當前位置:首頁 » 密碼管理 » base64加密解密ios

base64加密解密ios

發布時間: 2022-10-30 06:24:44

1. ios 字元串能不能base64加密

首先,Base64算不上是一種加密演算法。 Base64是網路上最常見的用於傳輸8Bit位元組代碼的編碼方式之一,它的目的是用ASCII中定義的可見字元去表示任意的二進制數據。之所以要這樣做,是因為計算機中很多數據是只能通過可見字元去傳輸的(比如我們的網站網址,比如一些面向字元的網路協議如SMTP等),但是這些情景有時由需要去傳輸二進制數據。基於這樣的需要,誕生了Base64. 簡單來講,Base64就是用下列總計64個字元: A-Z a-z 0-9 + / 去表示二進制數據。二進制數據以位元組為組,一個位元組8bit存在256個狀態,而一個Base64字元只有64個狀態。機智的人們於是規定,用每4個Base64字元去表示3個二進制位元組,因為: 64 * 64 * 64 * 64 = 256 * 256 * 256 因此,Base64字元串的長度必然是4的整數倍。此外,由於二進制的位元組數不一定是3的整數倍,所以Base64字元串在結尾是可能有空的。這些空的狀態,Base64引入第65個字元去表示: = 這也是為什麼Base64很多都是以=或==結尾的。但是注意,也存在不以=或==結尾的Base64,只要編碼的二進制位元組數恰好被3給整除。 總結 一般情況下,一個合法的Base64,有著以下特徵: 字元串的長度為4的整數倍。 字元串的符號取值只能在A-Z, a-z, 0-9, +, /, =共計65個字元中,且=如果出現就必須在結尾出現。

2. 如何使用Base64進行加密和解密

看你是用什麼語言了 不同的語言不同的加密方式 但是思路都有相同的

3. Android在用AES加密字元串之後再用base64加密,加密的結果跟ios端不一樣,

之前在項目上用到AES256加密解密演算法,剛開始在java端加密解密都沒有問題,在iOS端加密解密也沒有問題。但是奇怪的是在java端加密後的文件在iOS端無法正確解密打開,然後簡單測試了一下,發現在java端和iOS端採用相同明文,相同密鑰加密後的密文不一樣!上網查了資料後發現iOS中AES加密演算法採用的填充是PKCS7Padding,而java不支持PKCS7Padding,只支持PKCS5Padding。我們知道加密演算法由演算法+模式+填充組成,所以這兩者不同的填充演算法導致相同明文相同密鑰加密後出現密文不一致的情況。那麼我們需要在java中用PKCS7Padding來填充,這樣就可以和iOS端填充演算法一致了。
要實現在java端用PKCS7Padding填充,需要用到bouncycastle組件來實現,下面我會提供該包的下載。啰嗦了一大堆,下面是一個簡單的測試,上代碼!
001 package com.encrypt.file;
002
003
004 import java.io.UnsupportedEncodingException;
005 importjava.security.Key;
006 import java.security.Security;
007
008 importjavax.crypto.Cipher;
009 importjavax.crypto.SecretKey;
010 importjavax.crypto.spec.SecretKeySpec;
011
012 public classAES256Encryption{
013
014 /**
015 * 密鑰演算法
016 * java6支持56位密鑰,bouncycastle支持64位
017 * */
018 public static finalString KEY_ALGORITHM="AES";
019
020 /**
021 * 加密/解密演算法/工作模式/填充方式
022 *
023 * JAVA6 支持PKCS5PADDING填充方式
024 * Bouncy castle支持PKCS7Padding填充方式
025 * */
026 public static finalString CIPHER_ALGORITHM="AES/ECB/PKCS7Padding";
027
028 /**
029 *
030 * 生成密鑰,java6隻支持56位密鑰,bouncycastle支持64位密鑰
031 * @return byte[] 二進制密鑰
032 * */
033 public static byte[] initkey() throwsException{
034
035 // //實例化密鑰生成器
036 // Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
037 // KeyGenerator kg=KeyGenerator.getInstance(KEY_ALGORITHM, "BC");
038 // //初始化密鑰生成器,AES要求密鑰長度為128位、192位、256位
039 //// kg.init(256);
040 // kg.init(128);
041 // //生成密鑰
042 // SecretKey secretKey=kg.generateKey();
043 // //獲取二進制密鑰編碼形式
044 // return secretKey.getEncoded();
045 //為了便於測試,這里我把key寫死了,如果大家需要自動生成,可用上面注釋掉的代碼
046 return new byte[] { 0x08, 0x08, 0x04, 0x0b, 0x02, 0x0f, 0x0b, 0x0c,
047 0x01, 0x03, 0x09, 0x07, 0x0c, 0x03, 0x07, 0x0a, 0x04, 0x0f,
048 0x06, 0x0f, 0x0e, 0x09, 0x05, 0x01, 0x0a, 0x0a, 0x01, 0x09,
049 0x06, 0x07, 0x09, 0x0d };
050 }
051
052 /**
053 * 轉換密鑰
054 * @param key 二進制密鑰
055 * @return Key 密鑰
056 * */
057 public static Key toKey(byte[] key) throwsException{
058 //實例化DES密鑰
059 //生成密鑰
060 SecretKey secretKey=newSecretKeySpec(key,KEY_ALGORITHM);
061 returnsecretKey;
062 }
063
064 /**
065 * 加密數據
066 * @param data 待加密數據
067 * @param key 密鑰
068 * @return byte[] 加密後的數據
069 * */
070 public static byte[] encrypt(byte[] data,byte[] key) throwsException{
071 //還原密鑰
072 Key k=toKey(key);
073 /**
074 * 實例化
075 * 使用 PKCS7PADDING 填充方式,按如下方式實現,就是調用bouncycastle組件實現
076 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
077 */
078 Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
079 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM, "BC");
080 //初始化,設置為加密模式
081 cipher.init(Cipher.ENCRYPT_MODE, k);
082 //執行操作
083 returncipher.doFinal(data);
084 }
085 /**
086 * 解密數據
087 * @param data 待解密數據
088 * @param key 密鑰
089 * @return byte[] 解密後的數據
090 * */
091 public static byte[] decrypt(byte[] data,byte[] key) throwsException{
092 //歡迎密鑰
093 Key k =toKey(key);
094 /**
095 * 實例化
096 * 使用 PKCS7PADDING 填充方式,按如下方式實現,就是調用bouncycastle組件實現
097 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
098 */
099 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM);
100 //初始化,設置為解密模式
101 cipher.init(Cipher.DECRYPT_MODE, k);
102 //執行操作
103 returncipher.doFinal(data);
104 }
105 /**
106 * @param args
107 * @throws UnsupportedEncodingException
108 * @throws Exception
109 */
110 public static void main(String[] args) {
111
112 String str="AES";
113 System.out.println("原文:"+str);
114
115 //初始化密鑰
116 byte[] key;
117 try {
118 key = AES256Encryption.initkey();
119 System.out.print("密鑰:");
120 for(int i = 0;i<key.length;i++){
121 System.out.printf("%x", key[i]);
122 }
123 System.out.print("\n");
124 //加密數據
125 byte[] data=AES256Encryption.encrypt(str.getBytes(), key);
126 System.out.print("加密後:");
127 for(int i = 0;i<data.length;i++){
128 System.out.printf("%x", data[i]);
129 }
130 System.out.print("\n");
131
132 //解密數據
133 data=AES256Encryption.decrypt(data, key);
134 System.out.println("解密後:"+newString(data));
135 } catch (Exception e) {
136 // TODO Auto-generated catch block
137 e.printStackTrace();
138 }
139
140 }
141 }
運行程序後的結果截圖:

ViewController.m文件

01 //
02 // ViewController.m
03 // AES256EncryptionDemo
04 //
05 // Created by 孫 裔 on 12-12-13.
06 // Copyright (c) 2012年 rich sun. All rights reserved.
07 //
08
09 #import "ViewController.h"
10 #import "EncryptAndDecrypt.h"
11
12 @interface ViewController ()
13
14 @end
15
16 @implementation ViewController
17 @synthesize plainTextField;
18 - (void)viewDidLoad
19 {
20 [super viewDidLoad];
21 // Do any additional setup after loading the view, typically from a nib.
22 }
23
24 - (void)didReceiveMemoryWarning
25 {
26 [super didReceiveMemoryWarning];
27 // Dispose of any resources that can be recreated.
28 }
29 //這個函數實現了用戶輸入完後點擊視圖背景,關閉鍵盤
30 - (IBAction)backgroundTap:(id)sender{
31 [plainTextField resignFirstResponder];
32 }
33
34 - (IBAction)encrypt:(id)sender {
35
36 NSString *plainText = plainTextField.text;//明文
37 NSData *plainTextData = [plainText dataUsingEncoding:NSUTF8StringEncoding];
38
39 //為了測試,這里先把密鑰寫死
40 Byte keyByte[] = {0x08,0x08,0x04,0x0b,0x02,0x0f,0x0b,0x0c,0x01,0x03,0x09,0x07,0x0c,0x03,
41 0x07,0x0a,0x04,0x0f,0x06,0x0f,0x0e,0x09,0x05,0x01,0x0a,0x0a,0x01,0x09,
42 0x06,0x07,0x09,0x0d};
43 //byte轉換為NSData類型,以便下邊加密方法的調用
44 NSData *keyData = [[NSData alloc] initWithBytes:keyByte length:32];
45 //
46 NSData *cipherTextData = [plainTextData AES256EncryptWithKey:keyData];
47 Byte *plainTextByte = (Byte *)[cipherTextData bytes];
48 for(int i=0;i<[cipherTextData length];i++){
49 printf("%x",plainTextByte[i]);
50 }
51
52 }
53 @end

4. 密碼學基礎(二):對稱加密

加密和解密使用相同的秘鑰稱為對稱加密。

DES:已經淘汰
3DES:相對於DES有所加強,但是仍然存在較大風險
AES:全新的對稱加密演算法。

特點決定使用場景,對稱加密擁有如下特點:

速度快,可用於頻率很高的加密場景。

使用同一個秘鑰進行加密和解密。

可選按照128、192、256位為一組的加密方式,加密後的輸出值為所選分組位數的倍數。密鑰的長度不同,推薦加密輪數也不同,加密強度也更強。

例如:
AES加密結果的長度由原字元串長度決定:一個字元為1byte=4bit,一個字元串為n+1byte,因為最後一位為'',所以當字元串長度小於等於15時,AES128得到的16進制結果為32位,也就是32 4=128byte,當長度超過15時,就是64位為128 2byte。

因為對稱加密速度快的特點,對稱加密被廣泛運用在各種加密場所中。但是因為其需要傳遞秘鑰,一旦秘鑰被截獲或者泄露,其加密就會玩完全破解,所以AES一般和RSA一起使用。

因為RSA不用傳遞秘鑰,加密速度慢,所以一般使用RSA加密AES中鎖使用的秘鑰後,再傳遞秘鑰,保證秘鑰的安全。秘鑰安全傳遞成功後,一直使用AES對會話中的信息進行加密,以此來解決AES和RSA的缺點並完美發揮兩者的優點,其中相對經典的例子就是HTTPS加密,後文會專門研究。

本文針對ECB模式下的AES演算法進行大概講解,針對每一步的詳細演算法不再該文討論范圍內。

128位的明文被分成16個位元組的明文矩陣,然後將明文矩陣轉化成狀態矩陣,以「abcdefghijklmnop」的明文為例:

同樣的,128位密鑰被分成16組的狀態矩陣。與明文不同的是,密文會以列為單位,生成最初的4x8x4=128的秘鑰,也就是一個組中有4個元素,每個元素由每列中的4個秘鑰疊加而成,其中矩陣中的每個秘鑰為1個位元組也就是8位。

生成初始的w[0]、w[1]、w[2]、w[3]原始密鑰之後,通過密鑰編排函數,該密鑰矩陣被擴展成一個44個組成的序列W[0],W[1], … ,W[43]。該序列的前4個元素W[0],W[1],W[2],W[3]是原始密鑰,用於加密運算中的初始密鑰加,後面40個字分為10組,每組4個32位的欄位組成,總共為128位,分別用於10輪加密運算中的輪密鑰加密,如下圖所示:

之所以把這一步單獨提出來,是因為ECB和CBC模式中主要的區別就在這一步。

ECB模式中,初始秘鑰擴展後生成秘鑰組後(w0-w43),明文根據當前輪數取出w[i,i+3]進行加密操作。

CBC模式中,則使用前一輪的密文(明文加密之後的值)和當前的明文進行異或操作之後再進行加密操作。如圖所示:

根據不同位數分組,官方推薦的加密輪數:

輪操作加密的第1輪到第9輪的輪函數一樣,包括4個操作:位元組代換、行位移、列混合和輪密鑰加。最後一輪迭代不執行列混合。

當第一組加密完成時,後面的組循環進行加密操作知道所有的組都完成加密操作。

一般會將結果轉化成base64位,此時在iOS中應該使用base64編碼的方式進行解碼操作,而不是UTF-8。

base64是一種編碼方式,常用語傳輸8bit位元組碼。其編碼原理如下所示:

將原數據按照3個位元組取為一組,即為3x8=24位

將3x8=24的數據分為4x6=24的數據,也就是分為了4組

將4個組中的數據分別在高位補上2個0,也就成了8x4=32,所以原數據增大了三分之一。

根據base64編碼表對數據進行轉換,如果要編碼的二進制數據不是3的倍數,最後會剩下1個或2個位元組怎麼辦,Base64用x00位元組在末尾補足後,再在編碼的末尾加上1個或2個=號,表示補了多少位元組,解碼的時候,會自動去掉。

舉個栗子:Man最後的結果就是TWFu。

計算機中所有的數據都是以0和1的二進制來存儲,而所有的文字都是通過ascii表轉化而來進而顯示成對應的語言。但是ascii表中存在許多不可見字元,這些不可見字元在數據傳輸時,有可能經過不同硬體上各種類型的路由,在轉義時容易發生錯誤,所以規定了64個可見字元(a-z、A-Z、0-9、+、/),通過base64轉碼之後,所有的二進制數據都是可見的。

ECB和CBC是兩種加密工作模式。其相同點都是在開始輪加密之前,將明文和密文按照128/192/256進行分組。以128位為例,明文和密文都分為16組,每組1個位元組為8位。

ECB工作模式中,每一組的明文和密文相互獨立,每一組的明文通過對應該組的密文加密後生成密文,不影響其他組。

CBC工作模式中,後一組的明文在加密之前先使用前一組的密文進行異或運算後再和對應該組的密文進行加密操作生成密文。

為簡單的分組加密。將明文和密文分成若干組後,使用密文對明文進行加密生成密文
CBC

加密:

解密:

5. 開發中常見的加密方式及應用

開發中常見的加密方式及應用

一、base64

簡述:Base64是網路上最常見的用於傳輸8Bit 位元組碼 的編碼方式之一,Base64就是一種基於64個可列印字元來表示二進制數據的方法。所有的數據都能被編碼為並只用65個字元就能表示的文本文件。( 65字元:A~Z a~z 0~9 + / = )編碼後的數據~=編碼前數據的4/3,會大1/3左右(圖片轉化為base64格式會比原圖大一些)。

應用:Base64編碼是從二進制到字元的過程,可用於在 HTTP 環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base64來將一個較長的唯一 標識符 (一般為128-bit的UUID)編碼為一個字元串,用作HTTP 表單 和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制 數據編碼 為適合放在URL(包括隱藏 表單域 )中的形式。此時,採用Base64編碼具有不可讀性,需要解碼後才能閱讀。

命令行進行Base64編碼和解碼

編碼:base64 123.png -o 123.txt

解碼:base64 123.txt -o test.png -D Base64編碼的原理

原理:

1)將所有字元轉化為ASCII碼;

2)將ASCII碼轉化為8位二進制;

3)將二進制3個歸成一組(不足3個在後邊補0)共24位,再拆分成4組,每組6位;

4)統一在6位二進制前補兩個0湊足8位;

5)將補0後的二進制轉為十進制;

6)從Base64編碼表獲取十進制對應的Base64編碼;

Base64編碼的說明:

a.轉換的時候,將三個byte的數據,先後放入一個24bit的緩沖區中,先來的byte占高位。

b.數據不足3byte的話,於緩沖區中剩下的bit用0補足。然後,每次取出6個bit,按照其值選擇查表選擇對應的字元作為編碼後的輸出。

c.不斷進行,直到全部輸入數據轉換完成。

d.如果最後剩下兩個輸入數據,在編碼結果後加1個「=」;

e.如果最後剩下一個輸入數據,編碼結果後加2個「=」;

f.如果沒有剩下任何數據,就什麼都不要加,這樣才可以保證資料還原的正確性。

二、HASH加密/單向散列函數

簡述:Hash演算法特別的地方在於它是一種單向演算法,用戶可以通過Hash演算法對目標信息生成一段特定長度(32個字元)的唯一的Hash值,卻不能通過這個Hash值重新獲得目標信息。對用相同數據,加密之後的密文相同。 常見的Hash演算法有MD5和SHA。由於加密結果固定,所以基本上原始的哈希加密已經不再安全,於是衍生出了加鹽的方式。加鹽:先對原始數據拼接固定的字元串再進行MD5加密。

特點:

1) 加密 後密文的長度是定長(32個字元的密文)的

2)如果明文不一樣,那麼散列後的結果一定不一樣

3)如果明文一樣,那麼加密後的密文一定一樣(對相同數據加密,加密後的密文一樣)

4)所有的加密演算法是公開的

5)不可以逆推反算(不能根據密文推算出明文),但是可以暴力 破解 ,碰撞監測

原理:MD5消息摘要演算法,屬Hash演算法一類。MD5演算法對輸入任意長度的消息進行運行,產生一個128位的消息摘要。

1)數據填充

對消息進行數據填充,使消息的長度對512取模得448,設消息長度為X,即滿足X mod 512=448。根據此公式得出需要填充的數據長度。

填充方法:在消息後面進行填充,填充第一位為1,其餘為0。

2)添加信息長度

在第一步結果之後再填充上原消息的長度,可用來進行的存儲長度為64位。如果消息長度大於264,則只使用其低64位的值,即(消息長度 對264取模)。

在此步驟進行完畢後,最終消息長度就是512的整數倍。

3)數據處理

准備需要用到的數據:

4個常數:A = 0x67452301, B = 0x0EFCDAB89, C = 0x98BADCFE, D = 0x10325476;

4個函數:F(X,Y,Z)=(X & Y) | ((~X) & Z);G(X,Y,Z)=(X & Z) | (Y & (~Z));H(X,Y,Z)=X ^ Y ^ Z;I(X,Y,Z)=Y ^ (X | (~Z));

把消息分以512位為一分組進行處理,每一個分組進行4輪變換,以上面所說4個常數為起始變數進行計算,重新輸出4個變數,以這4個變數再進行下一分組的運算,如果已經是最後一個分組,則這4個變數為最後的結果,即MD5值。

三、對稱加密

經典演算法:

1)DES數據加密標准

DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。

DES演算法是這樣工作的:如Mode為加密,則用Key去把數據Data進行加密, 生成Data的密碼形式(64位)作為DES的輸出結果;如Mode為解密,則用Key去把密碼形式的數據Data解密,還原為Data的明碼形式(64位)作為DES的輸出結果。在通信網路的兩端,雙方約定一致的Key,在通信的源點用Key對核心數據進行DES加密,然後以密碼形式在公共通信網(如電話網)中傳輸到通信網路的終點,數據到達目的地後,用同樣的Key對密碼數據進行解密,便再現了明碼形式的核心數據。這樣,便保證了核心數據(如PIN、MAC等)在公共通信網中傳輸的安全性和可靠性。

2)3DES使用3個密鑰,對消息進行(密鑰1·加密)+(密鑰2·解密)+(密鑰3·加密)

3)AES高級加密標准

如圖,加密/解密使用相同的密碼,並且是可逆的

四、非對稱加密

特點:

1)使用公鑰加密,使用私鑰解密

2)公鑰是公開的,私鑰保密

3)加密處理安全,但是性能極差

經典演算法RSA:

1)RSA原理

(1)求N,准備兩個質數p和q,N = p x q

(2)求L,L是p-1和q-1的最小公倍數。L = lcm(p-1,q-1)

(3)求E,E和L的最大公約數為1(E和L互質)

(4)求D,E x D mode L = 1

五、數字簽名

原理以及應用場景:

1)數字簽名的應用場景

需要嚴格驗證發送方身份信息情況

2)數字簽名原理

(1)客戶端處理

對"消息"進行HASH得到"消息摘要"

發送方使用自己的私鑰對"消息摘要"加密(數字簽名)

把數字簽名附著在"報文"的末尾一起發送給接收方

(2)服務端處理

對"消息" HASH得到"報文摘要"

使用公鑰對"數字簽名"解密

對結果進行匹配

六、數字證書

簡單說明:

證書和駕照很相似,裡面記有姓名、組織、地址等個人信息,以及屬於此人的公鑰,並有認證機構施加數字簽名,只要看到公鑰證書,我們就可以知道認證機構認證該公鑰的確屬於此人。

數字證書的內容:

1)公鑰

2)認證機構的數字簽名

證書的生成步驟:

1)生成私鑰openssl genrsa -out private.pem 1024

2)創建證書請求openssl req -new -key private.pem -out rsacert.csr

3)生成證書並簽名,有效期10年openssl x509 -req -days 3650 -in rsacert.csr -signkey private.pem -out rsacert.crt

4)將PEM格式文件轉換成DER格式openssl x509 -outform der -in rsacert.crt -out rsacert.der

5)導出P12文件openssl pkcs12 -export -out p.p12 -inkey private.pem -in rsacert.crt

iOS開發中的注意點:

1)在iOS開發中,不能直接使用PEM格式的證書,因為其內部進行了Base64編碼,應該使用的是DER的證書,是二進制格式的;

2)OpenSSL默認生成的都是PEM格式的證書。

七、https

HTTPS和HTTP的區別:

超文本傳輸協議HTTP協議被用於在Web瀏覽器和網站伺服器之間傳遞信息。HTTP協議以明文方式發送內容,不提供任何方式的數據加密,如果攻擊者截取了Web瀏覽器和網站伺服器之間的傳輸報文,就可以直接讀懂其中的信息,因此HTTP協議不適合傳輸一些敏感信息,比如信用卡號、密碼等。

為了解決HTTP協議的這一缺陷,需要使用另一種協議:安全套接字層超文本傳輸協議HTTPS。為了數據傳輸的安全,HTTPS在HTTP的基礎上加入了SSL協議,SSL依靠證書來驗證伺服器的身份,並為瀏覽器和伺服器之間的通信加密。

HTTPS和HTTP的區別主要為以下四點:

1)https協議需要到ca申請證書,一般免費證書很少,需要交費。

2)http是 超文本傳輸協議 ,信息是明文傳輸,https則是具有 安全性 的 ssl 加密傳輸協議。

3)http和https使用的是完全不同的連接方式,用的埠也不一樣,前者是80,後者是443。

4)http的連接很簡單,是無狀態的;HTTPS協議是由SSL+HTTP協議構建的可進行加密傳輸、身份認證的 網路協議 ,比http協議安全。

5)SSL:Secure Sockets Layer安全套接字層;用數據加密(Encryption)技術,可確保數據在網路上傳輸過程中不會被截取及竊聽。目前一般通用之規格為40 bit之安全標准,美國則已推出128 bit之更高安全標准,但限制出境。只要3.0版本以上之I.E.或Netscape 瀏覽器 即可支持SSL。目前版本為3.0。SSL協議位於TCP/IP協議與各種應用層協議之間,為數據通訊提供安全支持。SSL協議可分為兩層:SSL記錄協議(SSL Record Protocol):它建立在可靠的傳輸協議(如TCP)之上,為高層協議提供數據封裝、壓縮、加密等基本功能的支持。SSL握手協議(SSL Handshake Protocol):它建立在SSL記錄協議之上,用於在實際的數據傳輸開始前,通訊雙方進行身份認證、協商加密演算法、交換加密密鑰等。

6. iOS Base64編碼

Base64編碼是一種數據編碼方式,目的是讓數據符合傳輸協議的要求。能夠將任何二進制數據,轉換成只有64 +1(「=」等號)個字元組成的文本文件。

提示:Base64不是加密演算法,只是一種編碼演算法,對數據內容進行編碼不以明文來傳輸。

標准Base64編碼使用的64個字元:

早期的傳輸協議,如郵件傳輸SMTP協議,只能傳輸ASCII編碼中 可列印字元 ,導致原本8bit位元組碼(0-255)超出了可用范圍。所以Base64將原本ASCII碼的控制字元甚至是ASCII編碼之外的字元都轉換成可列印的6bit字元。

提示:ASCII編碼的范圍是0-127,其中0-31和127位共33個字元屬於 控制字元 ,剩下的32-126屬於 可列印字元

編碼過程:
1、按字元串長度,以每3個8bit的字元為一組
2、對每組獲取每個字元的ASCII編碼(去ASCII編碼表找每個字元的碼位)
3、將ASCII編碼轉換成8bit的二進制,得到一組3*8=24bit的位元組
4、再將這24bit劃分為4個6bit的位元組,並在每個6bit的位元組前面都填兩個高位0,得到4個8bit的位元組
5、將這4個8bit的位元組轉換成10進制,對照Base64編碼表 (下表),得到對應編碼後的字元。

注意:

示例:對 Hello! 進行Base64編碼,按照ASCII表,其轉換過程如下圖所示:

Hello! 的Base64編碼結果為 SGVsbG8h 。
原始字元串長度為6個字元,編碼後長度為8個字元,每3個原始字元經Base64編碼成4個字元,編碼前後長度比4/3。
這個長度比很重要 。比原始字元串長度短,則需要使用更大的編碼字元集,長度比越大,則需要傳輸越多的字元,傳輸時間越長。

注意:Base64編碼是每3個原始字元編碼成4個字元,如果原始字元串長度不能被3整除,那怎麼辦?使用0值來補充原始字元串。

示例:對 Hello!! 進行Base64編碼:

註:圖中藍色背景的二進制0值是額外補充的。

Hello!! 的Base64編碼的結果為 SGVsbG8hIQAA 。
最後2個零值只是為了Base64編碼而補充的,在原始字元中並沒有對應的字元,那麼Base64編碼結果中的最後兩個字元 AA 實際不帶有效信息,所以需要特殊處理,以免解碼錯誤。
標准Base64編碼通常用 = 字元來替換最後的 A,即編碼結果為 SGVsbG8hIQ==。
因為 = 字元並不在Base64編碼索引表中,其意義在於結束符號,在Base64解碼時遇到 = 時即可知道一個Base64編碼字元串結束。
如果Base64編碼字元串不會相互拼接再傳輸,那麼最後的 = 可以省略,解碼時如果發現Base64編碼字元串長度不能被4整除,則先補充 = 字元,再解碼即可。
解碼是對編碼的逆向操作,但注意一點:對於最後的兩個 = 字元,轉換成兩個 A 字元,再轉成對應的兩個6比特二進制0值,接著轉成原始字元之前,需要將最後的兩個6比特二進制0值丟棄,因為它們實際上不攜帶有效信息。

UTF-8是Unicode字元集的編碼規則,用於網路傳輸。
Base64是用來支持某些只支持傳輸ASCII編碼可列印字元的協議,將ASCII編碼中的控制字元與ASCII之外的字元轉換為ASCII可列印字元來用於傳輸。

漫畫:什麼是 Base64 演算法?
iOS開發探索-Base64編碼
關於base64編碼的原理及實現
ASCII碼對照表

7. 如何進行base64加密 ios

去找base64加密方法,
/************************************************************

函數名稱 : + (NSString *)base64EncodedStringFrom:(NSData *)data

函數描述 : 文本數據轉換為base64格式字元串

輸入參數 : (NSData *)data

輸出參數 : N/A

返回參數 : (NSString *)

備注信息 :

**********************************************************/

+ (NSString *)base64EncodedStringFrom:(NSData *)data

{

if ([data length] == 0)

return @"";

char *characters = malloc((([data length] + 2) / 3) * 4);

if (characters == NULL)

return nil;

NSUInteger length = 0;

NSUInteger i = 0;

while (i < [data length])

{

char buffer[3] = {0,0,0};

short bufferLength = 0;

while (bufferLength < 3 && i < [data length])

buffer[bufferLength++] = ((char *)[data bytes])[i++];

// Encode the bytes in the buffer to four characters, including padding "=" characters if necessary.

characters[length++] = encodingTable[(buffer[0] & 0xFC) >> 2];

characters[length++] = encodingTable[((buffer[0] & 0x03) << 4) | ((buffer[1] & 0xF0) >> 4)];

if (bufferLength > 1)

characters[length++] = encodingTable[((buffer[1] & 0x0F) << 2) | ((buffer[2] & 0xC0) >> 6)];

else characters[length++] = '=';

if (bufferLength > 2)

characters[length++] = encodingTable[buffer[2] & 0x3F];

else characters[length++] = '=';

}

return [[NSString alloc] initWithBytesNoCopy:characters length:length encoding:NSUTF8StringEncoding freeWhenDone:YES];

}

8. 介紹iOS中MD5加密演算法的使用

前言

軟體開發過程中,對數據進行加密是保證數據安全的重要手段,常見的加密有Base64加密和MD5加密。Base64加密是可逆的,MD5加密目前來說一般是不可逆的。

MD5生成的是固定的128bit,即128個0和1的二進制位,而在實際應用開發中,通常是以16進制輸出的,所以正好就是32位的16進制,說白了也就是32個16進制的數字。

MD5主要特點是 不可逆,相同數據的MD5值肯定一樣,不同數據的MD5值不一樣(也不是絕對的,但基本是不能一樣的)。

MD5演算法還具有以下性質:

1、壓縮性:任意長度的數據,算出的MD5值長度都是固定的。

2、容易計算:從原數據計算出MD5值很容易。

3、抗修改性:對原數據進行任何改動,哪怕只修改1個位元組,所得到的MD5值都有很大區別。

4、弱抗碰撞:已知原數據和其MD5值,想找到一個具有相同MD5值的數據(即偽造數據)是非常困難的。

5、強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD5值,是非常困難的。

6、MD5加密是不可解密的,但是網上有一些解析MD5的,那個相當於一個大型的資料庫,通過匹配MD5去找到原密碼。所以,只要在要加密的字元串前面加上一些字母數字元號或者多次MD5加密,這樣出來的結果一般是解析不出來的。

MD5的應用:

由於MD5加密演算法具有較好的安全性,而且免費,因此該加密演算法被廣泛使用

大多數的'登錄功能向後台提交密碼時都會使用到這種演算法

注意點:

(1)一定要和後台開發人員約定好,MD5加密的位數是16位還是32位(大多數都是32位的),16位的可以通過32位的轉換得到。

(2)MD5加密區分 大小寫,使用時要和後台約定好。

MD5解密:

解密網站:http://www.cmd5.com/

為了讓MD5碼更加安全 涌現了很多其他方法 如加鹽。 鹽要足夠長足夠亂 得到的MD5碼就很難查到。

終端代碼:$ echo -n abc|openssl md5 給字元串abc加密、

蘋果包裝了MD5加密的方法,使用起來十分的方便。

#import@interface MD5Encrypt : NSObject// MD5加密/**由於MD5加密是不可逆的,多用來進行驗證*/// 32位小寫+(NSString *)MD5ForLower32Bate:(NSString *)str;// 32位大寫+(NSString *)MD5ForUpper32Bate:(NSString *)str;// 16為大寫+(NSString *)MD5ForUpper16Bate:(NSString *)str;// 16位小寫+(NSString *)MD5ForLower16Bate:(NSString *)str;@end

#import "MD5Encrypt.h"#import@implementation MD5Encrypt#pragma mark - 32位 小寫+(NSString *)MD5ForLower32Bate:(NSString *)str{ //要進行UTF8的轉碼 const char* input = [str UTF8String]; unsigned char result[CC_MD5_DIGEST_LENGTH]; CC_MD5(input, (CC_LONG)strlen(input), result); NSMutableString *digest = [NSMutableString stringWithCapacity:CC_MD5_DIGEST_LENGTH * 2]; for (NSInteger i = 0; i < CC_MD5_DIGEST_LENGTH; i++) { [digest appendFormat:@"%02x", result[i]]; } return digest;}#pragma mark - 32位 大寫+(NSString *)MD5ForUpper32Bate:(NSString *)str{ //要進行UTF8的轉碼 const char* input = [str UTF8String]; unsigned char result[CC_MD5_DIGEST_LENGTH]; CC_MD5(input, (CC_LONG)strlen(input), result); NSMutableString *digest = [NSMutableString stringWithCapacity:CC_MD5_DIGEST_LENGTH * 2]; for (NSInteger i = 0; i < CC_MD5_DIGEST_LENGTH; i++) { [digest appendFormat:@"%02X", result[i]]; } return digest;}#pragma mark - 16位 大寫+(NSString *)MD5ForUpper16Bate:(NSString *)str{ NSString *md5Str = [self MD5ForUpper32Bate:str]; NSString *string; for (int i=0; i<24; i++) { string=[md5Str substringWithRange:NSMakeRange(8, 16)]; } return string;}#pragma mark - 16位 小寫+(NSString *)MD5ForLower16Bate:(NSString *)str{ NSString *md5Str = [self MD5ForLower32Bate:str]; NSString *string; for (int i=0; i<24; i++) { string=[md5Str substringWithRange:NSMakeRange(8, 16)]; } return string;}@end

9. 這個是什麼加密方式

幾種加密方式
1 Base64加密方式(可逆)
Base64中的可列印字元包括字母A-Z/a-z/數組0-9/ 加號』+』斜杠』/』 這樣共有62個字元
Base64 ios7之後加入系統庫

2 MD5加密
Message Digest Algorithm MD5(中文名為消息摘要演算法第五版)為計算機安全領域廣泛使用的一種散列函數,用以提供消息的完整性保護
是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD5實現。
根據輸出值,不能得到原始的明文,即其過程不可逆
MD5演算法具有以下特點:
1、壓縮性:任意長度的數據,算出的MD5值長度都是固定的。
2、容易計算:從原數據計算出MD5值很容易。
3、抗修改性:對原數據進行任何改動,哪怕只修改1個位元組,所得到的MD5值都有很大區別。
4、強抗碰撞:已知原數據和其MD5值,想找到一個具有相同MD5值的數據(即偽造數據)是非常困難的。

MD5的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD5以外,其中比較有名的還有sha-1、RIPEMD以及Haval等。
MD5加鹽

3 鑰匙串加密方式

iCloud鑰匙串,蘋果給我們提供的密碼保存的解決方案,iOS7之後有的

存沙盒:
1、如果手機越獄,密碼容易被竊取。
2、當軟體更新時,沙盒裡的內容是不被刪除的。但是,如果將軟體卸載後重裝,沙盒裡的數據就沒有了。
3、每個APP的沙盒是相對獨立的,密碼無法共用。

存鑰匙串里:
1、蘋果提供的安全方案,rsa加密,相對安全。
2、無論軟體更新或刪除,密碼都存在,都可以自動登錄。
3、同一公司的APP密碼是可以共用的。
4 對稱加密演算法

優點:演算法公開、計算量小、加密速度快、加密效率高、可逆
缺點:雙方使用相同鑰匙,安全性得不到保證
現狀:對稱加密的速度比公鑰加密快很多,在很多場合都需要對稱加密,
演算法: 在對稱加密演算法中常用的演算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK、AES等。不同演算法的實現機制不同,可參考對應演算法的詳細資料
相較於DES和3DES演算法而言,AES演算法有著更高的速度和資源使用效率,安全級別也較之更高了,被稱為下一代加密標准

10. 如何使用Base64進行加密和解密

這個我不清楚。

給電腦上的文件加密或者文件夾加密,你可以使用超級加密3000。

超級加密3000採用國際上成熟的加密演算法和安全快速的加密方法,可以有效保障數據安全!

具體操作方法:

1下載安裝超級加密3000。

2 然後在需要加密的文件上單擊滑鼠右鍵選擇加密。

3 在彈出的文件加密窗口中設置文件加密密碼就OK了。

超級加密3000的下載地址你可以在網路上搜索超級加密3000,第一個就是。

熱點內容
壓縮包手機打開 發布:2025-05-15 18:37:34 瀏覽:215
安卓取消耳機模式怎麼取消 發布:2025-05-15 18:24:24 瀏覽:58
氣球怎麼解壓視頻 發布:2025-05-15 18:20:00 瀏覽:782
電腦軟體密碼怎麼設置密碼 發布:2025-05-15 18:09:07 瀏覽:107
android應用是否運行 發布:2025-05-15 18:02:40 瀏覽:10
java排序list 發布:2025-05-15 18:02:40 瀏覽:298
net編譯可以在linux上嗎 發布:2025-05-15 18:01:18 瀏覽:533
華為怎麼知道不是安卓 發布:2025-05-15 18:00:32 瀏覽:909
清理華為手機存儲空間不足 發布:2025-05-15 17:54:46 瀏覽:349
java從控制台輸入 發布:2025-05-15 17:47:38 瀏覽:483