ios加密解密
『壹』 ios應用開發過程中如何加密、防內購破解等,簡單加密方法
在大多數iOS應用在開發者看來,封閉的iOS系統很安全,iOS應用也很安全,但事實上,iOS應用沒有我們想像中的安全。如同安卓應用,iOS應用也面臨著被破解的威脅,存在大量盜版情況,所以開發者對此一定要重視起來,應用在上市場之前還是要多做些相關的防護,例如:
1.本地數據加密
對NSUserDefaults,sqlite存儲文件數據加密,保護帳號和關鍵信息。
2. URL編碼加密
對程序中出現的URL進行編碼加密,防止URL被靜態分析
3. 網路傳輸數據加密
對客戶端傳輸數據提供加密方案,有效防止通過網路介面的攔截獲取
4. 方法體,方法名高級混淆
對應用程序的方法名和方法體進行混淆,保證源碼被逆向後無法解析代碼
5. 程序結構混排加密
對應用程序邏輯結構進行打亂混排,保證源碼可讀性降到最低
『貳』 關於iOS aes256加密的問題,請各位幫忙,搞了一個星期,急求答案!
之前在項目上用到AES256加密解密演算法,剛開始在java端加密解密都沒有問題,在iOS端加密解密也沒有問題。但是奇怪的是在java端加密後的文件在iOS端無法正確解密打開,然後簡單測試了一下,發現在java端和iOS端採用相同明文,相同密鑰加密後的密文不一樣!上網查了資料後發現iOS中AES加密演算法採用的填充是PKCS7Padding,而java不支持PKCS7Padding,只支持PKCS5Padding。我們知道加密演算法由演算法+模式+填充組成,所以這兩者不同的填充演算法導致相同明文相同密鑰加密後出現密文不一致的情況。那麼我們需要在java中用PKCS7Padding來填充,這樣就可以和iOS端填充演算法一致了。
要實現在java端用PKCS7Padding填充,需要用到bouncycastle組件來實現,下面我會提供該包的下載。啰嗦了一大堆,下面是一個簡單的測試,上代碼!
001 package com.encrypt.file;
002
003
004 import java.io.UnsupportedEncodingException;
005 importjava.security.Key;
006 import java.security.Security;
007
008 importjavax.crypto.Cipher;
009 importjavax.crypto.SecretKey;
010 importjavax.crypto.spec.SecretKeySpec;
011
012 public classAES256Encryption{
013
014 /**
015 * 密鑰演算法
016 * java6支持56位密鑰,bouncycastle支持64位
017 * */
018 public static finalString KEY_ALGORITHM="AES";
019
020 /**
021 * 加密/解密演算法/工作模式/填充方式
022 *
023 * JAVA6 支持PKCS5PADDING填充方式
024 * Bouncy castle支持PKCS7Padding填充方式
025 * */
026 public static finalString CIPHER_ALGORITHM="AES/ECB/PKCS7Padding";
027
028 /**
029 *
030 * 生成密鑰,java6隻支持56位密鑰,bouncycastle支持64位密鑰
031 * @return byte[] 二進制密鑰
032 * */
033 public static byte[] initkey() throwsException{
034
035 // //實例化密鑰生成器
036 // Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
037 // KeyGenerator kg=KeyGenerator.getInstance(KEY_ALGORITHM, "BC");
038 // //初始化密鑰生成器,AES要求密鑰長度為128位、192位、256位
039 //// kg.init(256);
040 // kg.init(128);
041 // //生成密鑰
042 // SecretKey secretKey=kg.generateKey();
043 // //獲取二進制密鑰編碼形式
044 // return secretKey.getEncoded();
045 //為了便於測試,這里我把key寫死了,如果大家需要自動生成,可用上面注釋掉的代碼
046 return new byte[] { 0x08, 0x08, 0x04, 0x0b, 0x02, 0x0f, 0x0b, 0x0c,
047 0x01, 0x03, 0x09, 0x07, 0x0c, 0x03, 0x07, 0x0a, 0x04, 0x0f,
048 0x06, 0x0f, 0x0e, 0x09, 0x05, 0x01, 0x0a, 0x0a, 0x01, 0x09,
049 0x06, 0x07, 0x09, 0x0d };
050 }
051
052 /**
053 * 轉換密鑰
054 * @param key 二進制密鑰
055 * @return Key 密鑰
056 * */
057 public static Key toKey(byte[] key) throwsException{
058 //實例化DES密鑰
059 //生成密鑰
060 SecretKey secretKey=newSecretKeySpec(key,KEY_ALGORITHM);
061 returnsecretKey;
062 }
063
064 /**
065 * 加密數據
066 * @param data 待加密數據
067 * @param key 密鑰
068 * @return byte[] 加密後的數據
069 * */
070 public static byte[] encrypt(byte[] data,byte[] key) throwsException{
071 //還原密鑰
072 Key k=toKey(key);
073 /**
074 * 實例化
075 * 使用 PKCS7PADDING 填充方式,按如下方式實現,就是調用bouncycastle組件實現
076 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
077 */
078 Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
079 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM, "BC");
080 //初始化,設置為加密模式
081 cipher.init(Cipher.ENCRYPT_MODE, k);
082 //執行操作
083 returncipher.doFinal(data);
084 }
085 /**
086 * 解密數據
087 * @param data 待解密數據
088 * @param key 密鑰
089 * @return byte[] 解密後的數據
090 * */
091 public static byte[] decrypt(byte[] data,byte[] key) throwsException{
092 //歡迎密鑰
093 Key k =toKey(key);
094 /**
095 * 實例化
096 * 使用 PKCS7PADDING 填充方式,按如下方式實現,就是調用bouncycastle組件實現
097 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
098 */
099 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM);
100 //初始化,設置為解密模式
101 cipher.init(Cipher.DECRYPT_MODE, k);
102 //執行操作
103 returncipher.doFinal(data);
104 }
105 /**
106 * @param args
107 * @throws UnsupportedEncodingException
108 * @throws Exception
109 */
110 public static void main(String[] args) {
111
112 String str="AES";
113 System.out.println("原文:"+str);
114
115 //初始化密鑰
116 byte[] key;
117 try {
118 key = AES256Encryption.initkey();
119 System.out.print("密鑰:");
120 for(int i = 0;i<key.length;i++){
121 System.out.printf("%x", key[i]);
122 }
123 System.out.print("\n");
124 //加密數據
125 byte[] data=AES256Encryption.encrypt(str.getBytes(), key);
126 System.out.print("加密後:");
127 for(int i = 0;i<data.length;i++){
128 System.out.printf("%x", data[i]);
129 }
130 System.out.print("\n");
131
132 //解密數據
133 data=AES256Encryption.decrypt(data, key);
134 System.out.println("解密後:"+newString(data));
135 } catch (Exception e) {
136 // TODO Auto-generated catch block
137 e.printStackTrace();
138 }
139
140 }
141 }
運行程序後的結果截圖:
ViewController.m文件
01 //
02 // ViewController.m
03 // AES256EncryptionDemo
04 //
05 // Created by 孫 裔 on 12-12-13.
06 // Copyright (c) 2012年 rich sun. All rights reserved.
07 //
08
09 #import "ViewController.h"
10 #import "EncryptAndDecrypt.h"
11
12 @interface ViewController ()
13
14 @end
15
16 @implementation ViewController
17 @synthesize plainTextField;
18 - (void)viewDidLoad
19 {
20 [super viewDidLoad];
21 // Do any additional setup after loading the view, typically from a nib.
22 }
23
24 - (void)didReceiveMemoryWarning
25 {
26 [super didReceiveMemoryWarning];
27 // Dispose of any resources that can be recreated.
28 }
29 //這個函數實現了用戶輸入完後點擊視圖背景,關閉鍵盤
30 - (IBAction)backgroundTap:(id)sender{
31 [plainTextField resignFirstResponder];
32 }
33
34 - (IBAction)encrypt:(id)sender {
35
36 NSString *plainText = plainTextField.text;//明文
37 NSData *plainTextData = [plainText dataUsingEncoding:NSUTF8StringEncoding];
38
39 //為了測試,這里先把密鑰寫死
40 Byte keyByte[] = {0x08,0x08,0x04,0x0b,0x02,0x0f,0x0b,0x0c,0x01,0x03,0x09,0x07,0x0c,0x03,
41 0x07,0x0a,0x04,0x0f,0x06,0x0f,0x0e,0x09,0x05,0x01,0x0a,0x0a,0x01,0x09,
42 0x06,0x07,0x09,0x0d};
43 //byte轉換為NSData類型,以便下邊加密方法的調用
44 NSData *keyData = [[NSData alloc] initWithBytes:keyByte length:32];
45 //
46 NSData *cipherTextData = [plainTextData AES256EncryptWithKey:keyData];
47 Byte *plainTextByte = (Byte *)[cipherTextData bytes];
48 for(int i=0;i<[cipherTextData length];i++){
49 printf("%x",plainTextByte[i]);
50 }
51
52 }
53 @end
附上出處鏈接:http://blog.csdn.net/pjk1129/article/details/8489550
『叄』 ios 中開發中用戶信息中的加密方式有哪些
5.1 通過簡單的URLENCODE + BASE64編碼防止數據明文傳輸
5.2 對普通請求、返回數據,生成MD5校驗(MD5中加入動態密鑰),進行數據完整性(簡單防篡改,安全性較低,優點:快速)校驗。
5.3 對於重要數據,使用RSA進行數字簽名,起到防篡改作用。
5.4 對於比較敏感的數據,如用戶信息(登陸、注冊等),客戶端發送使用RSA加密,伺服器返回使用DES(AES)加密。
原因:客戶端發送之所以使用RSA加密,是因為RSA解密需要知道伺服器私鑰,而伺服器私鑰一般盜取難度較大;如果使用DES的話,可以通過破解客戶端獲取密鑰,安全性較低。而伺服器返回之所以使用DES,是因為不管使用DES還是RSA,密鑰(或私鑰)都存儲在客戶端,都存在被破解的風險,因此,需要採用動態密鑰,而RSA的密鑰生成比較復雜,不太適合動態密鑰,並且RSA速度相對較慢,所以選用DES)
把相關演算法的代碼也貼一下吧 (其實使用一些成熟的第三方庫或許會來得更加簡單,不過自己寫,自由點)。注,這里的大部分加密演算法都是參考一些現有成熟的演算法,或者直接拿來用的。
1、MD5
//因為是使用category,所以木有參數傳入啦
-(NSString *) stringFromMD5 {
if(self == nil || [self length] == 0) {
return nil;
}
const char *value = [self UTF8String];
unsigned char outputBuffer[CC_MD5_DIGEST_LENGTH];
CC_MD5(value, strlen(value), outputBuffer);
NSMutableString *outputString = [[NSMutableString alloc] initWithCapacity:CC_MD5_DIGEST_LENGTH * 2];
for(NSInteger count = 0; count < CC_MD5_DIGEST_LENGTH; count++){
[outputString appendFormat:@"%02x",outputBuffer[count]];
}
return [outputString autorelease];
}
2、Base64
+ (NSString *) base64EncodeData: (NSData *) objData {
const unsigned char * objRawData = [objData bytes];
char * objPointer;
char * strResult;
// Get the Raw Data length and ensure we actually have data
int intLength = [objData length];
if (intLength == 0) return nil;
// Setup the String-based Result placeholder and pointer within that placeholder
strResult = (char *)calloc(((intLength + 2) / 3) * 4, sizeof(char));
objPointer = strResult;
// Iterate through everything
while (intLength > 2) { // keep going until we have less than 24 bits
*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
*objPointer++ = _base64EncodingTable[((objRawData[1] & 0x0f) << 2) + (objRawData[2] >> 6)];
*objPointer++ = _base64EncodingTable[objRawData[2] & 0x3f];
// we just handled 3 octets (24 bits) of data
objRawData += 3;
intLength -= 3;
}
// now deal with the tail end of things
if (intLength != 0) {
*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
if (intLength > 1) {
*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
*objPointer++ = _base64EncodingTable[(objRawData[1] & 0x0f) << 2];
*objPointer++ = '=';
} else {
*objPointer++ = _base64EncodingTable[(objRawData[0] & 0x03) << 4];
*objPointer++ = '=';
*objPointer++ = '=';
}
}
// Terminate the string-based result
*objPointer = '\0';
NSString *rstStr = [NSString stringWithCString:strResult encoding:NSASCIIStringEncoding];
free(objPointer);
return rstStr;
}
3、AES
-(NSData*) EncryptAES: (NSString *) key {
char keyPtr[kCCKeySizeAES256+1];
bzero(keyPtr, sizeof(keyPtr));
[key getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];
NSUInteger dataLength = [self length];
size_t bufferSize = dataLength + kCCBlockSizeAES128;
void *buffer = malloc(bufferSize);
size_t numBytesEncrypted = 0;
CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt, kCCAlgorithmAES128,
kCCOptionPKCS7Padding | kCCOptionECBMode,
keyPtr, kCCBlockSizeAES128,
NULL,
[self bytes], dataLength,
buffer, bufferSize,
&numBytesEncrypted);
if (cryptStatus == kCCSuccess) {
return [NSData dataWithBytesNoCopy:buffer length:numBytesEncrypted];
}
free(buffer);
return nil;
}
4、RSA
- (NSData *) encryptWithData:(NSData *)content {
size_t plainLen = [content length];
if (plainLen > maxPlainLen) {
NSLog(@"content(%ld) is too long, must < %ld", plainLen, maxPlainLen);
return nil;
}
void *plain = malloc(plainLen);
[content getBytes:plain
length:plainLen];
size_t cipherLen = 128; // currently RSA key length is set to 128 bytes
void *cipher = malloc(cipherLen);
OSStatus returnCode = SecKeyEncrypt(publicKey, kSecPaddingPKCS1, plain,
plainLen, cipher, &cipherLen);
NSData *result = nil;
if (returnCode != 0) {
NSLog(@"SecKeyEncrypt fail. Error Code: %ld", returnCode);
}
else {
result = [NSData dataWithBytes:cipher
length:cipherLen];
}
free(plain);
free(cipher);
return result;
}
『肆』 ios 公鑰字元串怎麼加密解密
最近幾天折騰了一下如何在iOS上使用RSA來加密。iOS上並沒有直接的RSA加密API。但是iOS提供了x509的API,而x509是支持RSA加密的。因此,我們可以通過製作自簽名的x509證書(由於對安全性要求不高,我們並不需要使用CA認證的證書),再調用x509的相關API來進行加密。接下來記錄一下整個流程。
第一步,製作自簽名的證書
最簡單快捷的方法,打開Terminal,使用openssl(Mac OS X自帶)生成私鑰和自簽名的x509證書。
openssl req -x509 -out public_key.der -outform der -new -newkey rsa:1024 -keyout private_key.pem -days 3650
按照命令行的提示輸入內容就行了。
幾個說明:
public_key.der是輸出的自簽名的x509證書,即我們要用的。
private_key.pem是輸出的私鑰,用來解密的,請妥善保管。
rsa:1024這里的1024是密鑰長度,1024是比較安全的,如果需要更安全的話,可以用2048,但是加解密代價也會增加。
-days:證書過期時間,一定要加上這個參數,默認的證書過期時間是30天,一般我們不希望證書這么短就過期,所以寫上比較合適的天數,例如這里的3650(10年)。
事實上,這一行命令包含了好幾個步驟(我研究下面這些步驟的原因是我手頭已經由一個private_key.pem私鑰了,想直接用這個來生成x509證書,也就是用到了下面的2-3)
1)創建私鑰
openssl genrsa -out private_key.pem 1024
2)創建證書請求(按照提示輸入信息)
openssl req -new -out cert.csr -key private_key.pem
3)自簽署根證書
openssl x509 -req -in cert.csr -out public_key.der -outform der -signkey private_key.pem -days 3650
2.驗證證書。把public_key.der拖到xcode中,如果文件沒有問題的話,那麼就可以直接在xcode中打開,看到證書的各種信息。
第二步,使用public_key.der來進行加密。
導入Security.framework。
2.把public_key.der放到mainBundle中(一般直接拖到Xcode就行啦)。
3.從public_key.der讀取公鑰。
4.加密。
下面是參考代碼(只能用於加密長度小於等於116位元組的內容,適合於對密碼進行加密。使用了ARC,不過還是要注意部分資源需要使用CFRealse來釋放)
RSA.h
//
// RSA.h
//
#import <Foundation/Foundation.h>
@interface RSA : NSObject {
SecKeyRef publicKey;
SecCertificateRef certificate;
SecPolicyRef policy;
SecTrustRef trust;
size_t maxPlainLen;
}
- (NSData *) encryptWithData:(NSData *)content;
- (NSData *) encryptWithString:(NSString *)content;
@end
RSA.m
//
// RSA.m
//
#import "RSA.h"
@implementation RSA
- (id)init {
self = [super init];
NSString *publicKeyPath = [[NSBundle mainBundle] pathForResource:@"public_key"
ofType:@"der"];
if (publicKeyPath == nil) {
NSLog(@"Can not find pub.der");
return nil;
}
NSDate *publicKeyFileContent = [NSData dataWithContentsOfFile:publicKeyPath];
if (publicKeyFileContent == nil) {
NSLog(@"Can not read from pub.der");
return nil;
}
certificate = SecCertificateCreateWithData(kCFAllocatorDefault, ( __bridge CFDataRef)publicKeyFileContent);
if (certificate == nil) {
NSLog(@"Can not read certificate from pub.der");
return nil;
}
policy = SecPolicyCreateBasicX509();
OSStatus returnCode = (certificate, policy, trust);
if (returnCode != 0) {
NSLog(@" fail. Error Code: %ld", returnCode);
return nil;
}
SecTrustResultType trustResultType;
returnCode = SecTrustEvaluate(trust, trustResultType);
if (returnCode != 0) {
NSLog(@"SecTrustEvaluate fail. Error Code: %ld", returnCode);
return nil;
}
publicKey = SecTrustCopyPublicKey(trust);
if (publicKey == nil) {
NSLog(@"SecTrustCopyPublicKey fail");
return nil;
}
maxPlainLen = SecKeyGetBlockSize(publicKey) - 12;
return self;
}
- (NSData *) encryptWithData:(NSData *)content {
size_t plainLen = [content length];
if (plainLen > maxPlainLen) {
NSLog(@"content(%ld) is too long, must < %ld", plainLen, maxPlainLen);
return nil;
}
void *plain = malloc(plainLen);
[content getBytes:plain
length:plainLen];
size_t cipherLen = 128; // 當前RSA的密鑰長度是128位元組
void *cipher = malloc(cipherLen);
OSStatus returnCode = SecKeyEncrypt(publicKey, kSecPaddingPKCS1, plain,
plainLen, cipher, cipherLen);
NSData *result = nil;
if (returnCode != 0) {
NSLog(@"SecKeyEncrypt fail. Error Code: %ld", returnCode);
}
else {
result = [NSData dataWithBytes:cipher
length:cipherLen];
}
free(plain);
free(cipher);
return result;
}
- (NSData *) encryptWithString:(NSString *)content {
return [self encryptWithData:[content dataUsingEncoding:NSUTF8StringEncoding]];
}
- (void)dealloc{
CFRelease(certificate);
CFRelease(trust);
CFRelease(policy);
CFRelease(publicKey);
}
@end
使用方法:
RSA *rsa = [[RSA alloc] init];
if (rsa != nil) {
NSLog(@"%@",[rsa encryptWithString:@"test"]);
}
else {
NSLog(@"init rsa error");
}
『伍』 iOS代碼加密的幾種方式
眾所周知的是大部分iOS代碼一般不會做加密加固,因為iOS
APP一般是通過AppStore發布的,而且蘋果的系統難以攻破,所以在iOS里做代碼加固一般是一件出力不討好的事情。萬事皆有例外,不管iOS、adr還是js,加密的目的是為了代碼的安全性,雖然現在開源暢行,但是不管個人開發者還是大廠皆有保護代碼安全的需求,所以iOS代碼加固有了生存的土壤。下面簡單介紹下iOS代碼加密的幾種方式。
iOS代碼加密的幾種方式
1.字元串加密
字元串會暴露APP的很多關鍵信息,攻擊者可以根據從界面獲取的字元串,快速找到相關邏輯的處理函數,從而進行分析破解。加密字元串可以增加攻擊者閱讀代碼的難度以及根據字元串靜態搜索的難度。
一般的處理方式是對需要加密的字元串加密,並保存加密後的數據,再在使用字元串的地方插入解密演算法。簡單的加密演算法可以把NSString轉為byte或者NSData的方式,還可以把字元串放到後端來返回,盡量少的暴露頁面信息。下面舉個簡單例子,把NSString轉為16進制的字元串:
2.符號混淆
符號混淆的中心思想是將類名、方法名、變數名替換為無意義符號,提高應用安全性;防止敏感符號被class-mp工具提取,防止IDA Pro等工具反編譯後分析業務代碼。目前市面上的IOS應用基本上是沒有使用類名方法名混淆的。
別名
在編寫代碼的時候直接用別名可能是最簡單的一種方式,也是比較管用的一種方式。因為你的app被破解後,假如很容易就能從你的類名中尋找到蛛絲馬跡,那離hook只是一步之遙,之前微信搶紅包的插件應該就是用hook的方式執行的。
b.C重寫
編寫別名的方式不是很易讀,而且也不利於後續維護,這時你可能需要升級一下你的保護方式,用C來重寫你的代碼吧。這樣把函數名隱藏在結構體中,用函數指針成員的形式存儲,編譯後,只留下了地址,去掉了名字和參數表,讓他們無從下手( from 念茜)。如下例子:
c.腳本處理
稍微高級一點的是腳本掃描處理替換代碼,因為要用到linux命令來編寫腳本,可能會有一點門檻,不過學了之後你就可以出去吹噓你全棧工程師的名頭啦。。。
linux腳本比較常用的幾個命令如下:
腳本混淆替換是用上述幾個命令掃描出來需要替換的字元串,比如方法名,類名,變數名,並做替換,如果你能熟練應用上述幾個命令,恭喜你,已經了解了腳本的一點皮毛了。
如以下腳本搜索遍歷了代碼目錄下的需要混淆的關鍵字:
替換的方式可以直接掃描文件並對文件中的所有內容替換,也可以採用define的方式定義別名。例如:
d.開源項目ios-class-guard
該項目是基於class-mp的擴展,和腳本處理類似,是用class-mp掃描出編譯後的類名、方法名、屬性名等並做替換,只是不支持隱式C方法的替換,有興趣的同學可以使用下。
3.代碼邏輯混淆
代碼邏輯混淆有以下幾個方面的含義:
對方法體進行混淆,保證源碼被逆向後該部分的代碼有很大的迷惑性,因為有一些垃圾代碼的存在;
對應用程序邏輯結構進行打亂混排,保證源碼可讀性降到最低,這很容易把破解者帶到溝里去;
它擁有和原始的代碼一樣的功能,這是最最關鍵的。
一般使用obfuscator-llvm來做代碼邏輯混淆,或許會對該開源工具做個簡單介紹。
4.加固SDK
adr中一般比較常見的加固等操作,iOS也有一些第三方提供這樣的服務,但是沒有真正使用過,不知道效果如何。
當然還有一些第三方服務的加固產品,基本上都是採用了以上一種或幾種混淆方式做的封裝,如果想要直接可以拿來使用的服務,可以採用下,常用的一些服務如下:
幾維安全
iOS加密可能市場很小,但是存在必有道理,在越獄/開源/極客的眼中,你的APP並沒有你想像的那麼安全,如果希望你的代碼更加安全,就應給iOS代碼加密。
『陸』 iOS傳過來的AES加密數據PHP怎麼解密
使用PHP解密數據就可以了,代碼參考
1、使用mcrypt擴展方式實現:http://www.oschina.net/code/snippet_248412_15378
加密解密代碼中都有例子了
2、純PHP實現:http://www.oschina.net/code/snippet_222150_15575
加密函數:AESEncryptCtr()
解密函數:AESDecryptCtr()