linux應用層
㈠ linux中的底層,應用層,驅動之間的關系
內核--系統的底層,最核心的東西,操作系統運轉的基礎
驅動--應用程序與內核之間的介面,溝通應用軟體與操作系統的橋梁
應用層--所有的應用程序的統稱,實現某一個或幾個專有的功能
㈡ linux應用層怎麼select底層的中斷
我也不完全理解,但是比你知道的多點。
Linux中,分內核態和用戶態。
你寫的所有的驅動,都是出於內核態->可以直接使用內核相關資源;
應用層,都是用戶態->無法直接陸液判操作底層的東西 -> 想要操作,比如獲得許可權,切換到內核態,然後才能操作。
你這里的需求,我的理解是:
對應你這句
「在中斷服務程序中操作另一個外設」
不知道你的目的和打算用的手段是啥
一般的,ISR中,操作別的設備,常見的是:
設置對應的(比如該硬體本身,或者別的設備B的)寄存器的對應的位,以便通知其某種事情發送或狀態變化了。
然後設備B會:
要麼是由於(被修改了寄存器而)發生了中斷,然後可以接著處理其所要做的事情;
要麼是一直輪訓,檢測對應的某種資源釋放變化,比如上埋緩面被改的寄存器的對應的位,發現變化了,再去調用你的函數,做對應的處理。
注意:
中斷,不論是哪個設早改備的中斷,都不應該佔用(CPU)太長時間
-> 導致別的中斷或服務無法及時運行
㈢ linux下應用層怎麼調用SD卡驅動介面
一般的驅動程序是不允許應用程序調用的,只有當驅動程序留出這種供外界訪問的介面才行,這種介面一般包括read,write,open,ioctl等介面,如果驅動中預留出了這些介面,就可以在應用程序中調用,比如fd=open(設備,參數);或者fd=ioctl(設備,參數);,這樣就會調用到這個設備驅動中的open或者ioctl函數。所以一般如果想再應用程序中調試某個驅動程序,常見的方法就是自己建立一個驅動模塊,這個模塊中預留出對外介面,比如ioctl。然後在你新建的這個驅動模塊中完成ioctl函數,如下:
int device_ioctl(fd,argv) {
/* your function; */
}
static struct file_operations device = {
.ioctl = device_ioctl //預留外部介面
};
應用程序如下:
ioctl(device,argv);
上面這句就可以完成你的模塊中ioctl中的功能。
㈣ linux應用層通過ioctl向內核傳送數據,ioctl的fd參數如何使用
ioctl()和write()等函缺宴數使用相衫局似,比如使用ioctl前會定義一個文件描述符fd:
char *fd="/dev/led"; //就是路徑。貌似有句話叫:linux萬物皆為文件
當你要用ioctl()向內核傳遞數據,就要使用fd,不然怎麼知道傳數據到哪或扮讓去呢!
如: ioctl(fd,xxxxx,xxxxx); //xxxxx為要傳遞的值,具體網路吧,我也不是很清楚
㈤ linux應用層與內核層通信的方式有哪些
通信方式主要有:文件加共享內存,管道,SOCKET。一般都用SOCKET,可液陵襲移植性強。 調度方式:時間片,優先順序,還有就是時間片加優先順序混合,默認是第三種。 線程優先鬧兄級是汪羨1~99,值越大優先順序越高。
㈥ 應用層修改Linux內核參數的方法
sysctl命令 被用於在內核運行時段拆沖動態地修改內核的運行握殲參數,可用的內核御卜參數在目錄 /proc/sys 中。
示例:
㈦ linux應用層讀取不到phy地址
根據我的了汪襲纖解,如果Linux應用層讀取不到物理地址,原因可能是硬體設備不禪毀支持或者內核沒有正確載入硬體模塊。在這種情況下,建議你可以參考Linux內核文檔來檢查內核模塊,並確認與硬體相關的驅困仿動程序已正確載入。
㈧ 嵌入式Linux應用層開發有哪些實例
應用層開發:在操作系統之上寫程序,這里和在上位機寫程序沒什麼衫舉不同,只需要考慮系統資源是否夠枯伏用。
驅動層:寫驅動程序,既需要軟體,更需要硬體,最終提供一個dll或者設備文件,供應用開發
核心層:操作系統的移植,修改等,bootloader的移沒塌攜植等更底層的工作
㈨ 關於 Linux 網路,你必須知道這些
我們一起學習了文件系統和磁碟 I/O 的工作原理,以及相應的性能分析和優化方法。接下來,我們將進入下一個重要模塊—— Linux 的網路子系統。
由於網路處理的流程最復雜,跟我們前面講到的進程調度、中斷處理、內存管理以及 I/O 等都密不可分,所以,我把網路模塊作為最後一個資源模塊來講解。
同 CPU、內存以及 I/O 一樣,網路也是 Linux 系統最核心的功能。網路是一種把不同計算機或網路設備連接到一起的技術,它本質上是一種進程間通信方式,特別是跨系統的進程間通信,必須要通過網路才能進行。隨著高並發、分布式、雲計算、微服務等技術的普及,網路的性能也變得越來越重要。
說到網路,我想你肯定經常提起七層負載均衡、四層負載均衡,或者三層設備、二層設備等等。那麼,這里說的二層、三層、四層、七層又都是什麼意思呢?
實際上,這些層都來自國際標准化組織制定的開放式系統互聯通信參考模型(Open System Interconnection Reference Model),簡稱為 OSI 網路模型。
但是 OSI 模型還是太復雜了,也沒能提供一個可實現的方法。所以,在 Linux 中,我們實際上使用的是另一個更實用的四層模型,即 TCP/IP 網路模型。
TCP/IP 模型,把網路互聯的框架分為應用層、傳輸層、網路層、網路介面層等四層,其中,
為了幫你更形象理解 TCP/IP 與 OSI 模型的關系,我畫了一張圖,如下所示:
當然了,雖說 Linux 實際按照 TCP/IP 模型,實現了網路協議棧,但在平時的學習交流中,我們習慣上還是用 OSI 七層模型來描述。比如,說到七層和四層負載均衡,對應的分別是 OSI 模型中的應用層和傳輸層(而它們對應到 TCP/IP 模型中,實際上是四層和三層)。
OSI引入了服務、介面、協議、分層的概念,TCP/IP借鑒了OSI的這些概念建立TCP/IP模型。
OSI先有模型,後有協議,先有標准,後進行實踐;而TCP/IP則相反,先有協議和應用再提出了模型,且是參照的OSI模型。
OSI是一種理論下的模型,而TCP/IP已被廣泛使用,成為網路互聯事實上的標准。
有了 TCP/IP 模型後,在進行網路傳輸時,數據包就會按照協議棧,對上一層發來的數據進行逐層處理;然後封裝上該層的協議頭,再發送給下一層。
當然,網路包在每一層的處理邏輯,都取決於各層採用的網路協議。比如在應用層,一個提供 REST API 的應用,可以使用 HTTP 協議,把它需要傳輸的 JSON 數據封裝到 HTTP 協議中,然後向下傳遞給 TCP 層。
而封裝做的事情就很簡單了,只是在原來的負載前後,增加固定格式的元數據,原始的負載數據並不會被修改。
比如,以通過 TCP 協議通信的網路包為例,通過下面這張圖,我們可以看到,應用程序數據在每個層的封裝格式。
這些新增的頭部和尾部,增加了網路包的大小,但我們都知道,物理鏈路中並不能傳輸任意大小的數據包。網路介面配置的最大傳輸單元(MTU),就規定了最大的 IP 包大小。在我們最常用的乙太網中,MTU 默認值是 1500(這也是 Linux 的默認值)。
一旦網路包超過 MTU 的大小,就會在網路層分片,以保證分片後的 IP 包不大於 MTU 值。顯然,MTU 越大,需要的分包也就越少,自然,網路吞吐能力就越好。
理解了 TCP/IP 網路模型和網路包的封裝原理後,你很容易能想到,Linux 內核中的網路棧,其實也類似於 TCP/IP 的四層結構。如下圖所示,就是 Linux 通用 IP 網路棧的示意圖:
我們從上到下來看這個網路棧,你可以發現,
這里我簡單說一下網卡。網卡是發送和接收網路包的基本設備。在系統啟動過程中,網卡通過內核中的網卡驅動程序注冊到系統中。而在網路收發過程中,內核通過中斷跟網卡進行交互。
再結合前面提到的 Linux 網路棧,可以看出,網路包的處理非常復雜。所以,網卡硬中斷只處理最核心的網卡數據讀取或發送,而協議棧中的大部分邏輯,都會放到軟中斷中處理。
我們先來看網路包的接收流程。
當一個網路幀到達網卡後,網卡會通過 DMA 方式,把這個網路包放到收包隊列中;然後通過硬中斷,告訴中斷處理程序已經收到了網路包。
接著,網卡中斷處理程序會為網路幀分配內核數據結構(sk_buff),並將其拷貝到 sk_buff 緩沖區中;然後再通過軟中斷,通知內核收到了新的網路幀。
接下來,內核協議棧從緩沖區中取出網路幀,並通過網路協議棧,從下到上逐層處理這個網路幀。比如,
最後,應用程序就可以使用 Socket 介面,讀取到新接收到的數據了。
為了更清晰表示這個流程,我畫了一張圖,這張圖的左半部分表示接收流程,而圖中的粉色箭頭則表示網路包的處理路徑。
了解網路包的接收流程後,就很容易理解網路包的發送流程。網路包的發送流程就是上圖的右半部分,很容易發現,網路包的發送方向,正好跟接收方向相反。
首先,應用程序調用 Socket API(比如 sendmsg)發送網路包。
由於這是一個系統調用,所以會陷入到內核態的套接字層中。套接字層會把數據包放到 Socket 發送緩沖區中。
接下來,網路協議棧從 Socket 發送緩沖區中,取出數據包;再按照 TCP/IP 棧,從上到下逐層處理。比如,傳輸層和網路層,分別為其增加 TCP 頭和 IP 頭,執行路由查找確認下一跳的 IP,並按照 MTU 大小進行分片。
分片後的網路包,再送到網路介面層,進行物理地址定址,以找到下一跳的 MAC 地址。然後添加幀頭和幀尾,放到發包隊列中。這一切完成後,會有軟中斷通知驅動程序:發包隊列中有新的網路幀需要發送。
最後,驅動程序通過 DMA ,從發包隊列中讀出網路幀,並通過物理網卡把它發送出去。
多台伺服器通過網卡、交換機、路由器等網路設備連接到一起,構成了相互連接的網路。由於網路設備的異構性和網路協議的復雜性,國際標准化組織定義了一個七層的 OSI 網路模型,但是這個模型過於復雜,實際工作中的事實標准,是更為實用的 TCP/IP 模型。
TCP/IP 模型,把網路互聯的框架,分為應用層、傳輸層、網路層、網路介面層等四層,這也是 Linux 網路棧最核心的構成部分。
我結合網路上查閱的資料和文章中的內容,總結了下網卡收發報文的過程,不知道是否正確:
當發送數據包時,與上述相反。鏈路層將數據包封裝完畢後,放入網卡的DMA緩沖區,並調用系統硬中斷,通知網卡從緩沖區讀取並發送數據。
了解 Linux 網路的基本原理和收發流程後,你肯定迫不及待想知道,如何去觀察網路的性能情況。具體而言,哪些指標可以用來衡量 Linux 的網路性能呢?
實際上,我們通常用帶寬、吞吐量、延時、PPS(Packet Per Second)等指標衡量網路的性能。
除了這些指標,網路的可用性(網路能否正常通信)、並發連接數(TCP 連接數量)、丟包率(丟包百分比)、重傳率(重新傳輸的網路包比例)等也是常用的性能指標。
分析網路問題的第一步,通常是查看網路介面的配置和狀態。你可以使用 ifconfig 或者 ip 命令,來查看網路的配置。我個人更推薦使用 ip 工具,因為它提供了更豐富的功能和更易用的介面。
以網路介面 eth0 為例,你可以運行下面的兩個命令,查看它的配置和狀態:
你可以看到,ifconfig 和 ip 命令輸出的指標基本相同,只是顯示格式略微不同。比如,它們都包括了網路介面的狀態標志、MTU 大小、IP、子網、MAC 地址以及網路包收發的統計信息。
第一,網路介面的狀態標志。ifconfig 輸出中的 RUNNING ,或 ip 輸出中的 LOWER_UP ,都表示物理網路是連通的,即網卡已經連接到了交換機或者路由器中。如果你看不到它們,通常表示網線被拔掉了。
第二,MTU 的大小。MTU 默認大小是 1500,根據網路架構的不同(比如是否使用了 VXLAN 等疊加網路),你可能需要調大或者調小 MTU 的數值。
第三,網路介面的 IP 地址、子網以及 MAC 地址。這些都是保障網路功能正常工作所必需的,你需要確保配置正確。
第四,網路收發的位元組數、包數、錯誤數以及丟包情況,特別是 TX 和 RX 部分的 errors、dropped、overruns、carrier 以及 collisions 等指標不為 0 時,通常表示出現了網路 I/O 問題。其中:
ifconfig 和 ip 只顯示了網路介面收發數據包的統計信息,但在實際的性能問題中,網路協議棧中的統計信息,我們也必須關注。你可以用 netstat 或者 ss ,來查看套接字、網路棧、網路介面以及路由表的信息。
我個人更推薦,使用 ss 來查詢網路的連接信息,因為它比 netstat 提供了更好的性能(速度更快)。
比如,你可以執行下面的命令,查詢套接字信息:
netstat 和 ss 的輸出也是類似的,都展示了套接字的狀態、接收隊列、發送隊列、本地地址、遠端地址、進程 PID 和進程名稱等。
其中,接收隊列(Recv-Q)和發送隊列(Send-Q)需要你特別關注,它們通常應該是 0。當你發現它們不是 0 時,說明有網路包的堆積發生。當然還要注意,在不同套接字狀態下,它們的含義不同。
當套接字處於連接狀態(Established)時,
當套接字處於監聽狀態(Listening)時,
所謂全連接,是指伺服器收到了客戶端的 ACK,完成了 TCP 三次握手,然後就會把這個連接挪到全連接隊列中。這些全連接中的套接字,還需要被 accept() 系統調用取走,伺服器才可以開始真正處理客戶端的請求。
與全連接隊列相對應的,還有一個半連接隊列。所謂半連接是指還沒有完成 TCP 三次握手的連接,連接只進行了一半。伺服器收到了客戶端的 SYN 包後,就會把這個連接放到半連接隊列中,然後再向客戶端發送 SYN+ACK 包。
類似的,使用 netstat 或 ss ,也可以查看協議棧的信息:
這些協議棧的統計信息都很直觀。ss 只顯示已經連接、關閉、孤兒套接字等簡要統計,而 netstat 則提供的是更詳細的網路協議棧信息。
比如,上面 netstat 的輸出示例,就展示了 TCP 協議的主動連接、被動連接、失敗重試、發送和接收的分段數量等各種信息。
接下來,我們再來看看,如何查看系統當前的網路吞吐量和 PPS。在這里,我推薦使用我們的老朋友 sar,在前面的 CPU、內存和 I/O 模塊中,我們已經多次用到它。
給 sar 增加 -n 參數就可以查看網路的統計信息,比如網路介面(DEV)、網路介面錯誤(EDEV)、TCP、UDP、ICMP 等等。執行下面的命令,你就可以得到網路介面統計信息:
這兒輸出的指標比較多,我來簡單解釋下它們的含義。
其中,Bandwidth 可以用 ethtool 來查詢,它的單位通常是 Gb/s 或者 Mb/s,不過注意這里小寫字母 b ,表示比特而不是位元組。我們通常提到的千兆網卡、萬兆網卡等,單位也都是比特。如下你可以看到,我的 eth0 網卡就是一個千兆網卡:
其中,Bandwidth 可以用 ethtool 來查詢,它的單位通常是 Gb/s 或者 Mb/s,不過注意這里小寫字母 b ,表示比特而不是位元組。我們通常提到的千兆網卡、萬兆網卡等,單位也都是比特。如下你可以看到,我的 eth0 網卡就是一個千兆網卡:
我們通常使用帶寬、吞吐量、延時等指標,來衡量網路的性能;相應的,你可以用 ifconfig、netstat、ss、sar、ping 等工具,來查看這些網路的性能指標。
小狗同學問到: 老師,您好 ss —lntp 這個 當session處於listening中 rec-q 確定是 syn的backlog嗎?
A: Recv-Q為全連接隊列當前使用了多少。 中文資料里這個問題講得最明白的文章: https://mp.weixin.qq.com/s/yH3PzGEFopbpA-jw4MythQ
看了源碼發現,這個地方講的有問題.關於ss輸出中listen狀態套接字的Recv-Q表示全連接隊列當前使用了多少,也就是全連接隊列的當前長度,而Send-Q表示全連接隊列的最大長度
㈩ linux中的底層,應用層,驅動之間的關系
內核——系統的底層,最核心的東西,操作系統運轉的基礎
驅動——應用程序與內核之間的介面,溝通應用軟體與操作系統的橋梁
應用層——所有的應用程序的統稱,實現某一個或幾個專有的功能