

(一)無縫空間數據存儲

統一空間坐標框架解決了復雜的航空物探數據的坐標系統、投影、比例尺等不統一的問題,實現同一性質的物探數據在同一個主題中進行管理。如全國的航磁異常數據可放在一個圖層上進行管理。

(二)適合多尺度表達

按測區管理的多尺度、多框架的航空物探數據是處於一個相對坐標系統中,各個測區間相對位置關系會發生錯位。採用統一的Beijing_1954地理坐標框架,恢復了各測區間正確的位置關系,實現不同尺度數據的集成和正確表達,易於多源異構空間數據的融合。

(三)大區域數據集成

我國海陸面積近1300×104km2,地域跨度較大。在進行小比例尺的航空物探編圖時,需要選用與之相適應的投影坐標;在陸地和海域進行大比例尺制圖時,同樣需要選用合適投影系統。航空物探制圖的實踐也證明了這一點。1995 年6 月由中國、加拿大、美國、愛爾蘭和俄羅斯等國科學家共同編制的1∶1000萬歐亞東北地區磁異常與大地構造圖,採用橫軸Mercator投影。中心編制的1∶500 萬全國航磁圖採用Lambert投影。2008 年,由中國和吉爾吉斯斯坦科學家編制的1∶100萬中吉天山金屬礦產成礦規律圖,採用Lambert投影,將兩個國家不同時期、不同尺度的數據進行了有效的集成,是地質、地球物理等綜合應用的典範。

隨著航空物探數據應用領域的不斷擴展,陸地、海域,甚至於洲際和全球航空物探數據的整體表達都需對坐標投影提出要求。採用統一的地理坐標框架的航空物探數據非常容易變換到指定的投影坐標框架,滿足多樣化的制圖要求。

三、要素類和對象類的劃分

Geodatabase空間資料庫模型結構(圖2-2)分為空間資料庫、要素數據集(Feature dataset)、要素類(Feature classes)、要素(Feature)4個層次。為了建立航空物探Geodatabase空間數據模型,我們依據Geodatabase模型關於要素類和對象類的劃分原則,結合相關的國家標准和地球物理行業標准,制定了《航空物探數據要素類和對象類劃分標准》,對航空物探數據進行數據分類。

圖2-2 空間資料庫模型結構

1)按照航空物探數據的空間特徵,將其劃分為5個要素數據集,即勘查項目概況要素數據集、基礎數據要素數據集、異常要素數據集、解釋要素數據集和評價要素數據集。

2)根據航空物探測量方法、數據處理過程以及推斷解釋方法和過程,進一步把航空物探數據劃分為若干要素類和對象類,定義了要素類的主題特徵和表達方式,確定子類和屬性域;定義對象類的結構和聯接欄位,建立了關系類。

3)定義要素類的內容、欄位名稱和存儲結構。在航空物探數據採集過程中,不同類型的數據采樣率不同,坐標數據采樣2次/s,重力場數據采樣2次/s,磁場數據采樣10次/s,這就造成了場值數據與坐標數據無法一一對應問題。若按場值數據采樣率內插坐標數據,將導致數據量成倍增長;若按坐標數據采樣率抽稀場值數據,將降低航空物探測量對地質體的分辨能力,影響測量效果。在綜合分析航空物探數據應用基礎上,提出了採用要素數據與屬性數據分置的方式,將測線坐標數據與地球物理場數據分離,分別建立獨立共享的航跡線數據要素類模型,磁場、重力場等數據對象類模型(圖2-3),很好地解決了航空物探數據的存儲問題。

圖2-3 要素數據與屬性數據分置示意圖

採用要素數據與屬性數據分置方式,不僅是基於航空物探數據屬性數據的多源性、不同采樣頻率等特點的考慮,還考慮到數據的綜合查詢和檢索的速度,特別是通過ArcSDE訪問空間資料庫的效率的問題。再者,對於大部分用戶來說,需求是屬性數據的綜合應用,因此在資料庫建模過程中,將屬性數據採用對象類的方式進行管理,不但提高了空間數據的操作能力,同時在ArcSDE的配置上採用直接訪問資料庫(對象類)方式,並且加快了數據查詢和統計的速度。

四、資料庫概念模型

用戶需求是資料庫建設的約束條件之一。航空物探數據的空間特性決定航空物探資料庫必須是空間資料庫,採用資料庫管理數據,利用GIS技術提供可視化服務,這是各個層次用戶的一致要求。因此,我們從現實世界出發,對航空物探數據的多源性、多尺度和不同采樣等問題進行了描述,提出了解決方案。此方案是不依賴於任何具體的硬體環境和資料庫管理系統(DBMS),建立了客觀反映現實世界的航空物探資料庫概念模型,把用戶需要管理的信息統一到整體概念結構中,表達了用戶需要。

在全面分析航空物探業務流程和數據流程,以及航空物探數據特性的基礎上,按照《航空物探數據要素類和對象類劃分標准》,以及空間實體點、線、面要素特徵的基本原則,對航空物探資料庫所涉及的實體進行歸類,劃分成12個主題。根據空間數據分主題表達的特點和航空物探空間數據坐標框架的定義,確定航空物探資料庫空間數據概念模型,明確各個主題的用途、數據來源、表達方式、空間參考、比例尺和精度等內容,按照ArcGIS定義空間資料庫的數據分層表達方式(圖2-4),完成航空物探資料庫概念模型設計(圖2-5)。

圖2-4 航空物探資料庫空間數據分層模型

圖2-5 航空物探資料庫空間數據概念模型

Ⅳ 資料庫主要有哪幾種數據模型

一. 數據模型的分類:

最常用的數據模型是概念數據模型和結構數據模型。

1.概念數據模型:面向用戶的,按照用戶的觀點進行建模。

2.結構數據模型:面向計算機系統的,用於DBMS的實現。

二.E-R圖:

1.E-R實體聯系圖是直觀表示概念模型的工具,其中包含了實體、聯系、屬性三個成分,聯系的方 法為一對一(1:1)、一對多(1:N)、多對多(M:N)三種方式。

2.E-R模型圖,既表示實體,也表示實體之間的聯系,是現實世界的抽象,與計算機系統沒有關系, 是可以被用戶理解的數據描述方式。

三.層次模型:

1.層次模型採取樹形結構表示數據與數據之間的關系。

2.層次模型不能直接表示多對多的聯系。

四.網狀模型:

1.用網路結構表示數據與數據之間的聯系的模型。

2.網狀模型子節點和父節點聯系不唯一,需要為聯系命名。

五.關系模型:

1.關系模型是目前最常見的數據模型之一,主要採用表格結構表達實體集以及實體之間的聯 系。

2.關系是一張表,關系數據模型由若干個表組成。

Ⅵ 資料庫的概念模型獨立於( )

資料庫的概念模笑歷拿型獨立於機器。

數據模型可分為兩個級別,一個是獨立於計算機系統的模型,稱為概念模型,另一個是直接面向資料庫的邏輯結構,稱為實體模型。

概念模型用於信息世界的建模碰搭,所以獨立於機器,概念模型也稱信息模型,面向應用,按照用戶的觀點來對數據和信息建模,主要用於數據爛激庫設計,這類數據模型描述用戶和設計者都能理解的信息結構,強調其表達能力和易理解性,如ER模型。

模型

資料庫的概念模型依賴於實體聯系模型和數據字典模型。根據查詢相關公開信息顯示,資料庫的概念模型主要依賴於實體聯系模型和數據字典模型,還依賴於結構化查詢語言(SQL)、關系代數和邏輯演繹。

Ⅶ 資料庫按數據的組織方式來分可以分為哪三種模型

1、層次模型:

①有且只有一個結點沒有雙親結點(這個結點叫根結點)。

②除根結點外的其他結點有且只有一個雙親結點。

層次模型中的記錄只能組織成樹的集合而不能是任意圖的集合。在層次模型中,記錄的組織不再是一張雜亂無章的圖,而是一棵"倒長"的樹。

2、網狀模型 :

①允許一個以上的結點沒有雙親結點。

②一個結點可以有多個雙親結點。

網狀模型中的數據用記錄的集合來表示,數據間的聯系用鏈接(可看作指針)來表示。資料庫中的記錄可被組織成任意圖的集合。

3、關系模型:

關系模型用表的集合來表示數據和數據間的聯系。

每個表有多個列,每列有唯一的列名。

在關系模型中,無論是從客觀事物中抽象出的實體,還是實體之間的聯系,都用單一的結構類型

(7)資料庫中的概念模型擴展閱讀

1、無條件查詢

例:找出所有學生的的選課情況

SELECT st_no,su_no

FROM score

例:找出所有學生的情況

SELECT*

FROM student

「*」為通配符,表示查找FROM中所指出關系的所有屬性的值。

2、條件查詢

條件查詢即帶有WHERE子句的查詢,所要查詢的對象必須滿足WHERE子句給出的條件。

例:找出任何一門課成績在70以上的學生情況、課號及分數

SELECT UNIQUE student.st_class,student.st_no,student.st_name,student.st_sex,student.st_age,score.su_no,score.score

FROM student,score

WHERE score.score>=70 AND score.stno=student,st_no

這里使用UNIQUE是不從查詢結果集中去掉重復行,如果使用DISTINCT則會去掉重復行。另外邏輯運算符的優先順序為NOT→AND→OR。

例:找出課程號為c02的,考試成績不及格的學生

SELECT st_no

FROM score

WHERE su_no=『c02』AND score<60

3、排序查詢

排序查詢是指將查詢結果按指定屬性的升序(ASC)或降序(DESC)排列,由ORDER BY子句指明。

例:查找不及格的課程,並將結果按課程號從大到小排列

SELECT UNIQUE su_no

FROM score

WHERE score<60

ORDER BY su_no DESC

4、嵌套查詢

嵌套查詢是指WHERE子句中又包含SELECT子句,它用於較復雜的跨多個基本表查詢的情況。

例:查找課程編號為c03且課程成績在80分以上的學生的學號、姓名

SELECT st_no,st_name

FROM student

WHERE stno IN (SELECT st_no

FROM score

WHERE su_no=『c03』 AND score>80 )

這里需要明確的是:當查詢涉及多個基本表時用嵌套查詢逐次求解層次分明,具有結構程序設計特點。在嵌套查詢中,IN是常用到的謂詞。若用戶能確切知道內層查詢返回的是單值,那麼也可用算術比較運算符表示用戶的要求。

5、計算查詢

計算查詢是指通過系統提供的特定函數(聚合函數)在語句中的直接使用而獲得某些只有經過計算才能得到的結果。常用的函數有:

COUNT(*) 計算元組的個數

COUNT(列名) 對某一列中的值計算個數

SUM(列名) 求某一列值的總和(此列值是數值型)

AVG(列名) 求某一列值的平均值(此列值是數值型)

MAX(列名) 求某一列值中的最大值

MIN(列名) 求某一列值中的最小值

例:求男學生的總人數和平均年齡

SELECT COUNT(*),AVG(st_age)

FROM student

WHERE st_sex=『男』

例:統計選修了課程的學生的人數

SELECT COUNT(DISTINCT st_no)

FROM score

注意:這里一定要加入DISTINCT,因為有的學生可能選修了多門課程,但統計時只能按1人統計,所以要使用DISTINCT進行過濾。

Ⅷ 資料庫概念模型

一、航空物探資料庫定位

資料庫是信息系統的基礎和核心,把大量的數據信息按一定的模型組織起來存儲在資料庫中,提供數據維護、數據檢索等功能,使信息系統能方便、及時、准確地從資料庫中獲得所需的信息。因此,資料庫結構設計是信息系統開發的重中之重。

經分析航空物探數據具有空間性、海量性、多源性和多尺度的特點,這說明航空物探數據具有典型神廳的空間數據的特點,可以採用空間數據管理方式進行管理。

ESRI公司的Geodatabase(空間資料庫)是採用標准關系資料庫技術來表現地理信息的面向對象的高級GIS數據模型,是建立在DBMS之上的統一的、智能化的空間數據模型,是以一組相關聯的表來表達地理要素之間關系、有效性規則和值域。對於多源、海量的航空物探數據,Geodatabase能在一個統一的模型框架下很好地解決多源數據一體化存儲的問題,和採用標准關系資料庫技術來表現海量航空物探數據的地理信息特性。Geoda-tabase引入了地理空間實體的行為、有效性規則和關系,在處理Geodatabase中對象時,對象的基本行為和必須滿足的規則無需通過程序編碼實現,只需根據需要擴展其有效性規則(Geodatabase面向對象的智能化特性),即可支持航空物探數據模型擴展的需要。

因此,航空物探資料庫是空間資料庫,在航空物探資料庫建模過程中,以空間數據建模為主導,統領屬性數據建模。

二、統一空間坐標框架

為了用數學語言描述地球,人們用規則的幾何形體來替代地球表面,從地球自然表面、大地水準面、旋轉橢球面直到用簡單數學函數表達的參考橢球體,以便通過地圖投影將三維曲面轉化成二維平面。由於地球表面不同地區的地形起伏差異很大,採用單一橢球體勢必會造成某地區的誤差小而其他地區誤差很大的結果。因此,在20世紀初不同國家或地區先後採用了逼近本國或本地區地球表面的橢球體,如中國的克拉索夫斯基橢球體,美國的海福特橢球體、英國的克拉克橢球體等。這又造成了目前世界各國的地理信息空間坐標框架不統一,空間數據信息難以共享被動局面。為此,在實現數字地球計劃中,必須規范和統一世界上不同國家和地區的地球參考橢球體。

在小區域表達地球表面時,通常採用平面的方式,即投影坐標系統。如何科學地選擇投影坐標,一般要根據具體的地學應用、地理區域和范圍、比例尺條件等因素來確定,不同的國家有著不同的規定。

通過對航空物探數據的坐標系統進行分析可知,航空物探圖件的坐標框架與國家對基本比例尺制圖的規定相一致,即小比例尺編圖採用Lambert雙標准緯線等角圓錐投影;中比例尺採用Gauss6°帶的分帶投影;大比例尺採用Gauss3°帶的分帶投影(表2-1);對於低緯度的海上作業區通常採用Mecator等角圓柱投影。地球橢球體分別採用1954北京坐標系的Krassovsky橢球參數、WGS84橢球參數和未來的國家2000坐標系的橢球參數。

表2-1 航空物探地理坐標數據的投影方式

傳統的航空物探數據是按測區管理的,根據測區的測量比例尺來確定相應的坐標框架;因此,勘探目標不同的測區測量比例尺是不一致的,地坐標框架也不同。航空物探資料庫要將不同測區、不同比例尺、不同坐標框架的數據集中管理和可視表達,若沒有統一的空間坐標框架,就不可能正游世隱確地表達全國航空物探數據。所以,面對如此復雜的多坐標框架的航空物探數據,如何確定科學合理的空間坐標框架,將全國的航空物探數據整合到統一的空間參考框架下,實現數據的統一存儲和數據間無縫拼接,是航空物探資料庫建設的關鍵所在,是組織和管理多維、多格式、大跨度、跨平台的航空物探數據和多目標數字制圖的數學基礎。

統一的空間坐標框架必須支持我國領土覆蓋的海域和陸域航空物探數據的存儲和表達。我國領土東西跨度達70°,南北達55°,顯然採用任何投影坐標系都是不合適的。Gauss6°投影適合6°帶內空間數據表達,若全國航物探數據採用6°分帶表達,在高緯度地區會造成6°帶間數據裂縫問題;Lambert投影可滿足數據的無縫表達,但對大比例尺數據變形較大,無法滿足數據制圖的精度要求;Mecator投影也可滿足數據的無縫表達,低緯度地區也能滿足大比例尺數據制圖的精度要求,但在我國中高緯度區存在著嚴重變形問題。所以,航空物探數據模型採用地理坐標(無投影,圖2-1)格式存放,可根據實際應用的需要將航空物探數據變換到任何方式的投影坐標系統。

航空物探資料庫模型返攜採用Beijing_1954地理坐標系,相關參數如下:

角度單位:°(0.017453292519943299rad)

零經線:格林尼治(0.000000000000000000)

基準:D_Beijing_1954

橢球:Krasovsky_1940

長軸半徑:6378245.000m

短軸半徑:6356863.019m

建立統一坐標框架是空間資料庫建設的一項基礎性工作,採用Beijing_1954地理坐標系作為航空物探資料庫統一空間坐標框架具有以下優點。

圖2-1 統一空間坐標框架示意圖

(一)無縫空間數據存儲

統一空間坐標框架解決了復雜的航空物探數據的坐標系統、投影、比例尺等不統一的問題,實現同一性質的物探數據在同一個主題中進行管理。如全國的航磁異常數據可放在一個圖層上進行管理。

(二)適合多尺度表達

按測區管理的多尺度、多框架的航空物探數據是處於一個相對坐標系統中,各個測區間相對位置關系會發生錯位。採用統一的Beijing_1954地理坐標框架,恢復了各測區間正確的位置關系,實現不同尺度數據的集成和正確表達,易於多源異構空間數據的融合。

(三)大區域數據集成

我國海陸面積近1300×104km2,地域跨度較大。在進行小比例尺的航空物探編圖時,需要選用與之相適應的投影坐標;在陸地和海域進行大比例尺制圖時,同樣需要選用合適投影系統。航空物探制圖的實踐也證明了這一點。1995年6月由中國、加拿大、美國、愛爾蘭和俄羅斯等國科學家共同編制的1:1000萬歐亞東北地區磁異常與大地構造圖,採用橫軸Mercator投影。中心編制的1:500萬全國航磁圖採用Lambert投影。2008年,由中國和吉爾吉斯斯坦科學家編制的1:100萬中吉天山金屬礦產成礦規律圖,採用Lambert投影,將兩個國家不同時期、不同尺度的數據進行了有效的集成,是地質、地球物理等綜合應用的典範。

隨著航空物探數據應用領域的不斷擴展,陸地、海域,甚至於洲際和全球航空物探數據的整體表達都需對坐標投影提出要求。採用統一的地理坐標框架的航空物探數據非常容易變換到指定的投影坐標框架,滿足多樣化的制圖要求。

三、要素類和對象類的劃分

Geodatabase空間資料庫模型結構(圖2-2)分為空間資料庫、要素數據集(Feature dataset)、要素類(Feature classes)、要素(Feature)4個層次。為了建立航空物探Geoda-tabase空間數據模型,我們依據Geodatabase模型關於要素類和對象類的劃分原則,結合相關的國家標准和地球物理行業標准,制定了《航空物探數據要素類和對象類劃分標准》,對航空物探數據進行數據分類。

圖2-2 空間資料庫模型結構

1)按照航空物探數據的空間特徵,將其劃分為5個要素數據集,即勘查項目概況要素數據集、基礎數據要素數據集、異常要素數據集、解釋要素數據集和評價要素數據集。

2)根據航空物探測量方法、數據處理過程以及推斷解釋方法和過程,進一步把航空物探數據劃分為若干要素類和對象類,定義了要素類的主題特徵和表達方式,確定子類和屬性域;定義對象類的結構和聯接欄位,建立了關系類。

3)定義要素類的內容、欄位名稱和存儲結構。在航空物探數據採集過程中,不同類型的數據采樣率不同,坐標數據采樣2次/s,重力場數據采樣2次/s,磁場數據采樣10次/s,這就造成了場值數據與坐標數據無法一一對應問題。若按場值數據采樣率內插坐標數據,將導致數據量成倍增長;若按坐標數據采樣率抽稀場值數據,將降低航空物探測量對地質體的分辨能力,影響測量效果。在綜合分析航空物探數據應用基礎上,提出了採用要素數據與屬性數據分置的方式,將測線坐標數據與地球物理場數據分離,分別建立獨立共享的航跡線數據要素類模型,磁場、重力場等數據對象類模型(圖2-3),很好地解決了航空物探數據的存儲問題。

圖2-3 要素數據與屬性數據分置示意圖

採用要素數據與屬性數據分置方式,不僅是基於航空物探數據屬性數據的多源性、不同采樣頻率等特點的考慮,還考慮到數據的綜合查詢和檢索的速度,特別是通過ArcSDE訪問空間資料庫的效率的問題。再者,對於大部分用戶來說,需求是屬性數據的綜合應用,因此在資料庫建模過程中,將屬性數據採用對象類的方式進行管理,不但提高了空間數據的操作能力,同時在ArcSDE的配置上採用直接訪問資料庫(對象類)方式,並且加快了數據查詢和統計的速度。

四、資料庫概念模型

用戶需求是資料庫建設的約束條件之一。航空物探數據的空間特性決定航空物探資料庫必須是空間資料庫,採用資料庫管理數據,利用GIS技術提供可視化服務,這是各個層次用戶的一致要求。因此,我們從現實世界出發,對航空物探數據的多源性、多尺度和不同采樣等問題進行了描述,提出了解決方案。此方案是不依賴於任何具體的硬體環境和資料庫管理系統(DBMS),建立了客觀反映現實世界的航空物探資料庫概念模型,把用戶需要管理的信息統一到整體概念結構中,表達了用戶需要。

在全面分析航空物探業務流程和數據流程,以及航空物探數據特性的基礎上,按照《航空物探數據要素類和對象類劃分標准》,以及空間實體點、線、面要素特徵的基本原則,對航空物探資料庫所涉及的實體進行歸類,劃分成12個主題。根據空間數據分主題表達的特點和航空物探空間數據坐標框架的定義,確定航空物探資料庫空間數據概念模型,明確各個主題的用途、數據來源、表達方式、空間參考、比例尺和精度等內容,按照ArcGIS定義空間資料庫的數據分層表達方式(圖2-4),完成航空物探資料庫概念模型設計(圖2-5)。

圖2-4 航空物探資料庫空間數據分層模型

圖2-5 航空物探資料庫空間數據概念模型

Ⅸ 資料庫設計中概念模型是

是一種條件。概念模型是資料庫設計的第一步,用於描述系統中的實體、屬性、關系和約束條件。概畝森念模型是一個抽象的、獨立於哪告任何具李耐明體實現技術的模型,可以幫助資料庫設計者更好地理解系統的需求和設計方案,並為後續的物理模型設計提供基礎。

Ⅹ 資料庫建模,概念模型、邏輯模型、物理模型的區別和轉化

關於資料庫理論中概念模型、邏輯模型、物理模型之間的區別。隨機復習上網並復習,並在此記錄一下,資料庫建模是對現實世界進行分析、抽象、並從中找出內在聯系,進而確定資料庫的結構。

1、概念模型:就是從現實世界到信息世界的第一層抽象,確定領域實體屬性關系等,使用握燃E-R圖表示,E-R圖主要是由實體、屬性和聯系三個要素構成的。

2、邏輯模型:是將概念模型轉化為具體的數據模型的過程,即按照概念結構設計階段建立的基本E-R圖,按選定的管理系統軟體支持的數據模型(層次、網狀、關系、面向對象),轉換成相應的邏輯模型。這種轉換要符合關系數據模型的原則。目前最流行就是關系模型(也就是對應的關系資料庫)

E-R圖向關系模型的轉換是要解決如何將實體和實體間的聯系轉換為關系,並確定這些關系空皮純的屬性和碼。這種轉換一般按下面的原則進行:

(1)一個實體轉換為一個關系,實體的屬性就是關系的屬性,實體的碼就是關系的碼。

(2)一個聯系也轉換為一個關系,聯系斗咐的屬性及聯系所連接的實體的碼都轉換為關系的屬性,但是關系的碼會根據聯系的類型變化,如果是:

1:1聯系,兩端實體的碼都成為關系的候選碼。

1:n聯系,n端實體的碼成為關系的碼。

m:n聯系,兩端實體碼的組合成為關系的碼。

3、物理模型就是根據邏輯模型對應到具體的數據模型的機器實現。物理模型是對真實資料庫的描述。如關系資料庫中的一些對象為表、視圖、欄位、數據類型、長度、主鍵、外鍵、索引、約束、是否可為空、默認值。

---------------------------------------------------------------------

概念設計就是設計E-R圖啊,物理(邏輯)設計就是把你的E-R圖中的實體,屬性轉換成關系模式

1.概念設計;對用戶要求描述的現實世界(可能是一個工廠、一個商場或者一個學校等),通過對其中住處的分類、聚集和概括,建立抽象的概念數據模型。這個概念模型應反映現實世界各部門的信息結構、信息流動情況、信息間的互相制約關系以及各部門對信息儲存、查詢和加工的要求等。所建立的模型應避開資料庫在計算機上的具體實現細節,用一種抽象的形式表示出來。以擴充的實體—(E-R模型)聯系模型方法為例,第一步先明確現實世界各部門所含的各種實體及其屬性、實體間的聯系以及對信息的制約條件等,從而給出各部門內所用信息的局部描述(在資料庫中稱為用戶的局部視圖)。第二步再將前面得到的多個用戶的局部視圖集成為一個全局視圖,即用戶要描述的現實世界的概念數據模型。
2.邏輯設計;主要工作是將現實世界的概念數據模型設計成資料庫的一種邏輯模式,即適應於某種特定資料庫管理系統所支持的邏輯數據模式。與此同時,可能還需為各種數據處理應用領域產生相應的邏輯子模式。這一步設計的結果就是所謂「邏輯資料庫」。
3.物理設計;根據特定資料庫管理系統所提供的多種存儲結構和存取方法等依賴於具體計算機結構的各項物理設計措施,對具體的應用任務選定最合適的物理存儲結構(包括文件類型、索引結構和數據的存放次序與位邏輯等)、存取方法和存取路徑等。這一步設計的結果就是所謂「物理資料庫」。
4.三者關系:由上到下,先要概念設計,接著邏輯設計,再是物理設計,一級一級設計。

熱點內容
內置存儲卡可以拆嗎 發布:2025-05-18 04:16:35 瀏覽:335
編譯原理課時設置 發布:2025-05-18 04:13:28 瀏覽:378
linux中進入ip地址伺服器 發布:2025-05-18 04:11:21 瀏覽:612
java用什麼軟體寫 發布:2025-05-18 03:56:19 瀏覽:32
linux配置vim編譯c 發布:2025-05-18 03:55:07 瀏覽:107
砸百鬼腳本 發布:2025-05-18 03:53:34 瀏覽:944
安卓手機如何拍視頻和蘋果一樣 發布:2025-05-18 03:40:47 瀏覽:740
為什麼安卓手機連不上蘋果7熱點 發布:2025-05-18 03:40:13 瀏覽:803
網卡訪問 發布:2025-05-18 03:35:04 瀏覽:511
接收和發送伺服器地址 發布:2025-05-18 03:33:48 瀏覽:371