des演算法工具
優點:DES加密演算法密鑰只用到了64位中的56位,這樣具有高的安全性。
缺點:分組比較短、密鑰太短、密碼生命周期短、運算速度較慢。
『貳』 des演算法加密解密的實現
本文介紹了一種國際上通用的加密演算法—DES演算法的原理,並給出了在VC++6.0語言環境下實現的源代碼。最後給出一個示例,以供參考。
關鍵字:DES演算法、明文、密文、密鑰、VC;
本文程序運行效果圖如下:
正文:
當今社會是信息化的社會。為了適應社會對計算機數據安全保密越來越高的要求,美國國家標准局(NBS)於1997年公布了一個由IBM公司研製的一種加密演算法,並且確定為非機要部門使用的數據加密標准,簡稱DES(Data Encrypton Standard)。自公布之日起,DES演算法作為國際上商用保密通信和計算機通信的最常用演算法,一直活躍在國際保密通信的舞台上,扮演了十分突出的角色。現將DES演算法簡單介紹一下,並給出實現DES演算法的VC源代碼。
DES演算法由加密、解密和子密鑰的生成三部分組成。
一.加密
DES演算法處理的數據對象是一組64比特的明文串。設該明文串為m=m1m2…m64 (mi=0或1)。明文串經過64比特的密鑰K來加密,最後生成長度為64比特的密文E。其加密過程圖示如下:
DES演算法加密過程
對DES演算法加密過程圖示的說明如下:待加密的64比特明文串m,經過IP置換後,得到的比特串的下標列表如下:
IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
該比特串被分為32位的L0和32位的R0兩部分。R0子密鑰K1(子密鑰的生成將在後面講)經過變換f(R0,K1)(f變換將在下面講)輸出32位的比特串f1,f1與L0做不進位的二進制加法運算。運算規則為:
f1與L0做不進位的二進制加法運算後的結果賦給R1,R0則原封不動的賦給L1。L1與R0又做與以上完全相同的運算,生成L2,R2…… 一共經過16次運算。最後生成R16和L16。其中R16為L15與f(R15,K16)做不進位二進制加法運算的結果,L16是R15的直接賦值。
R16與L16合並成64位的比特串。值得注意的是R16一定要排在L16前面。R16與L16合並後成的比特串,經過置換IP-1後所得比特串的下標列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
經過置換IP-1後生成的比特串就是密文e.。
下面再講一下變換f(Ri-1,Ki)。
它的功能是將32比特的輸入再轉化為32比特的輸出。其過程如圖所示:
對f變換說明如下:輸入Ri-1(32比特)經過變換E後,膨脹為48比特。膨脹後的比特串的下標列表如下:
E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31
膨脹後的比特串分為8組,每組6比特。各組經過各自的S盒後,又變為4比特(具體過程見後),合並後又成為32比特。該32比特經過P變換後,其下標列表如下:
P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
經過P變換後輸出的比特串才是32比特的f (Ri-1,Ki)。
下面再講一下S盒的變換過程。任取一S盒。見圖:
在其輸入b1,b2,b3,b4,b5,b6中,計算出x=b1*2+b6, y=b5+b4*2+b3*4+b2*8,再從Si表中查出x 行,y 列的值Sxy。將Sxy化為二進制,即得Si盒的輸出。(S表如圖所示)
至此,DES演算法加密原理講完了。在VC++6.0下的程序源代碼為:
for(i=1;i<=64;i++)
m1[i]=m[ip[i-1]];//64位明文串輸入,經過IP置換。
下面進行迭代。由於各次迭代的方法相同只是輸入輸出不同,因此只給出其中一次。以第八次為例://進行第八次迭代。首先進行S盒的運算,輸入32位比特串。
for(i=1;i<=48;i++)//經過E變換擴充,由32位變為48位
RE1[i]=R7[E[i-1]];
for(i=1;i<=48;i++)//與K8按位作不進位加法運算
RE1[i]=RE1[i]+K8[i];
for(i=1;i<=48;i++)
{
if(RE1[i]==2)
RE1[i]=0;
}
for(i=1;i<7;i++)//48位分成8組
{
s11[i]=RE1[i];
s21[i]=RE1[i+6];
s31[i]=RE1[i+12];
s41[i]=RE1[i+18];
s51[i]=RE1[i+24];
s61[i]=RE1[i+30];
s71[i]=RE1[i+36];
s81[i]=RE1[i+42];
}//下面經過S盒,得到8個數。S1,s2,s3,s4,s5,s6,s7,s8分別為S表
s[1]=s1[s11[6]+s11[1]*2][s11[5]+s11[4]*2+s11[3]*4+s11[2]*8];
s[2]=s2[s21[6]+s21[1]*2][s21[5]+s21[4]*2+s21[3]*4+s21[2]*8];
s[3]=s3[s31[6]+s31[1]*2][s31[5]+s31[4]*2+s31[3]*4+s31[2]*8];
s[4]=s4[s41[6]+s41[1]*2][s41[5]+s41[4]*2+s41[3]*4+s41[2]*8];
s[5]=s5[s51[6]+s51[1]*2][s51[5]+s51[4]*2+s51[3]*4+s51[2]*8];
s[6]=s6[s61[6]+s61[1]*2][s61[5]+s61[4]*2+s61[3]*4+s61[2]*8];
s[7]=s7[s71[6]+s71[1]*2][s71[5]+s71[4]*2+s71[3]*4+s71[2]*8];
s[8]=s8[s81[6]+s81[1]*2][s81[5]+s81[4]*2+s81[3]*4+s81[2]*8];
for(i=0;i<8;i++)//8個數變換輸出二進制
{
for(j=1;j<5;j++)
{
temp[j]=s[i+1]%2;
s[i+1]=s[i+1]/2;
}
for(j=1;j<5;j++)
f[4*i+j]=temp[5-j];
}
for(i=1;i<33;i++)//經過P變換
frk[i]=f[P[i-1]];//S盒運算完成
for(i=1;i<33;i++)//左右交換
L8[i]=R7[i];
for(i=1;i<33;i++)//R8為L7與f(R,K)進行不進位二進制加法運算結果
{
R8[i]=L7[i]+frk[i];
if(R8[i]==2)
R8[i]=0;
}
[ 原創文檔 本文適合中級讀者 已閱讀21783次 ] 文檔 代碼 工具
DES演算法及其在VC++6.0下的實現(下)
作者:航天醫學工程研究所四室 朱彥軍
在《DES演算法及其在VC++6.0下的實現(上)》中主要介紹了DES演算法的基本原理,下面讓我們繼續:
二.子密鑰的生成
64比特的密鑰生成16個48比特的子密鑰。其生成過程見圖:
子密鑰生成過程具體解釋如下:
64比特的密鑰K,經過PC-1後,生成56比特的串。其下標如表所示:
PC-1 57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
該比特串分為長度相等的比特串C0和D0。然後C0和D0分別循環左移1位,得到C1和D1。C1和D1合並起來生成C1D1。C1D1經過PC-2變換後即生成48比特的K1。K1的下標列表為:
PC-2 14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
C1、D1分別循環左移LS2位,再合並,經過PC-2,生成子密鑰K2……依次類推直至生成子密鑰K16。
注意:Lsi (I =1,2,….16)的數值是不同的。具體見下表:
迭代順序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位數 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
生成子密鑰的VC程序源代碼如下:
for(i=1;i<57;i++)//輸入64位K,經過PC-1變為56位 k0[i]=k[PC_1[i-1]];
56位的K0,均分為28位的C0,D0。C0,D0生成K1和C1,D1。以下幾次迭代方法相同,僅以生成K8為例。 for(i=1;i<27;i++)//循環左移兩位
{
C8[i]=C7[i+2];
D8[i]=D7[i+2];
}
C8[27]=C7[1];
D8[27]=D7[1];
C8[28]=C7[2];
D8[28]=D7[2];
for(i=1;i<=28;i++)
{
C[i]=C8[i];
C[i+28]=D8[i];
}
for(i=1;i<=48;i++)
K8[i]=C[PC_2[i-1]];//生成子密鑰k8
注意:生成的子密鑰不同,所需循環左移的位數也不同。源程序中以生成子密鑰 K8為例,所以循環左移了兩位。但在編程中,生成不同的子密鑰應以Lsi表為准。
三.解密
DES的解密過程和DES的加密過程完全類似,只不過將16圈的子密鑰序列K1,K2……K16的順序倒過來。即第一圈用第16個子密鑰K16,第二圈用K15,其餘類推。
第一圈:
加密後的結果
L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15
同理R15=L14⊕f(R14,K15), L15=R14。
同理類推:
得 L=R0, R=L0。
其程序源代碼與加密相同。在此就不重寫。
四.示例
例如:已知明文m=learning, 密鑰 k=computer。
明文m的ASCII二進製表示:
m= 01101100 01100101 01100001 01110010
01101110 01101001 01101110 01100111
密鑰k的ASCII二進製表示:
k=01100011 01101111 01101101 01110000
01110101 01110100 01100101 01110010
明文m經過IP置換後,得:
11111111 00001000 11010011 10100110 00000000 11111111 01110001 11011000
等分為左右兩段:
L0=11111111 00001000 11010011 10100110 R0=00000000 11111111 01110001 11011000
經過16次迭代後,所得結果為:
L1=00000000 11111111 01110001 11011000 R1=00110101 00110001 00111011 10100101
L2=00110101 00110001 00111011 10100101 R2=00010111 11100010 10111010 10000111
L3=00010111 11100010 10111010 10000111 R3=00111110 10110001 00001011 10000100
L4= R4=
L5= R5=
L6= R6=
L7= R7=
L8= R8=
L9= R9=
L10= R10=
L11= R11=
L12= R12=
L13= R13=
L14= R14=
L15= R15=
L16= R16=
其中,f函數的結果為:
f1= f2=
f3= f4=
f5= f6=
f7= f8=
f9= f10=
f11= f12=
f13= f14=
f15= f16=
16個子密鑰為:
K1= K2=
K3= K4=
K5= K6=
K7= K8=
K9= K10=
K11= K12=
K13= K14=
K15= K16=
S盒中,16次運算時,每次的8 個結果為:
第一次:5,11,4,1,0,3,13,9;
第二次:7,13,15,8,12,12,13,1;
第三次:8,0,0,4,8,1,9,12;
第四次:0,7,4,1,7,6,12,4;
第五次:8,1,0,11,5,0,14,14;
第六次:14,12,13,2,7,15,14,10;
第七次:12,15,15,1,9,14,0,4;
第八次:15,8,8,3,2,3,14,5;
第九次:8,14,5,2,1,15,5,12;
第十次:2,8,13,1,9,2,10,2;
第十一次:10,15,8,2,1,12,12,3;
第十二次:5,4,4,0,14,10,7,4;
第十三次:2,13,10,9,2,4,3,13;
第十四次:13,7,14,9,15,0,1,3;
第十五次:3,1,15,5,11,9,11,4;
第十六次:12,3,4,6,9,3,3,0;
子密鑰生成過程中,生成的數值為:
C0=0000000011111111111111111011 D0=1000001101110110000001101000
C1=0000000111111111111111110110 D1=0000011011101100000011010001
C2=0000001111111111111111101100 D2=0000110111011000000110100010
C3=0000111111111111111110110000 D3=0011011101100000011010001000
C4=0011111111111111111011000000 D4=1101110110000001101000100000
C5=1111111111111111101100000000 D5=0111011000000110100010000011
C6=1111111111111110110000000011 D6=1101100000011010001000001101
C7=1111111111111011000000001111 D7=0110000001101000100000110111
C8=1111111111101100000000111111 D8=1000000110100010000011011101
C9=1111111111011000000001111111 D9=0000001101000100000110111011
C10=1111111101100000000111111111 D10=0000110100010000011011101100
C11=1111110110000000011111111111 D11=0011010001000001101110110000
C12=1111011000000001111111111111 D12=1101000100000110111011000000
C13=1101100000000111111111111111 D13=0100010000011011101100000011
C14=0110000000011111111111111111 D14=0001000001101110110000001101
C15=1000000001111111111111111101 D15=0100000110111011000000110100
C16=0000000011111111111111111011 D16=1000001101110110000001101000
解密過程與加密過程相反,所得的數據的順序恰好相反。在此就不贅述。
參考書目:
《計算機系統安全》 重慶出版社 盧開澄等編著
《計算機密碼應用基礎》 科學出版社 朱文余等編著
《Visual C++ 6.0 編程實例與技巧》 機械工業出版社 王華等編著
『叄』 DES演算法和RSA演算法的區別
DES演算法全稱為Data Encryption Standard,即數據加密演算法,它是IBM公司於1975年研究成功並公開發表的。DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。 DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,其演算法主要分為兩步: 1初始置換 其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長3 2位,其置換規則為將輸入的第58位換到第一位,第50位換到第2位……依此類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0是右32位,例:設置換前的輸入值為D1D2D3……D64,則經過初始置換後的結果為:L0=D58D50……D8;R0=D57D49……D7。 2逆置換 經過16次迭代運算後,得到L16、R16,將此作為輸入,進行逆置換,逆置換正好是初始置換的逆運算,由此即得到密文輸出。 RSA演算法簡介 這種演算法1978年就出現了,它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。 RSA的安全性依賴於大數分解。公鑰和私鑰都是兩個大素數( 大於 100個十進制位)的函數。據猜測,從一個密鑰和密文推斷出明文的難度等同於分解兩個大素數的積。 密鑰對的產生。選擇兩個大素數,p 和q 。計算: n = p * q 然後隨機選擇加密密鑰e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互質。最後,利用Euclid 演算法計算解密密鑰d, 滿足 e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) ) 其中n和d也要互質。數e和n是公鑰,d是私鑰。兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。 加密信息 m(二進製表示)時,首先把m分成等長數據塊 m1 ,m2,..., mi ,塊長s,其中 2^s <= n, s 盡可能的大。對應的密文是: ci = mi^e ( mod n ) ( a ) 解密時作如下計算: mi = ci^d ( mod n ) ( b ) RSA 可用於數字簽名,方案是用 ( a ) 式簽名, ( b )式驗證。具體操作時考慮到安全性和 m信息量較大等因素,一般是先作 HASH 運算。 RSA 的安全性。 RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解140多個十進制位的大素數。因此,模數n必須選大一些,因具體適用情況而定。 RSA的速度。 由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。 RSA的選擇密文攻擊。 RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝(Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構: ( XM )^d = X^d *M^d mod n 前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用One-Way Hash Function對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法。 RSA的公共模數攻擊。 若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則: C1 = P^e1 mod n C2 = P^e2 mod n 密碼分析者知道n、e1、e2、C1和C2,就能得到P。 因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足: r * e1 + s * e2 = 1 假設r為負數,需再用Euclidean演算法計算C1^(-1),則 ( C1^(-1) )^(-r) * C2^s = P mod n 另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。 RSA的小指數攻擊。 有一種提高RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。 RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。 RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。B)分組長度太大,為保證安全性,n 至少也要 600 bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目前,SET(Secure Electronic Transaction)協議中要求CA採用2048比特長的密鑰,其他實體使用1024比特的密鑰。參考資料: http://www.radyinfo.com/KNOWLEDGE/RSA.HTM
『肆』 什麼是密碼分析,其攻擊類型有哪些
答:密碼分析是指研漏稿究在不知道密鑰的情況下來恢復明文的科學。攻擊類型棚前有隻有密文的攻擊,已知明文的攻擊,選擇明文的攻擊,適應性選擇明文攻擊,選擇密文的攻擊,選擇密鑰的攻擊,橡皮管密碼攻擊。S盒是DES演算法的核心。其功能是把6bit數據變為4bit數據。返和孝
『伍』 DES加密演算法的破解是怎麼回事
DES 被證明是可以破解的,明文+密鑰=密文,這個公式只要知道任何兩個,就可以推導出第三個。
凌科芯安公司專門從事加密晶元,對破解有一定的了解,如果需要了解加密晶元的詳細情況,請咨詢凌科芯安公司
『陸』 安卓常見的一些加密((對稱加密DES,AES),非對稱加密(RSA),MD5)
DES是一種對稱加密演算法,所謂對稱加密演算法即:加密和解密使用相同密鑰的演算法。DES加密演算法出自IBM的研究,
後來被美國政府正式採用,之後開始廣泛流傳,但是近些年使用越來越少,因為DES使用56位密鑰,以現代計算能力,
24小時內即可被破解
調用過程
最近做微信小程序獲取用戶綁定的手機號信息解密,試了很多方法。最終雖然沒有完全解決,但是也達到我的極限了。有時會報錯:javax.crypto.BadPaddingException: pad block corrupted。
出現錯誤的詳細描述
每次剛進入小程序登陸獲取手機號時,會出現第一次解密失敗,再試一次就成功的問題。如果連續登出,登入,就不會再出現揭秘失敗的問題。但是如果停止操作過一會,登出後登入,又會出現第一次揭秘失敗,再試一次就成功的問題。
網上說的,官方文檔上注意點我都排除了。獲取的加密密文是在前端調取wx.login()方法後,調用我後端的微信授權介面,獲取用戶的sessionkey,openId.然後才是前端調用的獲取sessionkey加密的用戶手機號介面,所以我可以保證每次sessionkey是最新的。不會過期。
並且我通過日誌發現在sessionkey不變的情況下,第一次失敗,第二次解密成功。
加密演算法,RSA是繞不開的話題,因為RSA演算法是目前最流行的公開密鑰演算法,既能用於加密,也能用戶數字簽名。不僅在加密貨幣領域使用,在傳統互聯網領域的應用也很廣泛。從被提出到現在20多年,經歷了各種考驗,被普遍認為是目前最優秀的公鑰方案之一
非對稱加密演算法的特點就是加密秘鑰和解密秘鑰不同,秘鑰分為公鑰和私鑰,用私鑰加密的明文,只能用公鑰解密;用公鑰加密的明文,只能用私鑰解密。
一、 什麼是「素數」?
素數是這樣的整數,它除了能表示為它自己和1的乘積以外,不能表示為任何其它兩個整數的乘積
二、什麼是「互質數」(或「互素數」)?
小學數學教材對互質數是這樣定義的:「公約數只有1的兩個數,叫做互質數
(1)兩個質數一定是互質數。例如,2與7、13與19。
(2)一個質數如果不能整除另一個合數,這兩個數為互質數。例如,3與10、5與 26。
(3)1不是質數也不是合數,它和任何一個自然數在一起都是互質數。如1和9908。
(4)相鄰的兩個自然數是互質數。如 15與 16。
(5)相鄰的兩個奇數是互質數。如 49與 51。
(6)大數是質數的兩個數是互質數。如97與88。
(7)小數是質數,大數不是小數的倍數的兩個數是互質數。如 7和 16。
(8)兩個數都是合數(二數差又較大),小數所有的質因數,都不是大數的約數,這兩個數是互質數。如357與715,357=3×7×17,而3、7和17都不是715的約數,這兩個數為互質數。等等。
三、什麼是模指數運算?
指數運算誰都懂,不必說了,先說說模運算。模運算是整數運算,有一個整數m,以n為模做模運算,即m mod n。怎樣做呢?讓m去被n整除,只取所得的余數作為結果,就叫做模運算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。
模指數運算就是先做指數運算,取其結果再做模運算。如(5^3) mod 7 = (125 mod 7) = 6。
其中,符號^表示數學上的指數運算;mod表示模運算,即相除取余數。具體演算法步驟如下:
(1)選擇一對不同的、足夠大的素數p,q。
(2)計算n=p q。
(3)計算f(n)=(p-1) (q-1),同時對p, q嚴加保密,不讓任何人知道。
(4)找一個與f(n)互質的數e作為公鑰指數,且1<e<f(n)。
(5)計算私鑰指數d,使得d滿足(d*e) mod f(n) = 1
(6)公鑰KU=(e,n),私鑰KR=(d,n)。
(7)加密時,先將明文變換成0至n-1的一個整數M。若明文較長,可先分割成適當的組,然後再進行交換。設密文為C,則加密過程為:C=M^e mod n。
(8)解密過程為:M=C^d mod n。
在RSA密碼應用中,公鑰KU是被公開的,即e和n的數值可以被第三方竊聽者得到。破解RSA密碼的問題就是從已知的e和n的數值(n等於pq),想法求出d的數值,這樣就可以得到私鑰來破解密文。從上文中的公式:(d e) mod ((p-1) (q-1)) = 1,我們可以看出,密碼破解的實質問題是:從p q的數值,去求出(p-1)和(q-1)。換句話說,只要求出p和q的值,我們就能求出d的值而得到私鑰。
當p和q是一個大素數的時候,從它們的積p q去分解因子p和q,這是一個公認的數學難題。比如當p*q大到1024位時,迄今為止還沒有人能夠利用任何計算工具去完成分解因子的任務。因此,RSA從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。
缺點1:雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何。
在android 開發的很多時候。為了保證用戶的賬戶的安全性,再保存用戶的密碼時,通常會採用MD5加密演算法,這種演算法是不可逆的,具有一定的安全性
MD5不是加密演算法, 因為如果目的是加密,必須滿足的一個條件是加密過後可以解密。但是MD5是無法從結果還原出原始數據的。
MD5隻是一種哈希演算法
『柒』 DES加密演算法C語言實現
/*********************************************************************/
/*-文件名:des.h */
/*- */
/*-功能: 實現DES加密演算法的加密解密功能 */
/*********************************************************************/
typedef int INT32;
typedef char INT8;
typedef unsigned char ULONG8;
typedef unsigned short ULONG16;
typedef unsigned long ULONG32;
/*如果採用c++編譯器的話採用如下宏定義
#define DllExport extern "C" __declspec(dllexport)
*/
#define DllExport __declspec(dllexport)
/*加密介面函數*/
DllExport INT32 DdesN(ULONG8 *data, ULONG8 **key, ULONG32 n_key,ULONG32 readlen);
DllExport INT32 desN(ULONG8 *data, ULONG8 **key, ULONG32 n_key,ULONG32 readlen);
DllExport INT32 des3(ULONG8 *data, ULONG8 *key,ULONG32 n ,ULONG32 readlen);
DllExport INT32 Ddes3(ULONG8 *data,ULONG8 *key,ULONG32 n ,ULONG32 readlen);
DllExport INT32 des(ULONG8 *data, ULONG8 *key,INT32 readlen);
DllExport INT32 Ddes(ULONG8 *data,ULONG8 *key,INT32 readlen);
*********************************************************************/
/*-文件名:des.c */
/*- */
/*-功能: 實現DES加密演算法的加密解密功能 */
//*********************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <memory.h>
#include <malloc.h>
#include "des.h"
#define SUCCESS 0
#define FAIL -1
#define READFILESIZE 512
#define WZ_COMMEND_NUM 4
#define WZUSEHELPNUM 19
#define DESONE 1
#define DESTHREE 2
#define DESMULTI 3
INT8 *WZ_Commend_Help[] =
{
"基於DES的加密解密工具v1.0 ",/*0*/
"追求卓越,勇於創新 ",
"----著者 : 吳真--- ",
" "
};
INT8 *WZ_USE_HELP[]={
"輸入5+n個參數:",
"\t1.可執行文件名 *.exe",
"\t2.操作類型 1:一層加密;2:一層解密;",
"\t\t13:N層單密鑰加密;23:N層單密鑰解密;",
"\t\t39:N層多密鑰加密;49:N層多密鑰解密",
"\t3.讀出數據的文件名*.txt",
"\t4.寫入數據的文件名*.txt",
"\t5.密鑰(8位元組例如:wuzhen12)",
"\t[6].N層單密鑰的層數或者...二層加密|解密密鑰",
"\t[7].三層加密|解密密鑰",
"\t[8]. ...",
"\t[N].N層加密|解密密鑰",
"\t 例1: des 1 1.txt 2.txt 12345678",
"\t : des 2 2.txt 3.txt 12345678",
"\t 例2: des 13 1.txt 2.txt tiantian 5",
"\t : des 23 2.txt 3.txt tiantian 5",
"\t 例3: des 39 1.txt 2.txt 12345678 tiantian gaoxinma",
"\t : des 49 2.txt 3.txt 12345678 tiantian gaoxinma",
"******************************"
};
INT32 hextofile( ULONG8 *buf ,FILE *writefile, ULONG32 length);/*以16進制寫入文件*/
INT32 encodehex(ULONG8 *tobuf,ULONG8 *frombuf,ULONG32 len);/*16進制解碼*/
INT32 file_enc(FILE *readfile,FILE *writefile,
ULONG8 *key,ULONG32 keynum,
ULONG8 **superkey,ULONG32 n_superkey,
ULONG8 flag);
INT32 file_dec(FILE *readfile,FILE *writefile,
ULONG8 *key,ULONG32 keynum,
ULONG8 **superkey,ULONG32 n_superkey,
ULONG8 flag);
void wz_print_help();
INT32 main(INT32 argc,INT8 *argv[])
{
INT8 *FILENAME1,*FILENAME2;
FILE *fp, *fp2;
ULONG8 *key ;
ULONG8 **superkey ;/*n層加密解密密鑰*/
ULONG8 n_superkey ;
ULONG32 num;
if ( argc >= 5 && (atoi(argv[1]) == 39 || atoi(argv[1]) == 49 ) )
{
n_superkey = argc - 4 ;
superkey = ( INT8 **)calloc(1, n_superkey*sizeof( void *) ) ;
for ( num = 0 ; num < n_superkey ; num++)
{
superkey[num] = argv[4+num] ;
}
}
else if ( argc == 6 && (atoi(argv[1]) == 13 || atoi(argv[1]) == 23 ) && (atoi(argv[5])) > 0)
{
}
else if ( argc == 5 && ( atoi(argv[1]) == 1 || atoi(argv[1]) == 2 ))
{
}
else
{
wz_print_help();
return FAIL;
}
FILENAME1 = argv[2];
FILENAME2 = argv[3];
if ((fp= fopen(FILENAME1,"rb")) == NULL || (fp2 = fopen(FILENAME2,"wb"))==NULL)
{
printf("Can't open file\n");
return FAIL;
}
key = argv[4] ;
switch( atoi(argv[1] ))
{
case 1: /*加密*/
file_enc(fp,fp2,key,0, NULL,0, DESONE);
printf("\n \tDES 一層加密完畢,密文存於%s文件\n",FILENAME2);
break;
case 2:
file_dec(fp,fp2,key,0, NULL, 0,DESONE);
printf("\n \tDES 一層解密完畢,密文存於%s文件\n",FILENAME2);
break;
case 13:
file_enc(fp,fp2,key,atoi(argv[5]),NULL,0,DESTHREE);
printf("\n \tDES %u層單密鑰加密完畢,密文存於%s文件\n",atoi(argv[5]),FILENAME2);
break;
case 23:
file_dec(fp,fp2,key,atoi(argv[5]),NULL,0,DESTHREE);
printf("\n \tDES %u層單密鑰解密完畢,密文存於%s文件\n",atoi(argv[5]),FILENAME2);
break;
case 39:
file_enc(fp,fp2,NULL,0,superkey,n_superkey,DESMULTI);
printf("\n \tDES 多密鑰加密完畢,密文存於%s文件\n",FILENAME2);
free(superkey);
superkey = NULL;
break;
case 49:
file_dec(fp,fp2,NULL,0,superkey,n_superkey,DESMULTI);
printf("\n \tDES 多密鑰加密完畢,密文存於%s文件\n",FILENAME2);
free(superkey);
superkey = NULL;
break;
default:
printf("請選擇是加密|解密 plese choose encrypt|deencrypt\n");
break;
}
fclose(fp);
fclose(fp2);
return SUCCESS;
}
void wz_print_help()
{
INT32 i ;
printf("\t");
for ( i = 0 ; i < 22 ; i++)
{
printf("%c ",5);
}
printf("\n");
for( i = 0 ; i < WZ_COMMEND_NUM ; i++)
{
printf("\t%c\t%s %c\n",5,WZ_Commend_Help[i],5);
}
printf("\t");
for ( i = 0 ; i < 22 ; i++)
{
printf("%c ",5);
}
printf("\n");
for( i = 0 ; i < WZUSEHELPNUM ; i++)
{
printf("\t%s\n",WZ_USE_HELP[i]);
}
return ;
}
INT32 file_enc(FILE *readfile,FILE *writefile,
ULONG8 *key,ULONG32 keynum,
ULONG8 **superkey,ULONG32 n_superkey,
ULONG8 flag)
{
INT32 filelen = 0,readlen = 0,writelen = 0;
ULONG32 totalfilelen = 0 ;/*統計實際的文件的長度*/
ULONG8 readbuf[READFILESIZE] = { 0 };
filelen = fread( readbuf, sizeof( INT8 ), READFILESIZE, readfile );
while( filelen == READFILESIZE )
{
totalfilelen += READFILESIZE;
switch(flag)
{
case DESONE:
des( readbuf,key,READFILESIZE);
break;
case DESTHREE:
des3( readbuf, key ,keynum,READFILESIZE);
break;
case DESMULTI:
desN( readbuf, superkey ,n_superkey,READFILESIZE);
break;
}
hextofile( readbuf, writefile, READFILESIZE );/*以16進制形式寫入文件*/
memset(readbuf,0,READFILESIZE);
filelen = fread( readbuf, sizeof( INT8 ), READFILESIZE, readfile );
}
/*這是從文件中讀出的最後一批數據,長度可能會等於0,所以要先判斷*/
if ( filelen > 0 )
{
/*如果從文件中讀出的長度不等於0,那麼肯定有8個位元組以上的空間
文件長度存在最後8個位元組中*/
totalfilelen += filelen;
memcpy( &readbuf[READFILESIZE-8], (ULONG8*)&totalfilelen,4);
switch(flag)
{
case DESONE:
des( readbuf,key,READFILESIZE);
break;
case DESTHREE:
des3( readbuf, key ,keynum,READFILESIZE);
break;
case DESMULTI:
desN( readbuf, superkey ,n_superkey,READFILESIZE);
break;
}
hextofile( readbuf, writefile,READFILESIZE );/*以16進制形式寫入文件*/
memset(readbuf,0 ,READFILESIZE);
}
else /*filelen == 0*/
{
memcpy( &readbuf[0], (ULONG8*)&totalfilelen,4);
switch(flag)
{
case DESONE:
des( readbuf,key,8);
break;
case DESTHREE:
des3( readbuf, key ,keynum,8);
break;
case DESMULTI:
desN( readbuf, superkey ,n_superkey,8);
break;
}
hextofile( readbuf, writefile, 8);/*以16進制形式寫入文件*/
}
return SUCCESS;
}
INT32 file_dec(FILE *readfile,FILE *writefile,
ULONG8 *key,ULONG32 keynum,
ULONG8 **superkey,ULONG32 n_superkey,
ULONG8 flag)
{
INT32 filelen = 0,readlen = 0,writelen = 0;
ULONG32 totalfilelen = 0 ;/*統計實際的文件的長度*/
INT32 num = 0;
ULONG8 readbuf[READFILESIZE] = { 0 };
ULONG8 sendbuf[READFILESIZE*2] = { 0 };
fseek(readfile,-16,SEEK_END);/*最後16個位元組的表示文件長度的空間*/
filelen = fread( sendbuf, sizeof( INT8 ), 16, readfile );
encodehex( readbuf,sendbuf,8);
switch(flag)
{
case DESONE:
Ddes( readbuf,key,8);
break;
case DESTHREE:
Ddes3( readbuf, key ,keynum,8);
break;
case DESMULTI:
DdesN( readbuf, superkey ,n_superkey,8);
break;
}
/*解密*/
memcpy((ULONG8*)&totalfilelen, &readbuf[0],4);/*得到文件總長*/
memset(readbuf,0 ,8);
memset(sendbuf,0 ,16);
num = totalfilelen/READFILESIZE;/*有幾個READFILESIZE組*/
totalfilelen %= READFILESIZE;
fseek(readfile,0,SEEK_SET);/*跳到文件頭*/
while(num--)
{
filelen = fread( sendbuf, sizeof( INT8 ), READFILESIZE*2, readfile );
encodehex( readbuf,sendbuf,READFILESIZE);
switch(flag)
{
case DESONE:
Ddes( readbuf,key,READFILESIZE);
break;
case DESTHREE:
Ddes3( readbuf, key ,keynum,READFILESIZE);
break;
case DESMULTI:
DdesN( readbuf, superkey ,n_superkey,READFILESIZE);
break;
}
writelen = fwrite(readbuf, sizeof( INT8 ), READFILESIZE, writefile);
memset(readbuf,0 ,READFILESIZE);
memset(sendbuf,0 ,READFILESIZE*2);
}
if ( totalfilelen > 0 )/*最後一塊有多餘的元素*/
{
filelen = fread( sendbuf, sizeof( INT8 ), READFILESIZE*2, readfile );
encodehex( readbuf,sendbuf,READFILESIZE);
switch(flag)
{
case DESONE:
Ddes( readbuf,key,READFILESIZE);
break;
case DESTHREE:
Ddes3( readbuf, key ,keynum,READFILESIZE);
break;
case DESMULTI:
DdesN( readbuf, superkey ,n_superkey,READFILESIZE);
break;
}
writelen = fwrite(readbuf, sizeof( INT8 ), totalfilelen, writefile);
memset(readbuf,0 ,READFILESIZE);
memset(sendbuf,0 ,READFILESIZE*2);
}
return SUCCESS;
}
INT32 hextofile( ULONG8 *buf ,FILE *writefile, ULONG32 length)
{
ULONG32 writelen = 0 ;
/*以16進制形式寫入文件*/
while( writelen < length)
{
if(buf[writelen] == 0)
{
fprintf( writefile, "%x", 0 );
fprintf( writefile, "%x", 0 );
}
else if (buf[writelen] < 0x10)
{
fprintf( writefile, "%x", 0 );
fprintf( writefile, "%x", buf[writelen] );
}
else
{
fprintf( writefile, "%x", buf[writelen] );
}
writelen++;
}
return SUCCESS;
}
INT32 encodehex(ULONG8 *tobuf,ULONG8 *frombuf,ULONG32 len)
{
ULONG8 *readfirst = frombuf ;
ULONG8 *readend = &frombuf[1] ;
INT8 *s;
ULONG8 y[2] ;
ULONG32 i;
for ( i = 0 ; i < len ; i++)
{
y[0] = *readfirst ;
y[1] = *readend ;
readfirst += 2 ;
readend += 2 ;
tobuf[i] = (ULONG8)strtol((INT8*)y, &s, 16);
}
return SUCCESS;
}
『捌』 對稱加密演算法之DES介紹
DES (Data Encryption Standard)是分組對稱密碼演算法。
DES演算法利用 多次組合替代演算法 和 換位演算法 ,分散和錯亂的相互作用,把明文編製成密碼強度很高的密文,它的加密和解密用的是同一演算法。
DES演算法,是一種 乘積密碼 ,其在演算法結構上主要採用了 置換 、 代替 、 模二相加 等函數,通過 輪函數 迭代的方式來進行計算和工作。
DES演算法也會使用到數據置換技術,主要有初始置換 IP 和逆初始置換 IP^-1 兩種類型。DES演算法使用置換運算的目的是將原始明文的所有格式及所有數據全部打亂重排。而在輪加密函數中,即將數據全部打亂重排,同時在數據格式方面,將原有的32位數據格式,擴展成為48位數據格式,目的是為了滿足S盒組對數據長度和數據格式規范的要求。
一組數據信息經過一系列的非線性變換以後,很難從中推導出其計算的過程和使用的非線性組合;但是如果這組數據信息使用的是線性變換,計算就容易的多。在DES演算法中,屬於非線性變換的計算過程只有S盒,其餘的數據計算和變換都是屬於線性變換,所以DES演算法安全的關鍵在於S盒的安全強度。此外,S盒和置換IP相互配合,形成了很強的抗差分攻擊和抗線性攻擊能力,其中抗差分攻擊能力更強一些。
DES演算法是一種分組加密機制,將明文分成N個組,然後對各個組進行加密,形成各自的密文,最後把所有的分組密文進行合並,形成最終的密文。
DES加密是對每個分組進行加密,所以輸入的參數為分組明文和密鑰,明文分組需要置換和迭代,密鑰也需要置換和循環移位。在初始置換IP中,根據一張8*8的置換表,將64位的明文打亂、打雜,從而提高加密的強度;再經過16次的迭代運算,在這些迭代運算中,要運用到子密鑰;每組形成的初始密文,再次經過初始逆置換 IP^-1 ,它是初始置換的逆運算,最後得到分組的最終密文。
圖2右半部分,給出了作用56比特密鑰的過程。DES演算法的加密密鑰是64比特,但是由於密鑰的第n*8(n=1,2…8)是校驗(保證含有奇數個1),因此實際參與加密的的密鑰只有 56比特 。開始時,密鑰經過一個置換,然後經過循環左移和另一個置換分別得到子密鑰ki,供每一輪的迭代加密使用。每輪的置換函數都一樣,但是由於密鑰位的重復迭代使得子密鑰互不相同。
DES演算法 利用多次組合替代演算法和換位演算法,分散和錯亂的相互作用,把明文編製成密碼強度很高的密文,它的加密和解密用的是同一演算法。
DES演算法詳述:DES對64位明文分組(密鑰56bit)進行操作。
1、 初始置換函數IP:64位明文分組x經過一個初始置換函數IP,產生64位的輸出x0,再將分組x0分成左半部分L0和右半部分R0:即將輸入的第58位換到第一位,第50位換到第2位,…,依次類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0是右32位。例,設置換前的輸入值為D1D2D3…D64,則經過初始置換後的結果為:L0=D58D50…D8;R0=D57D49…D7.其置換規則如表1所示。
DES加密過程最後的逆置換 IP^-1 ,是表1的 逆過程 。就是把原來的每一位都恢復過去,即把第1位的數據,放回到第58位,把第2位的數據,放回到第50位。
2、 獲取子密鑰 Ki :DES加密演算法的密鑰長度為56位,一般表示為64位(每個第8位用於奇偶校驗),將用戶提供的64位初始密鑰經過一系列的處理得到K1,K2,…,K16,分別作為 1~16 輪運算的 16個子密鑰 。
(1). 將64位密鑰去掉8個校驗位,用密鑰置換 PC-1 (表2)置換剩下的56位密鑰;
(2). 將56位分成前28位C0和後28位D0,即 PC-1(K56)=C0D0 ;
(3). 根據輪數,這兩部分分別循環左移1位或2位,表3:
(4). 移動後,將兩部分合並成56位後通過壓縮置換PC-2(表4)後得到48位子密鑰,即Ki=PC-2(CiDi).
子密鑰產生如圖2所示:
3、 密碼函數F(非線性的)
(1). 函數F的操作步驟:密碼函數F 的輸入是32比特數據和48比特的子密鑰:
A.擴展置換(E):將數據的右半部分Ri從32位擴展為48位。位選擇函數(也稱E盒),如表5所示:
B.異或:擴展後的48位輸出E(Ri)與壓縮後的48位密鑰Ki作異或運算;
C.S盒替代:將異或得到的48位結果分成八個6位的塊,每一塊通過對應的一個S盒產生一個4位的輸出。
(2)、D、P盒置換:將八個S盒的輸出連在一起生成一個32位的輸出,輸出結果再通過置換P產生一個32位的輸出即:F(Ri,Ki),F(Ri,Ki)演算法描述如圖3,最後,將P盒置換的結果與最初的64位分組的左半部分異或,然後,左、右半部分交換,開始下一輪計算。
4、密文輸出:經過16次迭代運算後,得到L16、R16,將此作為輸入,進行逆置換,即得到密文輸出。逆置換正好是初始置的逆運算。例如,第1位經過初始置換後,處於第40位,而通過逆置換,又將第40位換回到第1位,其逆置換規則如表8所示:
圖4為DES演算法加密原理圖:
DES演算法加密和解密過程採用相同的演算法,並採用相同的加密密鑰和解密密鑰,兩者的區別是:(1)、DES加密是從L0、R0到L15、R15進行變換,而解密時是從L15、R15到L0、R0進行變換的;(2)、加密時各輪的加密密鑰為K0K1…K15,而解密時各輪的解密密鑰為K15K14…K0;(3)、加密時密鑰循環左移,解密時密鑰循環右移。
DES加密過程分析:
(1)、首先要生成64位密鑰,這64位的密鑰經過「子密鑰演算法」換轉後,將得到總共16個子密鑰。將這些子密鑰標識為Kn(n=1,2,…,16)。這些子密鑰主要用於總共十六次的加密迭代過程中的加密工具。
(2)、其次要將明文信息按64位數據格式為一組,對所有明文信息進行分組處理。每一段的64位明文都要經過初試置換IP,置換的目的是將數據信息全部打亂重排。然後將打亂的數據分為左右兩塊,左邊一塊共32位為一組,標識為L0;右邊一塊也是32位為一組,標識為R0.
(3)、置換後的數據塊總共要進行總共十六次的加密迭代過程。加密迭代主要由加密函數f來實現。首先使用子密鑰K1對右邊32位的R0進行加密處理,得到的結果也是32位的;然後再將這個32位的結果數據與左邊32位的L0進行模2處理,從而再次得到一個32位的數據組。我們將最終得到的這個32位組數據,作為第二次加密迭代的L1,往後的每一次迭代過程都與上述過程相同。
(4)、在結束了最後一輪加密迭代之後,會產生一個64位的數據信息組,然後我們將這個64位數據信息組按原有的數據排列順序平均分為左右兩等分,然後將左右兩等分的部分進行位置調換,即原來左等分的數據整體位移至右側,而原來右等分的數據則整體位移至左側,這樣經過合並後的數據將再次經過逆初始置換IP^-1的計算,我們最終將得到一組64位的密文。
DES解密過程分析:DES的解密過程與它的加密過程是一樣的,這是由於DES演算法本身屬於對稱密碼體制演算法,其加密和解密的過程可以共用同一個過程和運算。
DES加密函數f:在DES演算法中,要將64位的明文順利加密輸出成64位的密文,而完成這項任務的核心部分就是加密函數f。加密函數f的主要作用是在第m次的加密迭代中使用子密鑰Km對Km-1進行加密操作。加密函數f在加密過程中總共需要運行16輪。
十六輪迭代演算法:它先將經過置換後的明文分成兩組,每組32位;同時密鑰也被分成了兩組,每組28位,兩組密鑰經過運算,再聯合成一個48位的密鑰,參與到明文加密的運算當中。S盒子,它由8個4*16的矩陣構成,每一行放著0到15的數據,順序各個不同,是由IBM公司設計好的。經過異或運算的明文,是一個48位的數據,在送入到S盒子的時候,被分成了8份,每份6位,每一份經過一個S盒子,經過運算後輸出為4位,即是一個0到15的數字的二進製表示形式。具體運算過程為,將輸入的6位中的第1位為第6位合並成一個二進制數,表示行號,其餘4位也合並成一個二進制數,表示列號。在當前S盒子中,以這個行號和列號為准,取出相應的數,並以二進制的形式表示,輸出,即得到4位的輸出,8個S盒子共計32位。
DES演算法優缺點:
(1)、產生密鑰簡單,但密鑰必須高度保密,因而難以做到一次一密;
(2)、DES的安全性依賴於密鑰的保密。攻擊破解DES演算法的一個主要方法是通過密鑰搜索,使用運算速度非常高的計算機通過排列組合枚舉的方式不斷嘗試各種可能的密鑰,直到破解為止。一般,DES演算法使用56位長的密鑰,通過簡單計算可知所有可能的密鑰數量最多是2^56個。隨著巨型計算機運算速度的不斷提高,DES演算法的安全性也將隨之下降,然而在一般的民用商業場合,DES的安全性仍是足夠可信賴的。
(3)、DES演算法加密解密速度比較快,密鑰比較短,加密效率很高但通信雙方都要保持密鑰的秘密性,為了安全還需要經常更換DES密鑰。
參考鏈接 : https://blog.csdn.net/fengbingchun/article/details/42273257