des數據加密標准
1. 數據加密標准DES主要應用范圍有哪些存在哪些缺陷
數據加密標准(des)由美國國家標准局提出,是目前廣泛採用的對稱加密方式之一,主要應用於銀行業中的電子資金轉帳(eft)領域。des的密鑰長度為56位。三重des是des的一種變形,這種方法使用兩個獨立的56位密鑰對交換的信息(如edi數據)進行3次加密,從而使其有效密鑰長度達到112位。rc2和rc4方法是rsa數據安全公司的對稱加密專利演算法。rc2和rc4不同於des它們採用可變密鑰長度的演算法。通過規定不同的密鑰長度rc2和rc4能夠提高或降低安全的程度。一些電子郵件產品(如lotusnotes和apple的opncollaborationenvironment)已採用了這些演算法。
2. DES是什麼意思
DES全稱為Data Encryption Standard,即數據加密標准,是一種使用密鑰加密的塊演算法。
1977年被美國聯邦政府的國家標准局確定為聯邦資料處理標准(FIPS),並授權在非密級政府通信中使用,隨後該演算法在國際上廣泛流傳開來。需要注意的是,在某些文獻中,作為演算法的DES稱為數據加密演算法(Data Encryption Algorithm,DEA),已與作為標準的DES區分開來。
(2)des數據加密標准擴展閱讀:
1、數據加密標准
DES的原始思想可以參照二戰德國的恩格瑪機,其基本思想大致相同。傳統的密碼加密都是由古代的循環移位思想而來,恩格瑪機在這個基礎之上進行了擴散模糊。但是本質原理都是一樣的。現代DES在二進制級別做著同樣的事:替代模糊,增加分析的難度。
2、折疊加密原理
DES 使用一個 56 位的密鑰以及附加的 8 位奇偶校驗位,產生最大 64 位的分組大小。這是一個迭代的分組密碼,使用稱為 Feistel 的技術,其中將加密的文本塊分成兩半。使用子密鑰對其中一半應用循環功能,然後將輸出與另一半進行"異或"運算;接著交換這兩半,這一過程會繼續下去,但最後一個循環不交換。DES 使用 16 個循環,使用異或,置換,代換,移位操作四種基本運算。
3. 什麼是信道加密、信源加密
信道加密,亦稱「干線加密」。對通信干線上傳輸的信息進行加、解密的方式。通常有單路加密和群路加密兩種。
信源加密,對信源採取保護措施及對信源發送的信息明文或代表明文的電信號進行加密,使消息不被非法截獲或破譯的保密方式。
(3)des數據加密標准擴展閱讀:
信道加密、信源加密都屬於網路加密技術,但二者的側重點不同。
信道為傳送信息的通道,如TCP/IP網路。信道可以從邏輯上理解為抽象信道,可以是具有物理意義的實際傳送通道。信道加密技術注重解決信息在線路傳輸過程中的安全問題,並且可很好地控制非法用戶的侵入。信道加密技術對系統和應用程序完全透明。
信源是產生信息的實體,信息產生後,由這個實體向外傳播。信源加密技術可解決信息在傳輸、存儲、使用和交換中的安全問題。缺點是使用該技術必須和應用系統同期開發。
4. 數據加密演算法的數據加密標准DES
DES的原始思想可以參照二戰德國的恩尼格瑪機,其基本思想大致相同。傳統的密碼加密都是由古代的循環移位思想而來,恩尼格瑪機在這個基礎之上進行了擴散模糊。但是本質原理都是一樣的。現代DES在二進制級別做著同樣的事:替代模糊,增加分析的難度。 攻擊 DES 的主要形式被稱為蠻力的或窮舉,即重復嘗試各種密鑰直到有一個符合為止。如果 DES 使用 56 位的密鑰,則可能的密鑰數量是 2 的 56 次方個。隨著計算機系統能力的不斷發展,DES 的安全性比它剛出現時會弱得多,然而從非關鍵性質的實際出發,仍可以認為它是足夠的。不過 ,DES 現在僅用於舊系統的鑒定,而更多地選擇新的加密標准 — 高級加密標准(Advanced Encryption Standard,AES)。
新的分析方法有差分分析法和線性分析法兩種 本期Crackme用到MD5及DES兩種加密演算法,難度適中。這次我們重點來看一下DES的加密過程及注冊演算法過程。用調試器載入程序,下GegDlgItemTextA斷點,可以定位到下面代碼,我們先來看一下整個crackme的注冊過程:
由於代碼分析太長,故收錄到光碟中,請大家對照著分析(請見光碟「code1.doc」)
從上面分析可以看出,注冊過程是類似:f(機器碼,注冊碼)式的兩元運算。機器碼是經過md5演算法得到的中間16位值,注冊碼是經過DES解密過程取得16位注冊碼,然後兩者比較,如相等,則注冊成功。機器碼的運算過程可以參照上一期的MD5演算法來理解。下面重點來說一下注冊碼DES的運算過程。
1、密鑰處理過程:一般進行加解密過程都要初始化密鑰處理。我們可以跟進004023FA CALL Crackme1.00401A40這個call,可以看到如下代碼:
…(省略)...
00401A4D LEA ECX,DWORD PTR DS:[ECX]
00401A50 /MOV EDX,EAX
00401A52 |SHR EDX,3
00401A55 |MOV DL,BYTE PTR DS:[EDX+ESI]
00401A58 |MOV CL,AL
00401A5A |AND CL,7
00401A5D |SAR DL,CL
00401A5F |AND DL,1
00401A62 |MOV BYTE PTR DS:[EAX+417DA0],DL
00401A68 |INC EAX
00401A69 |CMP EAX,40這里比較是否小於64
00401A6C JL SHORT Crackme1.00401A50
以上過程就是去掉密鑰各第八位奇偶位。
…(省略)...
00401AB0 |MOV DL,BYTE PTR DS:[ECX+417D9F]
00401AB6 |MOV BYTE PTR DS:[EAX+417BA3],DL
00401ABC |ADD EAX,4
00401ABF |CMP EAX,38這里進行密鑰變換
…(省略)...
00401BFF ||MOVSX ECX,BYTE PTR DS:[EAX+412215]
00401C06 ||MOV CL,BYTE PTR DS:[ECX+417D9F]
00401C0C ||MOV BYTE PTR DS:[EAX+417BA5],CL
00401C12 ||ADD EAX,6
00401C15 ||CMP EAX,30這里產生48位的子密鑰
00401C18 |JL SHORT Crackme1.00401BA0
00401C1A |MOV EAX,DWORD PTR SS:[ESP+14]
00401C1E |MOV EDI,EAX
00401C20 |MOV ECX,0C
00401C25 |MOV ESI,Crackme1.00417BA0
00401C2A |REP MOVS DWORD PTR ES:[EDI],DWORD PTR D>
00401C2C |MOV EDI,DWORD PTR SS:[ESP+10]
00401C30 |ADD EAX,30下一組子密鑰
00401C33 |INC EDI
00401C34 |CMP EAX,Crackme1.00417B90這里進行16次的生成子密鑰過程
00401C39 |MOV DWORD PTR SS:[ESP+10],EDI
…(省略)...
可以看到8位密鑰為:1,9,8,0,9,1,7,0
2、對數據處理的過程,跟進004024C7 CALL Crackme1.00402050,到如下代碼:
00402072 |MOV BYTE PTR DS:[EAX+417E30],DL
00402078 |INC EAX
00402079 |CMP EAX,40這里取得64位數據
0040207C JL SHORT Crackme1.00402060
…(省略)...
004020C6 |MOV BYTE PTR DS:[EAX+417BA3],DL
004020CC |ADD EAX,4
004020CF |CMP EAX,40進行第一次變換
004020D2 JL SHORT Crackme1.00402080
004020D4 MOV AL,BYTE PTR SS:[ESP+20]
004020D8 TEST AL,AL
004020DA MOV ECX,10
…(省略)...
00402191 MOV EBP,DWORD PTR DS:[415094] ; Crackme1.00417E30
00402197 SUB EAX,EBP這里對變換後的數據分為兩部分
00402199 MOV DWORD PTR SS:[ESP+10],EAX
0040219D MOV DWORD PTR SS:[ESP+20],Crackme1.00417B60
004021A5 /MOV EAX,DWORD PTR SS:[ESP+20]
004021A9 |MOV ECX,8
004021AE |MOV ESI,EBP
004021B0 |MOV EDI,Crackme1.00417E10
004021B5 |PUSH EAX這里用上面生成的子密鑰來解密數據
004021B6 |MOV EBX,EBP
…(省略)...
004021FF |SUB EAX,30下一個子密鑰
00402202 |CMP EAX,Crackme1.00417890這里將循環16次,典型的DES加解密過程
00402207 |MOV ECX,8
0040220C |MOV ESI,Crackme1.00417E10
00402211 |REP MOVS DWORD PTR ES:[EDI],DWORD PTR DS:[ESI>
…(省略)...
0040225A |MOV BYTE PTR DS:[EAX+417BA2],DL
00402260 |MOV DL,BYTE PTR DS:[ECX+417E2F]
00402266 |MOV BYTE PTR DS:[EAX+417BA3],DL
0040226C |ADD EAX,4
0040226F |CMP EAX,40這里是未置換
00402272 JL SHORT Crackme1.00402220
00402274 MOV EBP,DWORD PTR SS:[ESP+18]
00402278 MOV ECX,10
0040227D MOV ESI,Crackme1.00417BA0
…(省略)...
有興趣的讀者可以參考DES演算法來理解上面的過程。 一.安全性比較高的一種演算法,目前只有一種方法可以破解該演算法,那就是窮舉法.
二.採用64位密鑰技術,實際只有56位有效,8位用來校驗的.譬如,有這樣的一台PC機器,它能每秒計算一百萬次,那麼256位空間它要窮舉的時間為2285年.所以這種演算法還是比較安全的一種演算法.
TripleDES。該演算法被用來解決使用 DES 技術的 56 位時密鑰日益減弱的強度,其方法是:使用兩個獨立密鑰對明文運行 DES 演算法三次,從而得到 112 位有效密鑰強度。TripleDES 有時稱為 DESede(表示加密、解密和加密這三個階段)。
5. RSA和DES演算法的優缺點、比較
DES演算法:
優點:密鑰較短,加密處理簡單,加解密速度快,適用於加密大量數據的場合。
缺點:密鑰單一,不能由其中一個密鑰推導出另一個密鑰。
RSA演算法:
優點:應用廣泛,加密密鑰和解密密鑰不一樣,一般加密密鑰稱為私鑰。解密密鑰稱為公鑰,私鑰加密後只能用公鑰解密,,當然也可以用公鑰加密,用私鑰解密。
缺點:密鑰尺寸大,加解密速度慢,一般用來加密少量數據,比如DES的密鑰。
(5)des數據加密標准擴展閱讀:
安全性
RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。RSA 的一些變種演算法已被證明等價於大數分解。
不管怎樣,分解n是最顯然的攻擊方法。人們已能分解多個十進制位的大素數。因此,模數n必須選大一些,因具體適用情況而定。
6. 密碼學部分 數據加密標准(DES)相關知識來回答,越詳細約好
額……我該說啥呢……
首先給你一個網址看看:http://kweenzy.blog.51cto.com/1093584/1008506
嘛……這個就是我本人的博客,所以不算抄襲哈……
1、見鏈接中【輪結構】下面的圖,每一個方框的右下角都寫了諸如「56bit」的字樣(1bit就是1位)……
2、見整個文章的中部位置紅色字體「密鑰的處理流程……」下面所述……
3、和4、……請參見原文然後想一下該怎麼回答……不過S盒的工作原理是啥我還真不知道……
5、DES的安全弱點啊……最顯而易見的是有弱密鑰,但是數量很少,在每次產生子密鑰的時候稍微做一下檢查就可以解決這個問題,貌似也說不上什麼弱點?以及,S盒是整個運算里唯一的一個非線性運算,其他的都是線性運算,線性運算就表示可以進行反推,所以S盒的安全性非常重要!但是S盒是完全公開的啊……更神奇的是研究了半天發現了一些S盒的規律但是根據發現出來的規律編程重新生成S盒的話,安全性沒有這個S盒高!另外,其實整個DES的加密過程經過了NSA(美國國家安全局)的修改,他們還拒絕提供為什麼修改的信息,所以很多人擔心其實NSA可以分分鍾破解DES……其他的安全弱點……記不清了……回頭找資料來補充回答哈……
6、我靠不會描述!……騷年你自己加油看完資料再思考怎麼進行數學描述……
7、密鑰的使用順序是相反的……【其實好像密鑰進行左循環移位時,加密密鑰第一輪移位是1位,解密密鑰第一輪是0位……
8、騷年你自己加油畫出示意圖……【EDE就是先加密再解密再加密,3就是使用三個不同的密鑰K1K2K3……
7. DES 加密演算法是怎樣的一種演算法要通俗解釋..
1977年1月,美國政府頒布:採納IBM公司設計的方案作為非機密數據的正式數據加密標准(DES棗Data Encryption Standard)。
目前在國內,隨著三金工程尤其是金卡工程的啟動,DES演算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收費站等領域被廣泛應用,以此來實現關鍵數據的保密,如信用卡持卡人的PIN的加密傳輸,IC卡與POS間的雙向認證、金融交易數據包的MAC校驗等,均用到DES演算法。
DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。
DES演算法是這樣工作的:如Mode為加密,則用Key 去把數據Data進行加密, 生成Data的密碼形式(64位)作為DES的輸出結果;如Mode為解密,則用Key去把密碼形式的數據Data解密,還原為Data的明碼形式(64位)作為DES的輸出結果。在通信網路的兩端,雙方約定一致的Key,在通信的源點用Key對核心數據進行DES加密,然後以密碼形式在公共通信網(如電話網)中傳輸到通信網路的終點,數據到達目的地後,用同樣的Key對密碼數據進行解密,便再現了明碼形式的核心數據。這樣,便保證了核心數據(如PIN、MAC等)在公共通信網中傳輸的安全性和可靠性。
通過定期在通信網路的源端和目的端同時改用新的Key,便能更進一步提高數據的保密性,這正是現在金融交易網路的流行做法。
DES演算法詳述
DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,整個演算法的主流程圖如下:
其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長32位,其置換規則見下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即將輸入的第58位換到第一位,第50位換到第2位,...,依此類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0 是右32位,例:設置換前的輸入值為D1D2D3......D64,則經過初始置換後的結果為:L0=D58D50...D8;R0=D57D49...D7。
經過16次迭代運算後。得到L16、R16,將此作為輸入,進行逆置換,即得到密文輸出。逆置換正好是初始置的逆運算,例如,第1位經過初始置換後,處於第40位,而通過逆置換,又將第40位換回到第1位,其逆置換規則如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大換位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
單純換位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
在f(Ri,Ki)演算法描述圖中,S1,S2...S8為選擇函數,其功能是把6bit數據變為4bit數據。下面給出選擇函數Si(i=1,2......8)的功能表:
選擇函數Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1為例說明其功能,我們可以看到:在S1中,共有4行數據,命名為0,1、2、3行;每行有16列,命名為0、1、2、3,......,14、15列。
現設輸入為: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然後在S1表中查得對應的數,以4位二進製表示,此即為選擇函數S1的輸出。下面給出子密鑰Ki(48bit)的生成演算法
從子密鑰Ki的生成演算法描述圖中我們可以看到:初始Key值為64位,但DES演算法規定,其中第8、16、......64位是奇偶校驗位,不參與DES運算。故Key 實際可用位數便只有56位。即:經過縮小選擇換位表1的變換後,Key 的位數由64 位變成了56位,此56位分為C0、D0兩部分,各28位,然後分別進行第1次循環左移,得到C1、D1,將C1(28位)、D1(28位)合並得到56位,再經過縮小選擇換位2,從而便得到了密鑰K0(48位)。依此類推,便可得到K1、K2、......、K15,不過需要注意的是,16次循環左移對應的左移位數要依據下述規則進行:
循環左移位數
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介紹了DES演算法的加密過程。DES演算法的解密過程是一樣的,區別僅僅在於第一次迭代時用子密鑰K15,第二次K14、......,最後一次用K0,演算法本身並沒有任何變化。
8. DES加密問題
DES對64位二進制數據加密,產生64位密文數據,實際密鑰長度為56位(有8位用於奇偶校驗,解密時的過程和加密時相似,但密鑰的順序正好相反),這個標准由美國國家安全局和國家標准與技術局來管理。DES的成功應用是在銀行業中的電子資金轉賬(EFT)領域中。現在DES也可由硬體實現,AT&T首先用LSI晶元實現了DES的全部工作模式,該產品稱為數據加密處理機DEP。另一個系統是國際數據加密演算法(IDEA),它比DES的加密性好,而且計算機功能也不需要那麼強。在未來,它的應用將被推廣到各個領域。IDEA加密標准由PGP(Pretty Good Privacy)系統使用,PGP是一種可以為普通電子郵件用戶提供加密、解密方案的安全系統。在PGP系統中,使用IDEA(分組長度128bit)、RSA(用於數字簽名、密鑰管理)、MD5(用於數據壓縮)演算法,它不但可以對你的郵件保密以防止非授權者閱讀,還能對你的郵件加以數字簽名從而使收信人確信郵件是由你發出。--
9. 「DES」的名詞解釋
DES全稱為Data Encryption Standard,即數據加密標准,是一種使用密鑰加密的塊演算法。
1977年被美國聯邦政府的國家標准局確定為聯邦資料處理標准(FIPS),並授權在非密級政府通信中使用,隨後該演算法在國際上廣泛流傳開來。需要注意的是,在某些文獻中,作為演算法的DES稱為數據加密演算法,已與作為標準的DES區分開來。
DES設計中使用了分組密碼設計的兩個原則:混淆和擴散,其目的是抗擊敵手對密碼系統的統計分析。混淆是使密文的統計特性與密鑰的取值之間的關系盡可能復雜化,以使密鑰和明文以及密文之間的依賴性對密碼分析者來說是無法利用的。
(9)des數據加密標准擴展閱讀
DES使用56位密鑰對64位的數據塊進行加密,並對64位的數據塊進行16輪編碼。與每輪編碼時,一個48位的「每輪」密鑰值由56位的完整密鑰得出來。DES用軟體進行解碼需要用很長時間,而用硬體解碼速度非常快。
在1977年,人們估計要耗資兩千萬美元才能建成一個專門計算機用於DES的解密,而且需要12個小時的破解才能得到結果。所以,當時DES被認為是一種十分強壯的加密方法。
隨著攻擊技術的發展,DES本身又有發展,如衍生出可抗差分分析攻擊的變形DES以及密鑰長度為128比特的三重DES等。