人臉比對演算法
① 人臉識別的演算法
1、人體面貌識別技術的內容
人體面貌識別技術包含三個部分:
(1) 人體面貌檢測
面貌檢測是指在動態的場景與復雜的背景中判斷是否存在面像,並分離出這種面像。一般有下列幾種方法:
①參考模板法
首先設計一個或數個標准人臉的模板,然後計算測試採集的樣品與標准模板之間的匹配程度,並通過閾值來判斷是否存在人臉;
②人臉規則法
由於人臉具有一定的結構分布特徵,所謂人臉規則的方法即提取這些特徵生成相應的規則以判斷測試樣品是否包含人臉;
③樣品學習法
這種方法即採用模式識別中人工神經網路的方法,即通過對面像樣品集和非面像樣品集的學習產生分類器;
④膚色模型法
這種方法是依據面貌膚色在色彩空間中分布相對集中的規律來進行檢測。
⑤特徵子臉法
這種方法是將所有面像集合視為一個面像子空間,並基於檢測樣品與其在子孔間的投影之間的距離判斷是否存在面像。
值得提出的是,上述5種方法在實際檢測系統中也可綜合採用。
(2)人體面貌跟蹤
面貌跟蹤是指對被檢測到的面貌進行動態目標跟蹤。具體採用基於模型的方法或基於運動與模型相結合的方法。
此外,利用膚色模型跟蹤也不失為一種簡單而有效的手段。
(3)人體面貌比對
面貌比對是對被檢測到的面貌像進行身份確認或在面像庫中進行目標搜索。這實際上就是說,將采樣到的面像與庫存的面像依次進行比對,並找出最佳的匹配對象。所以,面像的描述決定了面像識別的具體方法與性能。目前主要採用特徵向量與面紋模板兩種描述方法:
①特徵向量法
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然後再計算出它們的幾何特徵量,而這些特徵量形成一描述該面像的特徵向量。
②面紋模板法
該方法是在庫中存貯若干標准面像模板或面像器官模板,在進行比對時,將采樣面像所有象素與庫中所有模板採用歸一化相關量度量進行匹配。
此外,還有採用模式識別的自相關網路或特徵與模板相結合的方法。
人體面貌識別技術的核心實際為「局部人體特徵分析」和「圖形/神經識別演算法。」這種演算法是利用人體面部各器官及特徵部位的方法。如對應幾何關系多數據形成識別參數與資料庫中所有的原始參數進行比較、判斷與確認。一般要求判斷時間低於1秒。
2、人體面貌的識別過程
一般分三步:
(1)首先建立人體面貌的面像檔案。即用攝像機採集單位人員的人體面貌的面像文件或取他們的照片形成面像文件,並將這些面像文件生成面紋(Faceprint)編碼貯存起來。
(2)獲取當前的人體面像
即用攝像機捕捉的當前出入人員的面像,或取照片輸入,並將當前的面像文件生成面紋編碼。
(3)用當前的面紋編碼與檔案庫存的比對
即將當前的面像的面紋編碼與檔案庫存中的面紋編碼進行檢索比對。上述的「面紋編碼」方式是根據人體面貌臉部的本質特徵和開頭來工作的。這種面紋編碼可以抵抗光線、皮膚色調、面部毛發、發型、眼鏡、表情和姿態的變化,具有強大的可靠性,從而使它可以從百萬人中精確地辯認出某個人。
人體面貌的識別過程,利用普通的圖像處理設備就能自動、連續、實時地完成。
② 人臉識別演算法是什麼
在檢測到人臉並定位面部關鍵特徵點之後,主要的人臉區域就可以被裁剪出來,經過預處理之後,饋入後端的識別演算法。識別演算法要完成人臉特徵的提取,並與庫存的已知人臉進行比對,完成最終的分類。像現在 虹 軟、百 度 都在做人臉識別演算法。
③ 請問演算法在提取人臉,追蹤人臉,人臉比對這些方面,哪個環節比較耗資源
人臉識別演算法一般分三個部分,人臉捕獲,提取特徵點,人臉比對,人臉捕獲各家演算法公司都比較容易能做到;
特徵點的提取則需要根據各家演算法來看,特徵點有多少,少的幾十個,一般市面上的是一百到二百多,精度高的演算法能做到五百多個特徵點,如果特徵點少則消耗的資源小,如果特徵點多則消耗的資源比較大;
人臉比對就需要看是什麼模式了,是1:1,還是1:N還是M:N,1:1很簡單,消耗的資源也不大,1:N則需要看N的數量級有多大了,一千、二千、一萬、二萬甚至十萬級百萬級都是不一樣的,M:N同理也是看數量級的大小,另外也要根據各家的演算法來判定,演算法優化得好則相對資源佔用的少,反之則反。
所以總的來說消耗資源最少的是人臉捕獲,特徵點的提取和人臉比對則要具體來分析
④ 人臉比對演算法開源代碼有嗎
開源代碼不會給你的,現在最多是像虹軟這樣打包好SDK了給你用
⑤ 人臉識別技術的核心演算法是什麼
人臉識別核心演算法包括檢測定位、建模、紋理變換、表情變換、模型統計訓練、識別匹配等關鍵步驟,其中最關鍵的技術包括兩部分:人臉檢測(Face Detect)和人臉識別(Face Identification)。
檢測技術核心稱為:迭代動態局部特徵分析(SDLFA),它是以國際通用的局域特徵分析(LFA)和動態局域特徵分析(DLFA)為基礎,並且針對現實業務場景進行了全面的演算法增強及結果優化,識別技術核心稱為:實時面部特徵匹配(RFFM),其識別特徵數據緊湊,特徵演算法准確高效,是國際國內獨創性的識別技術。
⑥ 人臉識別演算法的分類
人臉識別法主要集中在二維圖像方面,二維人臉識別主要利用分布在人臉上從低到高80個節點或標點,通過測量眼睛、顴骨、下巴等之間的間距來進行身份認證。人臉識別演算法主要有:
1.基於模板匹配的方法:模板分為二維模板和三維模板,核心思想:利用人的臉部特徵規律建立一個立體可調的模型框架,在定位出人的臉部位置後用模型框架定位和調整人的臉部特徵部位,解決人臉識別過程中的觀察角度、遮擋和表情變化等因素影響。
2.基於奇異值特徵方法:人臉圖像矩陣的奇異值特徵反映了圖像的本質屬性,可以利用它來進行分類識別。
3.子空間分析法:因其具有描述性強、計算代價小、易實現及可分性好等特點,被廣泛地應用於人臉特徵提取,成為了當前人臉識別的主流方法之一。
4.局部保持投影(Locality Preserving Projections,LPP)是一種新的子空間分析方法,它是非線性方法Laplacian Eigen map的線性近似,既解決了PCA等傳統線性方法難以保持原始數據非線性流形的缺點,又解決了非線性方法難以獲得新樣本點低維投影的缺點。
5.主成分分析(PCA)
PCA模式識別領域一種重要的方法,已被廣泛地應用於人臉識別演算法中,基於PCA人臉識別系統在應用中面臨著一個重要障礙:增量學習問題。增量PCA演算法由新增樣本重構最為重要 PCS,但該方法隨著樣本的增加, 需要不斷舍棄一些不重要PC,以維持子空間維數不變, 因而該方法精度稍差。
6.其他方法:彈性匹配方法、特徵臉法(基於KL變換)、人工神經網路法、支持向量機法、基於積分圖像特徵法(adaboost學習)、基於概率模型法。 二維人臉識別方法的最大不足是在面臨姿態、光照條件不同、表情變化以及臉部化妝等方面較為脆弱,識別的准確度受到很大限制,而這些都是人臉在自然狀態下會隨時表現出來的。三維人臉識別可以極大的提高識別精度,真正的三維人臉識別是利用深度圖像進行研究,自90年代初期開始,已經有了一定的進展。三維人臉識別方法有:
1.基於圖像特徵的方法:採取了從3D結構中分離出姿態的演算法。首先匹配人臉整體的尺寸輪廓和三維空間方向;然後,在保持姿態固定的情況下,去作臉部不同特徵點(這些特徵點是人工的鑒別出來)的局部匹配。
2.基於模型可變參數的方法:使用將通用人臉模型的3D變形和基於距離映射的矩陣迭代最小相結合,去恢復頭部姿態和3D人臉。隨著模型形變的關聯關系的改變不斷更新姿態參數,重復此過程直到最小化尺度達到要求。基於模型可變參數的方法與基於圖像特徵的方法的最大區別在於:後者在人臉姿態每變化一次後,需要重新搜索特徵點的坐標,而前者只需調整3D變形模型的參數。
⑦ 人臉識別原理及演算法
人臉識別原理就是指在動態的場景與復雜的背景中判斷是否存在面像,並分離出這種面像。
人臉識別是一項熱門的計算機技術研究領域,其中包括人臉追蹤偵測,自動調整影像放大,夜間紅外偵測,自動調整曝光強度等技術。
人臉識別技術是基於人的臉部特徵,對輸入的人臉圖像或者視頻流 . 首先判斷其是否存在人臉 , 如果存在人臉,則進一步的給出每個臉的位置、大小和各個主要面部器官的位置信息。並依據這些信息,進一步提取每個人臉中所蘊涵的身份特徵,並將其與已知的人臉進行對比,從而識別每個人臉的身份。
一般來說,人臉識別系統包括圖像攝取、人臉定位、圖像預處理、以及人臉識別(身份確認或者身份查找)。系統輸入一般是一張或者一系列含有未確定身份的人臉圖像,以及人臉資料庫中的若干已知身份的人臉圖象或者相應的編碼,而其輸出則是一系列相似度得分,表明待識別的人臉的身份。
人臉識別是採用的分析演算法。
人臉識別技術中被廣泛採用的區域特徵分析演算法,它融合了計算機圖像處理技術與生物統計學原理於一體,利用計算機圖像處理技術從視頻中提取人像特徵點,利用生物統計學的原理進行分析建立數學模型,即人臉特徵模板。利用已建成的人臉特徵模板與被測者的人的面像進行特徵分析,根據分析的結果來給出一個相似值。通過這個值即可確定是否為同一人。