密碼演算法的實現
1、3DES演算法
3DES(即Triple DES)是DES向AES過渡的加密演算法(1999年,NIST將3-DES指定為過渡的加密標准),加密演算法,其具體實現如下:設Ek()和Dk()代表DES演算法的加密和解密過程,K代表DES演算法使用的密鑰,M代表明文,C代表密文,這樣:
3DES加密過程為:C=Ek3(Dk2(Ek1(M)))
3DES解密過程為:M=Dk1(EK2(Dk3(C)))
2、Blowfish演算法
BlowFish演算法用來加密64Bit長度的字元串。
BlowFish演算法使用兩個「盒」——unsignedlongpbox[18]和unsignedlongsbox[4,256]。
BlowFish演算法中,有一個核心加密函數:BF_En(後文詳細介紹)。該函數輸入64位信息,運算後,以64位密文的形式輸出。用BlowFish演算法加密信息,需要兩個過程:密鑰預處理和信息加密。
分別說明如下:
密鑰預處理:
BlowFish演算法的源密鑰——pbox和sbox是固定的。我們要加密一個信息,需要自己選擇一個key,用這個key對pbox和sbox進行變換,得到下一步信息加密所要用的key_pbox和key_sbox。具體的變化演算法如下:
1)用sbox填充key_sbox
2)用自己選擇的key8個一組地去異或pbox,用異或的結果填充key_pbox。key可以循環使用。
比如說:選的key是"abcdefghijklmn"。則異或過程為:
key_pbox[0]=pbox[0]abcdefgh;
key_pbox[1]=pbox[1]ijklmnab;
…………
…………
如此循環,直到key_pbox填充完畢。
3)用BF_En加密一個全0的64位信息,用輸出的結果替換key_pbox[0]和key_pbox[1],i=0;
4)用BF_En加密替換後的key_pbox,key_pbox[i+1],用輸出替代key_pbox[i+2]和key_pbox[i+3];
5)i+2,繼續第4步,直到key_pbox全部被替換;
6)用key_pbox[16]和key_pbox[17]做首次輸入(相當於上面的全0的輸入),用類似的方法,替換key_sbox信息加密。
信息加密就是用函數把待加密信息x分成32位的兩部分:xL,xRBF_En對輸入信息進行變換。
3、RC5演算法
RC5是種比較新的演算法,Rivest設計了RC5的一種特殊的實現方式,因此RC5演算法有一個面向字的結構:RC5-w/r/b,這里w是字長其值可以是16、32或64對於不同的字長明文和密文塊的分組長度為2w位,r是加密輪數,b是密鑰位元組長度。
(1)密碼演算法的實現擴展閱讀:
普遍而言,有3個獨立密鑰的3DES(密鑰選項1)的密鑰長度為168位(三個56位的DES密鑰),但由於中途相遇攻擊,它的有效安全性僅為112位。密鑰選項2將密鑰長度縮短到了112位,但該選項對特定的選擇明文攻擊和已知明文攻擊的強度較弱,因此NIST認定它只有80位的安全性。
對密鑰選項1的已知最佳攻擊需要約2組已知明文,2部,2次DES加密以及2位內存(該論文提到了時間和內存的其它分配方案)。
這在現在是不現實的,因此NIST認為密鑰選項1可以使用到2030年。若攻擊者試圖在一些可能的(而不是全部的)密鑰中找到正確的,有一種在內存效率上較高的攻擊方法可以用每個密鑰對應的少數選擇明文和約2次加密操作找到2個目標密鑰中的一個。
❷ 通過Java如何實現AES密碼演算法
1. AES加密字元串
public static byte[] encrypt(String content, String password) {
try {
KeyGenerator kgen = KeyGenerator.getInstance("AES");// 創建AES的Key生產者
kgen.init(128, new SecureRandom(password.getBytes()));// 利用用戶密碼作為隨機數初始化出
// 128位的key生產者
//加密沒關系,SecureRandom是生成安全隨機數序列,password.getBytes()是種子,只要種子相同,序列就一樣,所以解密只要有password就行
SecretKey secretKey = kgen.generateKey();// 根據用戶密碼,生成一個密鑰
byte[] enCodeFormat = secretKey.getEncoded();// 返回基本編碼格式的密鑰,如果此密鑰不支持編碼,則返回
// null。
SecretKeySpec key = new SecretKeySpec(enCodeFormat, "AES");// 轉換為AES專用密鑰
Cipher cipher = Cipher.getInstance("AES");// 創建密碼器
byte[] byteContent = content.getBytes("utf-8");
cipher.init(Cipher.ENCRYPT_MODE, key);// 初始化為加密模式的密碼器
byte[] result = cipher.doFinal(byteContent);// 加密
return result;
} catch (NoSuchPaddingException e) {
e.printStackTrace();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
} catch (InvalidKeyException e) {
e.printStackTrace();
} catch (IllegalBlockSizeException e) {
e.printStackTrace();
} catch (BadPaddingException e) {
e.printStackTrace();
}
return null;
}
2. AES解密
public static byte[] decrypt(byte[] content, String password) {
try {
KeyGenerator kgen = KeyGenerator.getInstance("AES");// 創建AES的Key生產者
kgen.init(128, new SecureRandom(password.getBytes()));
SecretKey secretKey = kgen.generateKey();// 根據用戶密碼,生成一個密鑰
byte[] enCodeFormat = secretKey.getEncoded();// 返回基本編碼格式的密鑰
SecretKeySpec key = new SecretKeySpec(enCodeFormat, "AES");// 轉換為AES專用密鑰
Cipher cipher = Cipher.getInstance("AES");// 創建密碼器
cipher.init(Cipher.DECRYPT_MODE, key);// 初始化為解密模式的密碼器
byte[] result = cipher.doFinal(content);
return result; // 明文
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
} catch (NoSuchPaddingException e) {
e.printStackTrace();
} catch (InvalidKeyException e) {
e.printStackTrace();
} catch (IllegalBlockSizeException e) {
e.printStackTrace();
} catch (BadPaddingException e) {
e.printStackTrace();
}
return null;
}
❸ RSA演算法的實現細節
首先要使用概率演算法來驗證隨機產生的大的整數是否質數,這樣的演算法比較快而且可以消除掉大多數非質數。假如有一個數通過了這個測試的話,那麼要使用一個精確的測試來保證它的確是一個質數。
除此之外這樣找到的p和q還要滿足一定的要求,首先它們不能太靠近,此外p-1或q-1的因子不能太小,否則的話N也可以被很快地分解。
此外尋找質數的演算法不能給攻擊者任何信息,這些質數是怎樣找到的,尤其產生隨機數的軟體必須非常好。要求是隨機和不可預測。這兩個要求並不相同。一個隨機過程可能可以產生一個不相關的數的系列,但假如有人能夠預測出(或部分地預測出)這個系列的話,那麼它就已經不可靠了。比如有一些非常好的隨機數演算法,但它們都已經被發表,因此它們不能被使用,因為假如一個攻擊者可以猜出p和q一半的位的話,那麼他們就已經可以輕而易舉地推算出另一半。
此外密鑰d必須足夠大,1990年有人證明假如p大於q而小於2q(這是一個很經常的情況)而,那麼從N和e可以很有效地推算出d。此外e = 2永遠不應該被使用。 由於進行的都是大數計算,使得RSA最快的情況也比DES慢上好幾倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。RSA的速度比對應同樣安全級別的對稱密碼演算法要慢1000倍左右。
比起DES和其它對稱演算法來說,RSA要慢得多。實際上Bob一般使用一種對稱演算法來加密他的信息,然後用RSA來加密他的比較短的對稱密碼,然後將用RSA加密的對稱密碼和用對稱演算法加密的消息送給Alice。
這樣一來對隨機數的要求就更高了,尤其對產生對稱密碼的要求非常高,因為否則的話可以越過RSA來直接攻擊對稱密碼。 1995年有人提出了一種非常意想不到的攻擊方式:假如Eve對Alice的硬體有充分的了解,而且知道它對一些特定的消息加密時所需要的時間的話,那麼她可以很快地推導出d。這種攻擊方式之所以會成立,主要是因為在進行加密時所進行的模指數運算是一個位元一個位元進行的而位元為1所花的運算比位元為0的運算要多很多,因此若能得到多組訊息與其加密時間,就會有機會可以反推出私鑰的內容。
❹ 古典密碼安全演算法有哪些
世界上最早的一種密碼產生於公元前兩世紀。是由一位希臘人提出的,人們稱之為
棋盤密碼,原因為該密碼將26個字母放在5×5的方格里,i,j放在一個格子里,具體情
況如下表所示
1 2 3 4 5
1 a b c d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
這樣,每個字母就對應了由兩個數構成的字元αβ,α是該字母所在行的標號,β是列
標號。如c對應13,s對應43等。如果接收到密文為
43 15 13 45 42 15 32 15 43 43 11 22 15
則對應的明文即為secure message。
另一種具有代表性的密碼是凱撒密碼。它是將英文字母向前推移k位。如k=5,則密
文字母與明文與如下對應關系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
於是對應於明文secure message,可得密文為XJHZWJRJXXFLJ。此時,k就是密鑰。為了
傳送方便,可以將26個字母一一對應於從0到25的26個整數。如a對1,b對2,……,y對
25,z對0。這樣凱撒加密變換實際就是一個同餘式
c≡m+k mod 26
其中m是明文字母對應的數,c是與明文對應的密文的數。
隨後,為了提高凱撒密碼的安全性,人們對凱撒密碼進行了改進。選取k,b作為兩
個參數,其中要求k與26互素,明文與密文的對應規則為
c≡km+b mod 26
可以看出,k=1就是前面提到的凱撒密碼。於是這種加密變換是凱撒野加密變換的
推廣,並且其保密程度也比凱撒密碼高。
以上介紹的密碼體制都屬於單表置換。意思是一個明文字母對應的密文字母是確定
的。根據這個特點,利用頻率分析可以對這樣的密碼體制進行有效的攻擊。方法是在大
量的書籍、報刊和文章中,統計各個字母出現的頻率。例如,e出現的次數最多,其次
是t,a,o,I等等。破譯者通過對密文中各字母出現頻率的分析,結合自然語言的字母頻
率特徵,就可以將該密碼體制破譯。
鑒於單表置換密碼體制具有這樣的攻擊弱點,人們自然就會想辦法對其進行改進,
來彌補這個弱點,增加抗攻擊能力。法國密碼學家維吉尼亞於1586年提出一個種多表式
密碼,即一個明文字母可以表示成多個密文字母。其原理是這樣的:給出密鑰
K=k[1]k[2]…k[n],若明文為M=m[1]m[2]…m[n],則對應的密文為C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M為data security,密鑰k=best,將明
文分解為長為4的序列data security,對每4個字母,用k=best加密後得密文為
C=EELT TIUN SMLR
從中可以看出,當K為一個字母時,就是凱撒密碼。而且容易看出,K越長,保密程
度就越高。顯然這樣的密碼體制比單表置換密碼體制具有更強的抗攻擊能力,而且其加
密、解密均可用所謂的維吉尼亞方陣來進行,從而在操作上簡單易行。該密碼可用所謂
的維吉尼亞方陣來進行,從而在操作上簡單易行。該密碼曾被認為是三百年內破譯不了
的密碼,因而這種密碼在今天仍被使用著。
古典密碼的發展已有悠久的歷史了。盡管這些密碼大都比較簡單,但它在今天仍有
其參考價值。
❺ 公開密鑰密碼體系的演算法
公開密鑰演算法是在1976年由當時在美國斯坦福大學的迪菲(Diffie)和赫爾曼(Hellman)兩人首先發明的(論文New Direction in Cryptography)。但目前最流行的RSA是1977年由MIT教授Ronald L.Rivest,Adi Shamir和Leonard M.Adleman共同開發的,分別取自三名數學家的名字的第一個字母來構成的。
1976年提出的公開密鑰密碼體制思想不同於傳統的對稱密鑰密碼體制,它要求密鑰成對出現,一個為加密密鑰(e),另一個為解密密鑰(d),且不可能從其中一個推導出另一個。自1976年以來,已經提出了多種公開密鑰密碼演算法,其中許多是不安全的, 一些認為是安全的演算法又有許多是不實用的,它們要麼是密鑰太大,要麼密文擴展十分嚴重。多數密碼演算法的安全基礎是基於一些數學難題, 這些難題專家們認為在短期內不可能得到解決。因為一些問題(如因子分解問題)至今已有數千年的歷史了。
公鑰加密演算法也稱非對稱密鑰演算法,用兩對密鑰:一個公共密鑰和一個專用密鑰。用戶要保障專用密鑰的安全;公共密鑰則可以發布出去。公共密鑰與專用密鑰是有緊密關系的,用公共密鑰加密的信息只能用專用密鑰解密,反之亦然。由於公鑰演算法不需要聯機密鑰伺服器,密鑰分配協議簡單,所以極大簡化了密鑰管理。除加密功能外,公鑰系統還可以提供數字簽名。 公鑰加密演算法中使用最廣的是RSA。RSA使用兩個密鑰,一個公共密鑰,一個專用密鑰。如用其中一個加密,則可用另一個解密,密鑰長度從40到2048bit可變,加密時也把明文分成塊,塊的大小可變,但不能超過密鑰的長度,RSA演算法把每一塊明文轉化為與密鑰長度相同的密文塊。密鑰越長,加密效果越好,但加密解密的開銷也大,所以要在安全與性能之間折衷考慮,一般64位是較合適的。RSA的一個比較知名的應用是SSL,在美國和加拿大SSL用128位RSA演算法,由於出口限制,在其它地區(包括中國)通用的則是40位版本。
RSA演算法研製的最初理念與目標是努力使互聯網安全可靠,旨在解決DES演算法秘密密鑰的利用公開信道傳輸分發的難題。而實際結果不但很好地解決了這個難題;還可利用RSA來完成對電文的數字簽名以抗對電文的否認與抵賴;同時還可以利用數字簽名較容易地發現攻擊者對電文的非法篡改,以保護數據信息的完整性。 通常信息安全的目標可以概括為解決信息的以下問題:
保密性(Confidentiality)保證信息不泄露給未經授權的任何人。
完整性(Integrity)防止信息被未經授權的人篡改。
可用性(Availability)保證信息和信息系統確實為授權者所用。
可控性(Controllability)對信息和信息系統實施安全監控,防止非法利用信息和信息系統。
密碼是實現一種變換,利用密碼變換保護信息秘密是密碼的最原始的能力,然而,隨著信息和信息技術發展起來的現代密碼學,不僅被用於解決信息的保密性,而且也用於解決信息的完整性、可用性和可控性。可以說,密碼是解決信息安全的最有效手段,密碼技術是解決信息安全的核心技術。
公用密鑰的優點就在於,也許你並不認識某一實體,但只要你的伺服器認為該實體的CA是可靠的,就可以進行安全通信,而這正是Web商務這樣的業務所要求的。例如信用卡購物。服務方對自己的資源可根據客戶CA的發行機構的可靠程度來授權。目前國內外尚沒有可以被廣泛信賴的CA。美國Natescape公司的產品支持公用密鑰,但把Natescape公司作為CA。由外國公司充當CA在中國是一件不可想像的事情。
公共密鑰方案較保密密鑰方案處理速度慢,因此,通常把公共密鑰與專用密鑰技術結合起來實現最佳性能。即用公共密鑰技術在通信雙方之間傳送專用密鑰,而用專用密鑰來對實際傳輸的數據加密解密。另外,公鑰加密也用來對專用密鑰進行加密。
在這些安全實用的演算法中,有些適用於密鑰分配,有些可作為加密演算法,還有些僅用於數字簽名。多數演算法需要大數運算,所以實現速度很慢,不能用於快的數據加密。以下將介紹典型的公開密鑰密碼演算法-RSA。
RSA演算法很好的完成對電文的數字簽名以抗對數據的否認與抵賴;利用數字簽名較容易地發現攻擊者對電文的非法篡改,以保護數據信息的完整性。目前為止,很多種加密技術採用了RSA演算法,比如PGP(PrettyGoodPrivacy)加密系統,它是一個工具軟體,向認證中心注冊後就可以用它對文件進行加解密或數字簽名,PGP所採用的就是RSA演算法。由此可以看出RSA有很好的應用。
❻ 數字加密方法
數字加密方法:將該數每一位上的數字加9,然後除以10取余,做為該位上的新數字,最後將第1位和第3位上的數字互換,第2位和第4位上的數字互換,組成加密後的新數。
數據加密演算法是一種對稱加密演算法,是使用最廣泛的密鑰系統,特別是在保護金融數據的安全中;密碼演算法是加密演算法和解密演算法的統稱,它是密碼體制的核心,密碼演算法可以看成一些交換的組合,當輸入為明文時,經過這些變換,輸出就為密文,此過程為加密演算法。
數字加密標准(DES)
對每個64位的數據塊採用56位密鑰。加密的過程可以用若干種模式進行操作包括16次循環或操作。雖然它被認為是「強」加密,許多公司使用三個密鑰,「三重數字加密標准(DES)」。這並不是說,DES加密信息不能被破解。早在1997年,另一個加密方法公鑰加密演算法(Rivest-Shamir-Adleman)的擁有人懸賞一萬美元來破解數字加密標准信息。
❼ 求祖沖之(zuc)密碼演算法演算法加密c語言實現代碼。
這么久沒人答,我都弄懂了。祖沖之演算法分3個演算法ZUC是祖沖之演算法的核心,僅產生密鍵流KS。供EEA3和EIA3調用。EEA3是加密演算法,用KS捆綁上用戶的密鑰,加密用戶數據D,變成密文。相當於國際上的RSA、DES、AES演算法。作用是對稱的加密解密演算法EIA3是數據完整性演算法,MAC的一種。捆綁上用戶的密鑰,結合KS,生成散列值。相當於國際上的HMAC結合MD5,SHA1的用法。用於密碼授權值的生成和保存。
❽ 國密演算法是什麼
國密即國家密碼局認定的國產密碼演算法。
例如:在門禁應用中,採用SM1演算法進行身份鑒別和數據加密通訊,實現卡片合法性的驗證,保證身份識別的真實性。 安全是關系國家、城市信息、行業用戶、百姓利益的關鍵問題。
國家密碼管理局針對現有重要門禁系統建設和升級改造應用也提出指導意見,加強晶元、卡片、系統的標准化建設。國密門禁系統的升級的案例也逐漸增多,基於自主國產知識產權的CPU卡、CPU卡讀寫設備及密鑰管理系統廣泛受到關注。
一些廠商在2009年推出CPU卡安全門禁系列產品,在2010年北京安博會上,向業界展示出系列CPU卡門禁系統、系列安全門禁讀卡器以及基於CPU卡技術的一卡通系統等主流產品和系統。
這些廠商是全國推廣的國密門禁產品的先驅者,使系列CPU卡門禁系統廣泛應用於政府、監獄、司法、軍工企業和大型公共智能建築等高安全領域。
❾ 凱撒密碼的演算法c語言的怎麼實現啊
凱撒密碼是一種非常古老的加密方法,相傳當年凱撒大地行軍打仗時為了保證自己的命令不被敵軍知道,就使用這種特殊的方法進行通信,以確保信息傳遞的安全。他的原理很簡單,說到底就是字母於字母之間的替換。下面讓我們看一個簡單的例子:「」用凱撒密碼法加密後字元串變為「edlgx」,它的原理是什麼呢?把「」中的每一個字母按字母表順序向後移3位,所得的結果就是剛才我們所看到的密文。
#include <stdio.h>
main()
{
char M[100];
char C[100];
int K=3,i;
printf("請輸入明文M(注意不要輸入空白串)\n");
gets(M);
for(i=0;M[i]!='\0';i++)
C[i]=(M[i]-'a'+K)%26+'a';
C[i]='\0';
printf("結果是:\n%s\n",C);
}
❿ 常用的對稱密碼演算法有哪些
對稱加密演算法用來對敏感數據等信息進行加密,常用的演算法包括:
DES(Data Encryption Standard):數據加密標准,速度較快,適用於加密大量數據的場合。
3DES(Triple DES):是基於DES,對一塊數據用三個不同的密鑰進行三次加密,強度更高。
AES(Advanced Encryption Standard):高級加密標准,是下一代的加密演算法標准,速度快,安全級別高;