粒子群演算法函數優化
① 關於粒子群演算法的目標函數優化,優化函數如下圖
function main()
clc;clear all;close all;
tic; %程序運行計時
E0=0.001; %允許誤差
MaxNum=100; %粒子最大迭代次數
narvs=1; %目標函數的自變數個數
particlesize=30; %粒子群規模
c1=2; %每個粒子的個體學習因子,也稱為加速常數
c2=2; %每個粒子的社會學習因子,也稱為加速常數
w=0.6; %慣性因子
vmax=0.8; %粒子的最大飛翔速度
x=-5+10*rand(particlesize,narvs); %粒子所在的位置
v=2*rand(particlesize,narvs); %粒子的飛翔速度
%用inline定義適應度函數以便將子函數文件與主程序文件放在一起,
%目標函數是:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2))
%inline命令定義適應度函數如下:
fitness=inline('1/(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');
%inline定義的適應度函數會使程序運行速度大大降低
for i=1:particlesize
for j=1:narvs
f(i)=fitness(x(i,j));
end
end
personalbest_x=x;
② 粒子群演算法函數尋優,對目標函數進行最小值優化,函數變數范圍為-1到1.具體函數幾主程序見補充
不知道你解決了沒?我最近也在剛開始學習粒子群演算法,此程序似乎只能對二維的計算,還有你的fun函數最後的;應用英文的
③ 我想要一個完整的用粒子群演算法優化函數的程序,隨便哪個函數都行,一定要對的,大神幫忙啊
今天有用過的一個超簡單的,求一個方程的最大值。
程序一:
function F = fitness( x )
F = x^3-60*x^2+900*x+100; %0<x<=31
F = -F;%求-F的最小值,就是求F的最大值。
程序二:
function [xm,fv] = PSO(fitness,N,c1,c2,w,M,D)
%[xm,fv] = PSO(@fitness,40,2,2,0.8,1000,1)
%
% 求解優化問題
% fitness 待優化目標函數
% N 粒子數目,
% cX 學習因子
% W 慣性權重
% M 最大迭代次數
% D 自由變數的個數
% xm 目標函數取最小值時的自由變數
% fv 目標函數的最小值
% Detailed explanation goes here
tic;
format long;
%------step1.初始化種群的個體------------
x = zeros(N,D);
v = zeros(N,D);
for i=1:N
for j=1:D
x(i,j)=31*rand; %隨機初始化位置 x在[0 ,31]之間
v(i,j)=rand; %隨機初始化速度
end
end
%------step2.先計算各個粒子的適應度,並初始化Pi和PgPg為全局最優-------------
p = zeros(N,1);
%y = zeros(N,D);
for i=1:N
p(i)=fitness(x(i,:));
%y(i,:)=x(i,:);
end
y = x;
pg = x(N,:); %Pg為全局最優
for i=1:(N-1)
if fitness(x(i,:))<fitness(pg)
pg=x(i,:);
end
end
%------step3.進入主要循環,按照公式依次迭代------------
%Pbest = zeros(M,1);
for t=1:M
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
for k=1:D
if v(i,k) > 2 %2=vmax
v(i,k) = 2;
end
end
x(i,:)=x(i,:)+v(i,:);
for k=1:D
if x(i,k) > 31 %31=xmax
x(i,k) = 31;
end
end
if fitness(x(i,:))<p(i)
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)<fitness(pg)
pg=y(i,:);
end
end
%Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
toc;
④ 基於粒子群演算法的函數優化問題matlab編程,用於函數。畢業論文,求助
我這里有一個粒子群的完整範例:<群鳥覓食的優化問題>
function main()
clc;clear all;close all;
tic; %程序運行計時
E0=0.001; %允許誤差
MaxNum=100; %粒子最大迭代次數
narvs=1; %目標函數的自變數個數
particlesize=30; %粒子群規模
c1=2; %每個粒子的個體學習因子,也稱為加速常數
c2=2; %每個粒子的社會學習因子,也稱為加速常數
w=0.6; %慣性因子
vmax=0.8; %粒子的最大飛翔速度
x=-5+10*rand(particlesize,narvs); %粒子所在的位置
v=2*rand(particlesize,narvs); %粒子的飛翔速度
%用inline定義適應度函數以便將子函數文件與主程序文件放在一起,
%目標函數是:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2))
%inline命令定義適應度函數如下:
fitness=inline('1/(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');
%inline定義的適應度函數會使程序運行速度大大降低
for i=1:particlesize
for j=1:narvs
f(i)=fitness(x(i,j));
end
end
personalbest_x=x;
personalbest_faval=f;
[globalbest_faval i]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);
k=1;
while k<=MaxNum
for i=1:particlesize
for j=1:narvs
f(i)=fitness(x(i,j));
end
if f(i)<personalbest_faval(i) %判斷當前位置是否是歷史上最佳位置
personalbest_faval(i)=f(i);
personalbest_x(i,:)=x(i,:);
end
end
[globalbest_faval i]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);
for i=1:particlesize %更新粒子群里每個個體的最新位置
v(i,:)=w*v(i,:)+c1*rand*(personalbest_x(i,:)-x(i,:))...
+c2*rand*(globalbest_x-x(i,:));
for j=1:narvs %判斷粒子的飛翔速度是否超過了最大飛翔速度
if v(i,j)>vmax;
v(i,j)=vmax;
elseif v(i,j)<-vmax;
v(i,j)=-vmax;
end
end
x(i,:)=x(i,:)+v(i,:);
end
if abs(globalbest_faval)<E0,break,end
k=k+1;
end
Value1=1/globalbest_faval-1; Value1=num2str(Value1);
% strcat指令可以實現字元的組合輸出
disp(strcat('the maximum value','=',Value1));
%輸出最大值所在的橫坐標位置
Value2=globalbest_x; Value2=num2str(Value2);
disp(strcat('the corresponding coordinate','=',Value2));
x=-5:0.01:5;
y=2.1*(1-x+2*x.^2).*exp(-x.^2/2);
plot(x,y,'m-','linewidth',3);
hold on;
plot(globalbest_x,1/globalbest_faval-1,'kp','linewidth',4);
legend('目標函數','搜索到的最大值');xlabel('x');ylabel('y');grid on;toc;
⑤ 粒子群優化演算法的PSO
演化計算可以用來研究神經網路的三個方面:網路連接權重,網路結構(網路拓撲結構,傳遞函數),網路學習演算法。
不過大多數這方面的工作都集中在網路連接權重,和網路拓撲結構上。在GA中,網路權重和/或拓撲結構一般編碼為染色體(Chromosome),適應函數(fitness function)的選擇一般根據研究目的確定。例如在分類問題中,錯誤分類的比率可以用來作為適應值。 這里用一個簡單的例子說明PSO訓練神經網路的過程。這個例子使用分類問題的基準函數 (Benchmark function)IRIS數據集。(Iris 是一種鳶尾屬植物) 在數據記錄中,每組數據包含Iris花的四種屬性:萼片長度,萼片寬度,花瓣長度,和花瓣寬度,三種不同的花各有50組數據. 這樣總共有150組數據或模式。
我們用3層的神經網路來做分類。現在有四個輸入和三個輸出。所以神經網路的輸入層有4個節點,輸出層有3個節點我們也可以動態調節隱含層節點的數目,不過這里我們假定隱含層有6個節點。我們也可以訓練神經網路中其他的參數。不過這里我們只是來確定網路權重。粒子就表示神經網路的一組權重,應該是4*6+6*3=42個參數。權重的范圍設定為[-100,100] (這只是一個例子,在實際情況中可能需要試驗調整).在完成編碼以後,我們需要確定適應函數。對於分類問題,我們把所有的數據送入神經網路,網路的權重有粒子的參數決定。然後記錄所有的錯誤分類的數目作為那個粒子的適應值。現在我們就利用PSO來訓練神經網路來獲得盡可能低的錯誤分類數目。PSO本身並沒有很多的參數需要調整。所以在實驗中只需要調整隱含層的節點數目和權重的范圍以取得較好的分類效果。
⑥ 什麼是粒子群演算法
粒子群演算法,也稱粒子群優化演算法(Partical Swarm Optimization),縮寫為 PSO, 是近年來發展起來的一種新的進化演算法((Evolu2tionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和遺傳演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。 PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。 PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 粒子公式 在找到這兩個最優值時,粒子根據如下的公式來更新自己的速度和新的位置: v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, w是慣性權重,persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2. 程序的偽代碼如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax
⑦ 粒子群優化演算法和多模態優化演算法有什麼區別
摘 要:,粒子群演算法據自己的速度來決定搜索過程,只有最優的粒子把信息給予其他的粒子,整個搜索更新過程是跟隨當前最優解的過程,所有的粒子還可以更快的收斂於最優解。由於微粒群演算法簡單,容易實現,與其它求解約束優化問題的方法相比較,具有一定的優勢。實驗結果表明,對於無約束的非線性求解,粒子群演算法表現出較好的收斂性和健壯性。
關鍵詞:粒子群演算法;函數優化;極值尋優
0 引言
非線性方程的求根問題是多年來數學家努力解決的問題之一。長期以來,人們已找出多種用於解決方程求根的方法,例如牛頓法、弦割法、拋物線法等。然而,很多傳統的方法僅能運用於相應的小的問題集,推廣性相對較差。對於一個現實世界中的優化問題,必須嘗試很多不同的方法,甚至要發明相應的新的方法來解決,這顯然是不現實的。我們需要另外的方法來克服這樣的困難。
粒子群演算法是一種現代啟發式演算法,具有推廣性強、魯棒性高等特點[1]。該演算法具有群體智能、內在並行性、迭代格式簡單、可快速收斂到最優解所在區域等優點[2]。本文採用粒子群演算法,對函數的極值進行尋優計算,實現了對函數的極值求解。
1 粒子群演算法
1.1 基本原理
粒子群演算法(PSO)是一種基於群體的隨機優化技術,它的思想來源於對鳥群捕食行為的研究與模擬。粒子群演算法與其它基於群體的進化演算法相類似,選用「群體」和「進化」的概念,按照個體的適應度值進行操作,也是一種基於迭代的尋優技術。區別在於,粒子群演算法中沒有交叉變異等進化運算元,而是將每個個體看作搜索空間中的微粒,每個微粒沒有重量和體積,但都有自己的位置向量、速度向量和適應度值。所有微粒以一定的速度飛行於搜索空間中,其中的飛行速度是由個體飛行經驗和群體的飛行經驗動態調整,通過追蹤當前搜索到的最優值來尋找全局最優值。
1.2 參數選擇
粒子群演算法需要修改的參數很少,但對參數的選擇卻十分敏感。El-Gallad A, El-Hawary M, Sallam A, Kalas A[3]主要對演算法中的種群規模、迭代次數和粒子速度的選擇方法進行了詳細分析,利用統計方法對約束優化問題的求解論證了這 3 個參數對演算法性能的影響,並給出了具有一定通用性的3 個參數選擇原則[4]。
種群規模:通常根據待優化問題的復雜程度確定。
最大速度:決定粒子在一次迭代中的最大移動距離,通常設定為不超過粒子的范圍寬度。
加速常數:加速常數c1和c2通常是由經驗值決定的,它代表粒子向pbest和gbest靠攏的加速項的權重。一般取值為:c1=c2=2。
中止條件:達到最大迭代次數或得到最小誤差要求,通常要由具體問題確定。
慣性權重:慣性權重能夠針對待優化問題調整演算法的局部和全局搜索能力。當該值較大時有利於全局搜索,較小時有利於局部搜索。所以通常在演算法開始時設置較大的慣性權重,以便擴大搜索范圍、加快收斂。而隨著迭代次數的增加逐漸減小慣性權重的值,使其進行精確搜索,避免跳過最優解。
1.3 演算法步驟
PSO演算法步驟如下:
Step1:初始化一個規模為 m 的粒子群,設定初始位置和速度。
初始化過程如下:
(1)設定群體規模m;
(2)對任意的i,s,在[-xmax, xmax]內均勻分布,產生初始位置xis;
(3)對任意的i,s,在[-vmax, vmax]內均勻分布,產生速度vis;
(4)對任意的i,設yi=xi,保存個體。
Step2:計算每個粒子的適應度值。
Step3:對每個粒子的適應度值和得到過的最好位置pis的適應度值進行比較,若相對較好,則將其作為當前的最好位置。
Step4:對每個粒子的適應度值和全局得到過的最好位置pgs的適應度值進行比較,若相對較好,則將其作為當前的全局最好位置。
Step5:分別對粒子的所在位置和速度進行更新。
Step6:如果滿足終止條件,則輸出最優解;否則,返回Step2。
1.4 粒子群演算法函數極值求解
粒子群演算法優化是計算機智能領域,除蟻群演算法外的另一種基於群體智能的優化演算法。粒子群演算法是一種群體智能的煙花計算技術。與遺傳演算法相比,粒子群演算法沒有遺傳演算法的選擇(Selection)、交叉(Crossover)、變異(Mutation)等操作,而是通過粒子在解空間追隨最優的粒子進行搜索。
粒子群演算法流程如圖所示:
粒子群為由n個粒子組成的種群X = (X1,X2,X3,…Xn).
第i個粒子表示一個D維向量Xi = (X1,X2,X3,…XD)T.
第i個粒子的速度為Vi = (Vi1,Vi2,Vi3,…ViD)T.
個體極值為Pi = (Pi1,Pi2,Pi3,…PiD)T.
全局極值為Pg = (Pg1,Pg2,Pg3,…PgD)T.
速度更新為,式中,c1和c2為其兩個學習因子的參數值;r1和r2為其兩個隨機值。
位置更新為.
2 粒子群演算法應用舉例
2.1 實驗問題
這是一個無約束函數的極值尋優,對於Ackley函數,
.
其中c1=20,e=2. 71289。
2.2 實驗步驟
對於Ackley函數圖形,選取一個凹峰進行分析,程序運行結果如圖所示。
圖1 Ackley函數圖形
可以看出,選取區間內的Ackley函數圖形只有一個極小值點。因此,對於該段函數進行尋優,不會陷入局部最小。採用粒子群演算法對該函數進行極值尋優。
首先,進行初始化粒子群,編寫的MATLAB代碼如下:
% 初始化種群
for i=1:sizepop
x1 = popmin1 (popmax1-popmin1)*rand;
% 產生隨機個體
x2 = popmin2 (popmax2-popmin2)*rand;
pop(i,1) = x1; % 保存產生的隨機個體
pop(i,2) = x2;
fitness(i) = fun([x1,x2]); % 適應度值
V(i,1) = 0; % 初始化粒子速度
V(i,2) = 0;
end
程序運行後所產生的個體值為:
表1 函數個體值
然後,根據待尋優的目標函數,計算適應度值。待尋優的目標函數為:
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2x(2)^2)/2))-exp((cos(2*pi*x(1)) cos(2*pi*x(2)))/2) 20 2.71289;
根據每一組個體,通過目標函數,得到的適應度值為:
表2 函數適應度值
搜索個體最優極值,即搜索最小的適應度值,我們可利用MATLAB繪圖將所有個體的適應度值繪成plot圖查看相對最小值。
圖3 函數適應度plot圖
從圖中可看出,當個體=20時,得到相對最小值,在程序中,將其保存下來。
之後進行迭代尋優,直到滿足終止條件。
最後,得到的最優值為:
圖4 MATLAB運行得到結果
迭代後得到的運行結果圖如下:
圖5 迭代曲線圖
2.3 實驗結果
通過圖5中可看出,該函數的尋優是收斂的,最優個體和實際情況較吻合。因此,採用粒子群演算法進行函數極值尋優,快速、准確且魯棒性較好。
3 結論
本文闡述了粒子群演算法求解最化問題的過程,實驗結果表明了該演算法對於無約束問題的可行性。與其它的進化演算法相比,粒子群演算法容易理解、編碼簡單、容易實現。但是參數的設置對於該演算法的性能卻有很大的影響,例如控制收斂,避免早熟等。在未來的工作中,將努力於將其它計算智能演算法或其它優化技術應用於粒子群演算法中,以進一步提高粒子群演算法的性能。
⑧ 關於粒子群演算法優化目標函數的問題求教
java">functionmain()
clc;clearall;closeall;
tic;%程序運行計時
E0=0.001;%允許誤差
MaxNum=100;%粒子最大迭代次數
narvs=1;%目標函數的自變數個數
particlesize=30;%粒子群規模
c1=2;%每個粒子的個體學習因子,也稱為加速常數
c2=2;%每個粒子的社會學習因子,也稱為加速常數
w=0.6;%慣性因子
vmax=0.8;%粒子的最大飛翔速度
x=-5+10*rand(particlesize,narvs);%粒子所在的位置
v=2*rand(particlesize,narvs);%粒子的飛翔速度
%用inline定義適應度函數以便將子函數文件與主程序文件放在一起,
%目標函數是:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2))
%inline命令定義適應度函數如下:
fitness=inline('1/(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');
%inline定義的適應度函數會使程序運行速度大大降低
fori=1:particlesize
forj=1:narvs
f(i)=fitness(x(i,j));
end
end
personalbest_x=x;
personalbest_faval=f;
[globalbest_favali]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);
k=1;
whilek<=MaxNum
fori=1:particlesize
forj=1:narvs
f(i)=fitness(x(i,j));
end
iff(i)<personalbest_faval(i)%判斷當前位置是否是歷史上最佳位置
personalbest_faval(i)=f(i);
personalbest_x(i,:)=x(i,:);
end
end
[globalbest_favali]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);
fori=1:particlesize%更新粒子群里每個個體的最新位置
v(i,:)=w*v(i,:)+c1*rand*(personalbest_x(i,:)-x(i,:))...
+c2*rand*(globalbest_x-x(i,:));
forj=1:narvs%判斷粒子的飛翔速度是否超過了最大飛翔速度
ifv(i,j)>vmax;
v(i,j)=vmax;
elseifv(i,j)<-vmax;
v(i,j)=-vmax;
end
end
x(i,:)=x(i,:)+v(i,:);
end
ifabs(globalbest_faval)<E0,break,end
k=k+1;
end
Value1=1/globalbest_faval-1;Value1=num2str(Value1);
%strcat指令可以實現字元的組合輸出
disp(strcat('themaximumvalue','=',Value1));
%輸出最大值所在的橫坐標位置
Value2=globalbest_x;Value2=num2str(Value2);
disp(strcat('thecorrespondingcoordinate','=',Value2));
x=-5:0.01:5;
y=2.1*(1-x+2*x.^2).*exp(-x.^2/2);
plot(x,y,'m-','linewidth',3);
holdon;
plot(globalbest_x,1/globalbest_faval-1,'kp','linewidth',4);
legend('目標函數','搜索到的最大值');xlabel('x');ylabel('y');gridon;toc;