輪轉加密演算法
1. 簡述加密技術的基本原理,並指出有哪些常用的加密體制及其代表演算法
1、對稱加密演算法
對稱加密演算法用來對敏感數據等信息進行加密,常用的演算法包括:
DES(Data Encryption Standard):數據加密標准,速度較快,適用於加密大量數據的場合。
3DES(Triple DES):是基於DES,對一塊數據用三個不同的密鑰進行三次加密,強度更高。
AES(Advanced Encryption Standard):高級加密標准,是下一代的加密演算法標准,速度快,安全級別高;
演算法原理
AES 演算法基於排列和置換運算。排列是對數據重新進行安排,置換是將一個數據單元替換為另一個。AES 使用幾種不同的方法來執行排列和置換運算。
2、非對稱演算法
常見的非對稱加密演算法如下:
RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的;
DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准);
ECC(Elliptic Curves Cryptography):橢圓曲線密碼編碼學。
演算法原理——橢圓曲線上的難題
橢圓曲線上離散對數問題ECDLP定義如下:給定素數p和橢圓曲線E,對Q=kP,在已知P,Q 的情況下求出小於p的正整數k。可以證明由k和P計算Q比較容易,而由Q和P計算k則比較困難。
將橢圓曲線中的加法運算與離散對數中的模乘運算相對應,將橢圓曲線中的乘法運算與離散對數中的模冪運算相對應,我們就可以建立基於橢圓曲線的對應的密碼體制。
2. 凱撒密碼 求破解
Hello Caeskr. How is your cipher?
5輪凱撒密文。
先nx,對照了一遍只有is能組成單詞。
3. 給一個具體的加密過程
package com.wyBooks.tool;import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;public class MD5 {
/**
* MD5 加密
*
* @param teacher_Password
* @return
* @throws NoSuchAlgorithmException
*/
public static String md5(String obj){
byte [] info = null;
//獲得MD5信息摘要(實例化MD5)
MessageDigest md5;
try {
md5 = MessageDigest.getInstance("MD5");
//添加要進行計算摘要的信息
md5.update(obj.getBytes());
//獲得該信息
info=md5.digest();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
//將獲得的info轉換為字元串
String str =byte2hex(info);
return str;
}
/**
* 將二進制轉化為16進制字元串
*
* @param b
* @return
*/
public static String byte2hex(byte[] b) {
String hs = "";
String stmp = "";
for (int n = 0; n < b.length; n++) {
stmp = (java.lang.Integer.toHexString(b[n] & 0XFF));
if (stmp.length() == 1) {
hs = hs + "0" + stmp;
} else {
hs = hs + stmp;
}
}
return hs.toUpperCase();
} }
也可以直接傳入一個byte[]型參數
4. 有誰知道AES加密演算法詳細點,有舉例就更好了,謝謝!!!!
那麼復雜的演算法你在這討論??
你自個兒找本書,叫《密碼編碼學原理與應用》,國外教材,翻不翻譯無所謂,翻譯更好懂。
裡面有超長的一章介紹DES、3DES、AES對稱加密。
什麼時候該代換、該位移、該輪轉,都是具體介紹。這么繁冗的東西實在不想舉例,我記得我當時做的時候,一段正正常常的文字活生生加密成了亂碼(理想結果)。
你可以使用Advapi32的導出函數或者.NET的Security里的現成演算法操作。
5. MD5為什麼要多輪加密每輪加密有什麼不同
對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
在MD5演算法中,首先需要對信息進行填充,使其位長對512求余的結果等於448。因此,信息的位長(Bits Length)將被擴展至N*512+448,N為一個非負整數,N可以是零。填充的方法如下,在信息的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對信息的填充。然後,在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,現在的信息的位長=N*512+448+64=(N+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。
MD5中有四個32位被稱作鏈接變數(Chaining Variable)的整數參數,他們分別為:A=0x67452301,B=0xefcdab89,C=0x98badcfe,D=0x10325476。
當設置好這四個鏈接變數後,就開始進入演算法的四輪循環運算。循環的次數是信息中512位信息分組的數目。
將上面四個鏈接變數復制到另外四個變數中:A到a,B到b,C到c,D到d。
主循環有四輪(MD4隻有三輪),每輪循環都很相似。第一輪進行16次操作。每次操作對a、b、c和d中的其中三個作一次非線性函數運算,然後將所得結果加上第四個變數,文本的一個子分組和一個常數。再將所得結果向左環移一個不定的數,並加上a、b、c或d中之一。最後用該結果取代a、b、c或d中之一。
以一下是每次操作中用到的四個非線性函數(每輪一個)。
F(X,Y,Z) =(X&Y)|((~X)&Z)
G(X,Y,Z) =(X&Z)|(Y&(~Z))
H(X,Y,Z) =X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&;是與,|是或,~是非,^是異或)
這四個函數的說明:如果X、Y和Z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
F是一個逐位運算的函數。即,如果X,那麼Y,否則Z。函數H是逐位奇偶操作符。
假設Mj表示消息的第j個子分組(從0到15),常數ti是4294967296*abs(sin(i))的整數部分,i取值從1到64,單位是弧度。(4294967296等於2的32次方)
FF(a,b,c,d,Mj,s,ti)表示 a = b + ((a + F(b,c,d) + Mj + ti) << s)
GG(a,b,c,d,Mj,s,ti)表示 a = b + ((a + G(b,c,d) + Mj + ti) << s)
HH(a,b,c,d,Mj,s,ti)表示 a = b + ((a + H(b,c,d) + Mj + ti) << s)
Ⅱ(a,b,c,d,Mj,s,ti)表示 a = b + ((a + I(b,c,d) + Mj + ti) << s)
這四輪(64步)是:
第一輪
FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)
第二輪
GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)
第三輪
HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)
第四輪
Ⅱ(a,b,c,d,M0,6,0xf4292244)
Ⅱ(d,a,b,c,M7,10,0x432aff97)
Ⅱ(c,d,a,b,M14,15,0xab9423a7)
Ⅱ(b,c,d,a,M5,21,0xfc93a039)
Ⅱ(a,b,c,d,M12,6,0x655b59c3)
Ⅱ(d,a,b,c,M3,10,0x8f0ccc92)
Ⅱ(c,d,a,b,M10,15,0xffeff47d)
Ⅱ(b,c,d,a,M1,21,0x85845dd1)
Ⅱ(a,b,c,d,M8,6,0x6fa87e4f)
Ⅱ(d,a,b,c,M15,10,0xfe2ce6e0)
Ⅱ(c,d,a,b,M6,15,0xa3014314)
Ⅱ(b,c,d,a,M13,21,0x4e0811a1)
Ⅱ(a,b,c,d,M4,6,0xf7537e82)
Ⅱ(d,a,b,c,M11,10,0xbd3af235)
Ⅱ(c,d,a,b,M2,15,0x2ad7d2bb)
Ⅱ(b,c,d,a,M9,21,0xeb86d391)
所有這些完成之後,將A、B、C、D分別加上a、b、c、d。然後用下一分組數據繼續運行演算法,最後的輸出是A、B、C和D的級聯。
當你按照我上面所說的方法實現MD5演算法以後,你可以用以下幾個信息對你做出來的程序作一個簡單的測試,看看程序有沒有錯誤。
MD5 ("") =
MD5 ("a") =
MD5 ("abc") =
MD5 ("message digest") =
MD5 ("abcdefghijklmnopqrstuvwxyz") =
MD5 ("") =
6. 數據加密的方法
網路安全防範措施與應用是什麼呢?如果您也想要了解一下網路安全防範措施和應用的話,請從數據加密的方法入手。因此很多人都會問數據加密有哪些方法呢?無巧不成書,最近公布了一個關於數據加密方法的總結,我相信您一定可以找到問題的答案哦。
由於計算機軟體的非法復制,通信的泄密、數據安全受到威脅,解密及盜版問題日益嚴重,甚至引發國際爭端,所以在信息安全技術中,加密技術佔有不可替代的位置,因此對信息加密技術和加密手段的研究與開發,受到各國計算機界的重視,發展日新月異。現在我們就幾種常用的加密演算法給大家比較一下。
DES加密演算法是一種分組密碼,以64位為分組對數據加密,它的密鑰長度是56位,加密解密用同一演算法。DES加密演算法是對密鑰進行保密,而公開演算法,包括加密和解密演算法。這樣,只有掌握了和發送方相同密鑰的人才能解讀由DES加密演算法加密的密文數據。因此,破譯DES加密演算法實際上就是搜索密鑰的編碼。對於56位長度的密鑰來說,如果用窮舉法來進行搜索的話,其運算次數為256。隨著計算機系統能力的不斷發展,DES的安全性比它剛出現時會弱得多,然而從非關鍵性質的實際出發,仍可以認為它是足夠的。不過,DES現在僅用於舊系統的鑒定,而更多地選擇新的加密標准。
RSA加密演算法是目前最有影響力的公鑰加密演算法,並且被普遍認為是目前最優秀的公鑰方案之一。RSA是第一個能同時用於加密和數宇簽名的演算法,它能夠抵抗到目前為止已知的所有密碼攻擊,已被ISO推薦為公鑰數據加密標准。RSA加密演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。
7. 目前常用的加密解密演算法有哪些
加密演算法
加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。
對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。
不對稱加密演算法不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。
不可逆加密演算法 不可逆加密演算法的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。
加密技術
加密演算法是加密技術的基礎,任何一種成熟的加密技術都是建立多種加密演算法組合,或者加密演算法和其他應用軟體有機結合的基礎之上的。下面我們介紹幾種在計算機網路應用領域廣泛應用的加密技術。
非否認(Non-repudiation)技術 該技術的核心是不對稱加密演算法的公鑰技術,通過產生一個與用戶認證數據有關的數字簽名來完成。當用戶執行某一交易時,這種簽名能夠保證用戶今後無法否認該交易發生的事實。由於非否認技術的操作過程簡單,而且直接包含在用戶的某類正常的電子交易中,因而成為當前用戶進行電子商務、取得商務信任的重要保證。
PGP(Pretty Good Privacy)技術 PGP技術是一個基於不對稱加密演算法RSA公鑰體系的郵件加密技術,也是一種操作簡單、使用方便、普及程度較高的加密軟體。PGP技術不但可以對電子郵件加密,防止非授權者閱讀信件;還能對電子郵件附加數字簽名,使收信人能明確了解發信人的真實身份;也可以在不需要通過任何保密渠道傳遞密鑰的情況下,使人們安全地進行保密通信。PGP技術創造性地把RSA不對稱加密演算法的方便性和傳統加密體系結合起來,在數字簽名和密鑰認證管理機制方面採用了無縫結合的巧妙設計,使其幾乎成為最為流行的公鑰加密軟體包。
數字簽名(Digital Signature)技術 數字簽名技術是不對稱加密演算法的典型應用。數字簽名的應用過程是,數據源發送方使用自己的私鑰對數據校驗和或其他與數據內容有關的變數進行加密處理,完成對數據的合法「簽名」,數據接收方則利用對方的公鑰來解讀收到的「數字簽名」,並將解讀結果用於對數據完整性的檢驗,以確認簽名的合法性。數字簽名技術是在網路系統虛擬環境中確認身份的重要技術,完全可以代替現實過程中的「親筆簽字」,在技術和法律上有保證。在公鑰與私鑰管理方面,數字簽名應用與加密郵件PGP技術正好相反。在數字簽名應用中,發送者的公鑰可以很方便地得到,但他的私鑰則需要嚴格保密。
PKI(Public Key Infrastructure)技術 PKI技術是一種以不對稱加密技術為核心、可以為網路提供安全服務的公鑰基礎設施。PKI技術最初主要應用在Internet環境中,為復雜的互聯網系統提供統一的身份認證、數據加密和完整性保障機制。由於PKI技術在網路安全領域所表現出的巨大優勢,因而受到銀行、證券、政府等核心應用系統的青睞。PKI技術既是信息安全技術的核心,也是電子商務的關鍵和基礎技術。由於通過網路進行的電子商務、電子政務等活動缺少物理接觸,因而使得利用電子方式驗證信任關系變得至關重要,PKI技術恰好能夠有效解決電子商務應用中的機密性、真實性、完整性、不可否認性和存取控制等安全問題。一個實用的PKI體系還必須充分考慮互操作性和可擴展性。PKI體系所包含的認證中心(CA)、注冊中心(RA)、策略管理、密鑰與證書管理、密鑰備份與恢復、撤銷系統等功能模塊應該有機地結合在一起。
加密的未來趨勢
盡管雙鑰密碼體制比單鑰密碼體制更為可靠,但由於計算過於復雜,雙鑰密碼體制在進行大信息量通信時,加密速率僅為單鑰體制的1/100,甚至是 1/1000。正是由於不同體制的加密演算法各有所長,所以在今後相當長的一段時期內,各類加密體制將會共同發展。而在由IBM等公司於1996年聯合推出的用於電子商務的協議標准SET(Secure Electronic Transaction)中和1992年由多國聯合開發的PGP技術中,均採用了包含單鑰密碼、雙鑰密碼、單向雜湊演算法和隨機數生成演算法在內的混合密碼系統的動向來看,這似乎從一個側面展示了今後密碼技術應用的未來。
在單鑰密碼領域,一次一密被認為是最為可靠的機制,但是由於流密碼體制中的密鑰流生成器在演算法上未能突破有限循環,故一直未被廣泛應用。如果找到一個在演算法上接近無限循環的密鑰流生成器,該體制將會有一個質的飛躍。近年來,混沌學理論的研究給在這一方向產生突破帶來了曙光。此外,充滿生氣的量子密碼被認為是一個潛在的發展方向,因為它是基於光學和量子力學理論的。該理論對於在光纖通信中加強信息安全、對付擁有量子計算能力的破譯無疑是一種理想的解決方法。
由於電子商務等民用系統的應用需求,認證加密演算法也將有較大發展。此外,在傳統密碼體制中,還將會產生類似於IDEA這樣的新成員,新成員的一個主要特徵就是在演算法上有創新和突破,而不僅僅是對傳統演算法進行修正或改進。密碼學是一個正在不斷發展的年輕學科,任何未被認識的加/解密機制都有可能在其中佔有一席之地。
目前,對信息系統或電子郵件的安全問題,還沒有一個非常有效的解決方案,其主要原因是由於互聯網固有的異構性,沒有一個單一的信任機構可以滿足互聯網全程異構性的所有需要,也沒有一個單一的協議能夠適用於互聯網全程異構性的所有情況。解決的辦法只有依靠軟體代理了,即採用軟體代理來自動管理用戶所持有的證書(即用戶所屬的信任結構)以及用戶所有的行為。每當用戶要發送一則消息或一封電子郵件時,代理就會自動與對方的代理協商,找出一個共同信任的機構或一個通用協議來進行通信。在互聯網環境中,下一代的安全信息系統會自動為用戶發送加密郵件,同樣當用戶要向某人發送電子郵件時,用戶的本地代理首先將與對方的代理交互,協商一個適合雙方的認證機構。當然,電子郵件也需要不同的技術支持,因為電子郵件不是端到端的通信,而是通過多個中間機構把電子郵件分程傳遞到各自的通信機器上,最後到達目的地。
8. 加密解密字元串的演算法原理
我們經常需要一種措施來保護我們的數據,防止被一些懷有不良用心的人所看到或者破壞。在信息時代,信息可以幫助團體或個人,使他們受益,同樣,信息也可以用來對他們構成威脅,造成破壞。在競爭激烈的大公司中,工業間諜經常會獲取對方的情報。因此,在客觀上就需要一種強有力的安全措施來保護機密數據不被竊取或篡改。數據加密與解密從宏觀上講是非常簡單的,很容易理解。加密與解密的一些方法是非常直接的,很容易掌握,可以很方便的對機密數據進行加密和解密。
一:數據加密方法
在傳統上,我們有幾種方法來加密數據流。所有這些方法都可以用軟體很容易的實現,但是當我們只知道密文的時候,是不容易破譯這些加密演算法的(當同時有原文和密文時,破譯加密演算法雖然也不是很容易,但已經是可能的了)。最好的加密演算法對系統性能幾乎沒有影響,並且還可以帶來其他內在的優點。例如,大家都知道的pkzip,它既壓縮數據又加密數據。又如,dbms的一些軟體包總是包含一些加密方法以使復制文件這一功能對一些敏感數據是無效的,或者需要用戶的密碼。所有這些加密演算法都要有高效的加密和解密能力。
幸運的是,在所有的加密演算法中最簡單的一種就是「置換表」演算法,這種演算法也能很好達到加密的需要。每一個數據段(總是一個位元組)對應著「置換表」中的一個偏移量,偏移量所對應的值就輸出成為加密後的文件。加密程序和解密程序都需要一個這樣的「置換表」。事實上,80x86 cpu系列就有一個指令『xlat』在硬體級來完成這樣的工作。這種加密演算法比較簡單,加密解密速度都很快,但是一旦這個「置換表」被對方獲得,那這個加密方案就完全被識破了。更進一步講,這種加密演算法對於黑客破譯來講是相當直接的,只要找到一個「置換表」就可以了。這種方法在計算機出現之前就已經被廣泛的使用。
對這種「置換表」方式的一個改進就是使用2個或者更多的「置換表」,這些表都是基於數據流中位元組的位置的,或者基於數據流本身。這時,破譯變的更加困難,因為黑客必須正確的做幾次變換。通過使用更多的「置換表」,並且按偽隨機的方式使用每個表,這種改進的加密方法已經變的很難破譯。比如,我們可以對所有的偶數位置的數據使用a表,對所有的奇數位置使用b表,即使黑客獲得了明文和密文,他想破譯這個加密方案也是非常困難的,除非黑客確切的知道用了兩張表。
與使用「置換表」相類似,「變換數據位置」也在計算機加密中使用。但是,這需要更多的執行時間。從輸入中讀入明文放到一個buffer中,再在buffer中對他們重排序,然後按這個順序再輸出。解密程序按相反的順序還原數據。這種方法總是和一些別的加密演算法混合使用,這就使得破譯變的特別的困難,幾乎有些不可能了。例如,有這樣一個詞,變換起字母的順序,slient 可以變為listen,但所有的字母都沒有變化,沒有增加也沒有減少,但是字母之間的順序已經變化了。
但是,還有一種更好的加密演算法,只有計算機可以做,就是字/位元組循環移位和xor操作。如果我們把一個字或位元組在一個數據流內做循環移位,使用多個或變化的方向(左移或右移),就可以迅速的產生一個加密的數據流。這種方法是很好的,破譯它就更加困難!而且,更進一步的是,如果再使用xor操作,按位做異或操作,就就使破譯密碼更加困難了。如果再使用偽隨機的方法,這涉及到要產生一系列的數字,我們可以使用fibbonaci數列。對數列所產生的數做模運算(例如模3),得到一個結果,然後循環移位這個結果的次數,將使破譯次密碼變的幾乎不可能!但是,使用fibbonaci數列這種偽隨機的方式所產生的密碼對我們的解密程序來講是非常容易的。
在一些情況下,我們想能夠知道數據是否已經被篡改了或被破壞了,這時就需要產生一些校驗碼,並且把這些校驗碼插入到數據流中。這樣做對數據的防偽與程序本身都是有好處的。但是感染計算機程序的病毒才不會在意這些數據或程序是否加過密,是否有數字簽名。所以,加密程序在每次load到內存要開始執行時,都要檢查一下本身是否被病毒感染,對與需要加、解密的文件都要做這種檢查!很自然,這樣一種方法體制應該保密的,因為病毒程序的編寫者將會利用這些來破壞別人的程序或數據。因此,在一些反病毒或殺病毒軟體中一定要使用加密技術。
循環冗餘校驗是一種典型的校驗數據的方法。對於每一個數據塊,它使用位循環移位和xor操作來產生一個16位或32位的校驗和 ,這使得丟失一位或兩個位的錯誤一定會導致校驗和出錯。這種方式很久以來就應用於文件的傳輸,例如 xmodem-crc。 這是方法已經成為標准,而且有詳細的文檔。但是,基於標准crc演算法的一種修改演算法對於發現加密數據塊中的錯誤和文件是否被病毒感染是很有效的。
二.基於公鑰的加密演算法
一個好的加密演算法的重要特點之一是具有這種能力:可以指定一個密碼或密鑰,並用它來加密明文,不同的密碼或密鑰產生不同的密文。這又分為兩種方式:對稱密鑰演算法和非對稱密鑰演算法。所謂對稱密鑰演算法就是加密解密都使用相同的密鑰,非對稱密鑰演算法就是加密解密使用不同的密鑰。非常著名的pgp公鑰加密以及rsa加密方法都是非對稱加密演算法。加密密鑰,即公鑰,與解密密鑰,即私鑰,是非常的不同的。從數學理論上講,幾乎沒有真正不可逆的演算法存在。例如,對於一個輸入『a』執行一個操作得到結果『b』,那麼我們可以基於『b』,做一個相對應的操作,導出輸入『a』。在一些情況下,對於每一種操作,我們可以得到一個確定的值,或者該操作沒有定義(比如,除數為0)。對於一個沒有定義的操作來講,基於加密演算法,可以成功地防止把一個公鑰變換成為私鑰。因此,要想破譯非對稱加密演算法,找到那個唯一的密鑰,唯一的方法只能是反復的試驗,而這需要大量的處理時間。
rsa加密演算法使用了兩個非常大的素數來產生公鑰和私鑰。即使從一個公鑰中通過因數分解可以得到私鑰,但這個運算所包含的計算量是非常巨大的,以至於在現實上是不可行的。加密演算法本身也是很慢的,這使得使用rsa演算法加密大量的數據變的有些不可行。這就使得一些現實中加密演算法都基於rsa加密演算法。pgp演算法(以及大多數基於rsa演算法的加密方法)使用公鑰來加密一個對稱加密演算法的密鑰,然後再利用一個快速的對稱加密演算法來加密數據。這個對稱演算法的密鑰是隨機產生的,是保密的,因此,得到這個密鑰的唯一方法就是使用私鑰來解密。
我們舉一個例子:假定現在要加密一些數據使用密鑰『12345』。利用rsa公鑰,使用rsa演算法加密這個密鑰『12345』,並把它放在要加密的數據的前面(可能後面跟著一個分割符或文件長度,以區分數據和密鑰),然後,使用對稱加密演算法加密正文,使用的密鑰就是『12345』。當對方收到時,解密程序找到加密過的密鑰,並利用rsa私鑰解密出來,然後再確定出數據的開始位置,利用密鑰『12345』來解密數據。這樣就使得一個可靠的經過高效加密的數據安全地傳輸和解密。
一些簡單的基於rsa演算法的加密演算法可在下面的站點找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa
三.一個嶄新的多步加密演算法
現在又出現了一種新的加密演算法,據說是幾乎不可能被破譯的。這個演算法在1998年6月1日才正式公布的。下面詳細的介紹這個演算法:
使用一系列的數字(比如說128位密鑰),來產生一個可重復的但高度隨機化的偽隨機的數字的序列。一次使用256個表項,使用隨機數序列來產生密碼轉表,如下所示:
把256個隨機數放在一個距陣中,然後對他們進行排序,使用這樣一種方式(我們要記住最初的位置)使用最初的位置來產生一個表,隨意排序的表,表中的數字在0到255之間。如果不是很明白如何來做,就可以不管它。但是,下面也提供了一些原碼(在下面)是我們明白是如何來做的。現在,產生了一個具體的256位元組的表。讓這個隨機數產生器接著來產生這個表中的其餘的數,以至於每個表是不同的。下一步,使用"shotgun technique"技術來產生解碼表。基本上說,如果 a映射到b,那麼b一定可以映射到a,所以b[a[n]] = n.(n是一個在0到255之間的數)。在一個循環中賦值,使用一個256位元組的解碼表它對應於我們剛才在上一步產生的256位元組的加密表。
使用這個方法,已經可以產生這樣的一個表,表的順序是隨機,所以產生這256個位元組的隨機數使用的是二次偽隨機,使用了兩個額外的16位的密碼.現在,已經有了兩張轉換表,基本的加密解密是如下這樣工作的。前一個位元組密文是這個256位元組的表的索引。或者,為了提高加密效果,可以使用多餘8位的值,甚至使用校驗和或者crc演算法來產生索引位元組。假定這個表是256*256的數組,將會是下面的樣子:
crypto1 = a[crypto0][value]
變數'crypto1'是加密後的數據,'crypto0'是前一個加密數據(或著是前面幾個加密數據的一個函數值)。很自然的,第一個數據需要一個「種子」,這個「種子」 是我們必須記住的。如果使用256*256的表,這樣做將會增加密文的長度。或者,可以使用你產生出隨機數序列所用的密碼,也可能是它的crc校驗和。順便提及的是曾作過這樣一個測試: 使用16個位元組來產生表的索引,以128位的密鑰作為這16個位元組的初始的"種子"。然後,在產生出這些隨機數的表之後,就可以用來加密數據,速度達到每秒鍾100k個位元組。一定要保證在加密與解密時都使用加密的值作為表的索引,而且這兩次一定要匹配。
加密時所產生的偽隨機序列是很隨意的,可以設計成想要的任何序列。沒有關於這個隨機序列的詳細的信息,解密密文是不現實的。例如:一些ascii碼的序列,如「eeeeeeee"可能被轉化成一些隨機的沒有任何意義的亂碼,每一個位元組都依賴於其前一個位元組的密文,而不是實際的值。對於任一個單個的字元的這種變換來說,隱藏了加密數據的有效的真正的長度。
如果確實不理解如何來產生一個隨機數序列,就考慮fibbonacci數列,使用2個雙字(64位)的數作為產生隨機數的種子,再加上第三個雙字來做xor操作。 這個演算法產生了一系列的隨機數。演算法如下:
unsigned long dw1, dw2, dw3, dwmask;
int i1;
unsigned long arandom[256];
dw1 = {seed #1};
dw2 = {seed #2};
dwmask = {seed #3};
// this gives you 3 32-bit "seeds", or 96 bits total
for(i1=0; i1 < 256; i1++)
{
dw3 = (dw1 + dw2) ^ dwmask;
arandom[i1] = dw3;
dw1 = dw2;
dw2 = dw3;
}
如果想產生一系列的隨機數字,比如說,在0和列表中所有的隨機數之間的一些數,就可以使用下面的方法:
int __cdecl mysortproc(void *p1, void *p2)
{
unsigned long **pp1 = (unsigned long **)p1;
unsigned long **pp2 = (unsigned long **)p2;
if(**pp1 < **pp2)
return(-1);
else if(**pp1 > *pp2)
return(1);
return(0);
}
...
int i1;
unsigned long *aprandom[256];
unsigned long arandom[256]; // same array as before, in this case
int aresult[256]; // results go here
for(i1=0; i1 < 256; i1++)
{
aprandom[i1] = arandom + i1;
}
// now sort it
qsort(aprandom, 256, sizeof(*aprandom), mysortproc);
// final step - offsets for pointers are placed into output array
for(i1=0; i1 < 256; i1++)
{
aresult[i1] = (int)(aprandom[i1] - arandom);
}
...
變數'aresult'中的值應該是一個排過序的唯一的一系列的整數的數組,整數的值的范圍均在0到255之間。這樣一個數組是非常有用的,例如:對一個位元組對位元組的轉換表,就可以很容易並且非常可靠的來產生一個短的密鑰(經常作為一些隨機數的種子)。這樣一個表還有其他的用處,比如說:來產生一個隨機的字元,計算機游戲中一個物體的隨機的位置等等。上面的例子就其本身而言並沒有構成一個加密演算法,只是加密演算法一個組成部分。
作為一個測試,開發了一個應用程序來測試上面所描述的加密演算法。程序本身都經過了幾次的優化和修改,來提高隨機數的真正的隨機性和防止會產生一些短的可重復的用於加密的隨機數。用這個程序來加密一個文件,破解這個文件可能會需要非常巨大的時間以至於在現實上是不可能的。
四.結論:
由於在現實生活中,我們要確保一些敏感的數據只能被有相應許可權的人看到,要確保信息在傳輸的過程中不會被篡改,截取,這就需要很多的安全系統大量的應用於政府、大公司以及個人系統。數據加密是肯定可以被破解的,但我們所想要的是一個特定時期的安全,也就是說,密文的破解應該是足夠的困難,在現實上是不可能的,尤其是短時間內。