當前位置:首頁 » 操作系統 » 中間路徑演算法

中間路徑演算法

發布時間: 2022-08-31 07:17:48

『壹』 路徑分析的最優路徑分析方法

1.道路預處理
進行道路數據錄入時,往往在道路的交叉接合處出現重疊或相離的情況,不宜計算機處理。因此,需要對原始數據進行預處理,使道路接合符合處理要求。進行預處理時,取每條線段的首末節點坐標為圓心,以給定的閾值為半徑作圓域,判斷其他線段是否與圓域相交,如果相交,則相交的各個線對象共用一個節點號。
2.道路自動斷鏈
對道路進行預處理之後即可獲得比較理想的數據,在此基礎上再進行道路的自動斷鏈。步驟如下:
(1)取出所有線段記錄數n,從第一條線段開始;
(2)找出所有與之相交的線段並求出交點數m;
(3)將m個交點和該線段節點在判斷無重合後進行排序;
(4)根據交點數量,該線段被分成m+1段;
(5)第一段在原始位置不變,後m段從記錄尾開始遞增;
(6)重復(2)~(5),循環至n。
3.節點匹配
拓撲關系需使用統一的節點。節點匹配方法是按記錄順序將所有線段的始末點加上相應節點號,坐標相同的節點共用一個節點號,與前面所有線段首末點都不相同的節點按自然順序遞增1。
4.迪傑克斯特拉(Dijkstra)演算法
經典的圖論與計算機演算法的有效結合,使得新的最短路徑演算法不斷涌現。目前提出的最短路徑演算法中,使用最多、計算速度比較快,又比較適合於計算兩點之間的最短路徑問題的數學模型就是經典的Dijkstra演算法。
該演算法是典型的單源最短路徑演算法,由Dijkstra EW於1959年提出,適用於所有弧的權均為非負的情況,主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。該演算法的基本思想是:認為兩節點間最佳路徑要麼是直接相連,要麼是通過其他已找到的與起始點的最佳路徑的節點中轉點。定出起始點P0後,定能找出一個與之直接相連且路徑長度最短的節點,設為P1,P0到P1就是它們間的最佳路徑。
Dijkstra演算法的基本流程如下:首先將網路中所有節點分成兩組,一組包含了已經確定屬於最短路徑中點的集合,記為S(該集合在初始狀態只有一個源節點,以後每求得一條最短路徑,就將其加入到集合S中,直到全部頂點都加入到S中,演算法就結束了);另一組是尚未確定最短路徑的節點的集合,記為V,按照最短路徑長度遞增的次序依次把第二組的頂點加入到第一組中,在加入的過程中總保持從源點到S中各頂點的最短路徑長度不大於從源點到V中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點距離就是從源點到此頂點的最短路徑長度,V中的頂點距離是從源點到此頂點只包括S中的頂點為中間頂點的當前最短路徑長度。

『貳』 最短路徑問題5種類型

最短路徑問題5種類型有Dijkstra演算法、A*演算法、SPFA演算法、Bellman-Ford演算法和Floyd-Warshall演算法,

擴展知識:

用於解決最短路徑問題的演算法被稱做「最短路徑演算法」,有時被簡稱作「路徑演算法」。最常用的路徑演算法有:
Dijkstra演算法、A*演算法、SPFA演算法、Bellman-Ford演算法和Floyd-Warshall演算法,本文主要介紹其中的三種。
最短路徑問題是圖論研究中的一個經典演算法問題,旨在尋找圖(由結點和路徑組成的)中兩結點之間的最短路徑。
演算法具體的形式包括:確定起點的最短路徑問題:即已知起始結點,求最短路徑的問題。
確定終點的最短路徑問題:與確定起點的問題相反,該問題是已知終結結點,求最短路徑的問題。在無向圖中該問題與確定起點的問題完全等同,在有向圖中該問題等同於把所有路徑方向反轉的確定起點的問題。
確定起點終點的最短路徑問題:即已知起點和終點,求兩結點之間的最短路徑。

『叄』 數學最短路徑問題最方便的解法是什麼

用於解決最短路徑問題的演算法被稱做「最短路徑演算法」 ,有時被簡稱作「路徑演算法」 。最常用 的路徑演算法有: Dijkstra 演算法、 A*演算法、 SPFA 演算法、 Bellman-Ford 演算法和 Floyd-Warshall 演算法, 本文主要介紹其中的三種。 最短路徑問題是圖論研究中的一個經典演算法問題,旨在尋找圖(由結點和路徑組成的)中兩 結點之間的最短路徑。 演算法具體的形式包括: 確定起點的最短路徑問題:即已知起始結點,求最短路徑的問題。 確定終點的最短路徑問題:與確定起點的問題相反,該問題是已知終結結點,求最短路徑的 問題。 在無向圖中該問題與確定起點的問題完全等同, 在有向圖中該問題等同於把所有路徑 方向反轉的確定起點的問題。 確定起點終點的最短路徑問題:即已知起點和終點,求兩結點之間的最短路徑。 全局最短路徑問題:求圖中所有的最短路徑。 Floyd 求多源、無負權邊的最短路。用矩陣記錄圖。時效性較差,時間復雜度 O(V^3)。 Floyd-Warshall 演算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種演算法, 可以正確處理有向圖或負權的最短路徑問題。 Floyd-Warshall 演算法的時間復雜度為 O(N^3),空間復雜度為 O(N^2)。 Floyd-Warshall 的原理是動態規劃: 設 Di,j,k 為從 i 到 j 的只以(1..k)集合中的節點為中間節點的最短路徑的長度。 若最短路徑經過點 k,則 Di,j,k = Di,k,k-1 + Dk,j,k-1; 若最短路徑不經過點 k,則 Di,j,k = Di,j,k-1。 因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。 在實際演算法中,為了節約空間,可以直接在原來空間上進行迭代,這樣空間可降至二維。 Floyd-Warshall 演算法的描述如下: 1.for k ← 1 to n do 2.for i ← 1 to n do 3.for j ← 1 to n do 4.if (Di,k + Dk,j<Di,j) then 5.Di,j ← Di,k + Dk,j; 其中 Di,j 表示由點 i 到點 j 的代價,當 Di,j 為∞表示兩點之間沒有任何連接。 Dijkstra 求單源、無負權的最短路。時效性較好,時間復雜度為 O(V*V+E) 。 源點可達的話,O(V*lgV+E*lgV)=>O(E*lgV) 。 當是稀疏圖的情況時,此時 E=V*V/lgV,所以演算法的時間復雜度可為 O(V^2) 。若是斐波那 契堆作優先隊列的話,演算法時間復雜度,則為 O(V*lgV + E) 。 Bellman-Ford 求單源最短路,可以判斷有無負權迴路(若有,則不存在最短路) ,時效性較好,時間復雜 度 O(VE) 。 Bellman-Ford 演算法是求解單源最短路徑問題的一種演算法。 單源點的最短路徑問題是指:給定一個加權有向圖 G 和源點 s,對於圖 G 中的任意一點 v, 求從 s 到 v 的最短路徑。 與 Dijkstra 演算法不同的是,在 Bellman-Ford 演算法中,邊的權值可以為負數。設想從我們可以 從圖中找到一個環路(即從 v 出發,經過若干個點之後又回到 v)且這個環路中所有邊的權 值之和為負。那麼通過這個環路,環路中任意兩點的最短路徑就可以無窮小下去。如果不處 理這個負環路,程序就會永遠運行下去。而 Bellman-Ford 演算法具有分辨這種負環路的能力。 SPFA是 Bellman-Ford 的隊列優化,時效性相對好,時間復雜度 O(kE)(k<<V) 。 。 與 Bellman-ford 演算法類似, SPFA 演算法採用一系列的鬆弛操作以得到從某一個節點出發到達圖 中其它所有節點的最短路徑。所不同的是,SPFA 演算法通過維護一個隊列,使得一個節點的 當前最短路徑被更新之後沒有必要立刻去更新其他的節點, 從而大大減少了重復的操作次數。 SPFA 演算法可以用於存在負數邊權的圖,這與 dijkstra 演算法是不同的。 與 Dijkstra 演算法與 Bellman-ford 演算法都不同,SPFA 的演算法時間效率是不穩定的,即它對於不 同的圖所需要的時間有很大的差別。 在最好情形下,每一個節點都只入隊一次,則演算法實際上變為廣度優先遍歷,其時間復雜度 僅為 O(E)。另一方面,存在這樣的例子,使得每一個節點都被入隊(V-1)次,此時演算法退化為 Bellman-ford 演算法,其時間復雜度為 O(VE)。 SPFA 演算法在負邊權圖上可以完全取代 Bellman-ford 演算法, 另外在稀疏圖中也表現良好。 但是 在非負邊權圖中,為了避免最壞情況的出現,通常使用效率更加穩定的 Dijkstra 演算法,以及 它的使用堆優化的版本。通常的 SPFA 演算法在一類網格圖中的表現不盡如人意。

『肆』 已知起點終點以及中間的路徑和權值,怎樣求最短路徑要求有理論依據或演算法依據

1、floyd演算法,最經典的任意兩點之間最短路演算法
2、狄利克雷演算法,求兩點之間最短路
3、動態規劃
1、2有現成演算法,直接從網上下載即可,3可以參考。

『伍』 兩個動點已知起點,求兩點相遇點的路徑規劃演算法

你要先知道兩動點的方向向量和速度
這樣就可以算出來相遇點及中間的路徑

『陸』 求圖中任意兩點之間最短路徑有什麼演算法

單源節點到其他任意節點的最短路徑採用Dijkstra演算法,任意兩個節點之間的最短路徑使用Floyd演算法,這兩個演算法有很多地方可以找打。

『柒』 求A到B之間的最短路徑,怎麼獲取

問題:從某頂點出發,沿圖的邊到達另一頂點所經過的路徑中,各邊上權值之和最小的一條路徑——最短路徑。解決最短路的問題有以下演算法,Dijkstra演算法,Bellman-Ford演算法,Floyd演算法和SPFA演算法,另外還有著名的啟發式搜索演算法A*,不過A*准備單獨出一篇,其中Floyd演算法可以求解任意兩點間的最短路徑的長度。任意一個最短路演算法都是基於這樣一個事實:從任意節點A到任意節點B的最短路徑不外乎2種可能,1是直接從A到B,2是從A經過若干個節點到B。
(1) 迪傑斯特拉(Dijkstra)演算法按路徑長度(看下面表格的最後一行,就是next點)遞增次序產生最短路徑。先把V分成兩組:
S:已求出最短路徑的頂點的集合
V-S=T:尚未確定最短路徑的頂點集合
將T中頂點按最短路徑遞增的次序加入到S中,依據:可以證明V0到T中頂點Vk的最短路徑,或是從V0到Vk的直接路徑的權值或是從V0經S中頂點到Vk的路徑權值之和(反證法可證,說實話,真不明白哦)。
(2) 求最短路徑步驟
初使時令 S={V0},T={其餘頂點},T中頂點對應的距離值, 若存在<V0,Vi>,為<V0,Vi>弧上的權值(和SPFA初始化方式不同),若不存在<V0,Vi>,為Inf。
從T中選取一個其距離值為最小的頂點W(貪心體現在此處),加入S(注意不是直接從S集合中選取,理解這個對於理解vis數組的作用至關重要),對T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值比不加W的路徑要短,則修改此距離值(上面兩個並列for循環,使用最小點更新)。
重復上述步驟,直到S中包含所有頂點,即S=V為止(說明最外層是除起點外的遍歷)。

『捌』 計算機網路的最短路徑演算法有哪些對應哪些協議

用於解決最短路徑問題的演算法被稱做「最短路徑演算法」,有時被簡稱作「路徑演算法」。最常用的路徑演算法有:
Dijkstra演算法、A*演算法、SPFA演算法、Bellman-Ford演算法和Floyd-Warshall演算法,本文主要介紹其中的三種。

最短路徑問題是圖論研究中的一個經典演算法問題,旨在尋找圖(由結點和路徑組成的)中兩結點之間的最短路徑。
演算法具體的形式包括:

確定起點的最短路徑問題:即已知起始結點,求最短路徑的問題。

確定終點的最短路徑問題:與確定起點的問題相反,該問題是已知終結結點,求最短路徑的問題。在無向圖中該問題與確定起點的問題完全等同,在有向圖中該問題等同於把所有路徑方向反轉的確定起點的問題。
確定起點終點的最短路徑問題:即已知起點和終點,求兩結點之間的最短路徑。

全局最短路徑問題:求圖中所有的最短路徑。
Floyd

求多源、無負權邊的最短路。用矩陣記錄圖。時效性較差,時間復雜度O(V^3)。

Floyd-Warshall演算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種演算法,可以正確處理有向圖或負權的最短路徑問題。
Floyd-Warshall演算法的時間復雜度為O(N^3),空間復雜度為O(N^2)。

Floyd-Warshall的原理是動態規劃:

設Di,j,k為從i到j的只以(1..k)集合中的節點為中間節點的最短路徑的長度。

若最短路徑經過點k,則Di,j,k = Di,k,k-1 + Dk,j,k-1;

若最短路徑不經過點k,則Di,j,k = Di,j,k-1。

因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。

在實際演算法中,為了節約空間,可以直接在原來空間上進行迭代,這樣空間可降至二維。

Floyd-Warshall演算法的描述如下:

for k ← 1 to n do

for i ← 1 to n do

for j ← 1 to n do

if (Di,k + Dk,j < Di,j) then

Di,j ← Di,k + Dk,j;

其中Di,j表示由點i到點j的代價,當Di,j為 ∞ 表示兩點之間沒有任何連接。

Dijkstra

求單源、無負權的最短路。時效性較好,時間復雜度為O(V*V+E),可以用優先隊列進行優化,優化後時間復雜度變為0(v*lgn)。
源點可達的話,O(V*lgV+E*lgV)=>O(E*lgV)。

當是稀疏圖的情況時,此時E=V*V/lgV,所以演算法的時間復雜度可為O(V^2) 。可以用優先隊列進行優化,優化後時間復雜度變為0(v*lgn)。
Bellman-Ford

求單源最短路,可以判斷有無負權迴路(若有,則不存在最短路),時效性較好,時間復雜度O(VE)。

Bellman-Ford演算法是求解單源最短路徑問題的一種演算法。

單源點的最短路徑問題是指:給定一個加權有向圖G和源點s,對於圖G中的任意一點v,求從s到v的最短路徑。

與Dijkstra演算法不同的是,在Bellman-Ford演算法中,邊的權值可以為負數。設想從我們可以從圖中找到一個環

路(即從v出發,經過若干個點之後又回到v)且這個環路中所有邊的權值之和為負。那麼通過這個環路,環路中任意兩點的最短路徑就可以無窮小下去。如果不處理這個負環路,程序就會永遠運行下去。 而Bellman-Ford演算法具有分辨這種負環路的能力。
SPFA

是Bellman-Ford的隊列優化,時效性相對好,時間復雜度O(kE)。(k< 與Bellman-ford演算法類似,SPFA演算法採用一系列的鬆弛操作以得到從某一個節點出發到達圖中其它所有節點的最短路徑。所不同的是,SPFA演算法通過維護一個隊列,使得一個節點的當前最短路徑被更新之後沒有必要立刻去更新其他的節點,從而大大減少了重復的操作次數。
SPFA演算法可以用於存在負數邊權的圖,這與dijkstra演算法是不同的。

與Dijkstra演算法與Bellman-ford演算法都不同,SPFA的演算法時間效率是不穩定的,即它對於不同的圖所需要的時間有很大的差別。
在最好情形下,每一個節點都只入隊一次,則演算法實際上變為廣度優先遍歷,其時間復雜度僅為O(E)。另一方面,存在這樣的例子,使得每一個節點都被入隊(V-1)次,此時演算法退化為Bellman-ford演算法,其時間復雜度為O(VE)。
SPFA演算法在負邊權圖上可以完全取代Bellman-ford演算法,另外在稀疏圖中也表現良好。但是在非負邊權圖中,為了避免最壞情況的出現,通常使用效率更加穩定的Dijkstra演算法,以及它的使用堆優化的版本。通常的SPFA。

『玖』 dijkstra演算法是什麼

dijkstra演算法最短路徑演算法。

Dijkstra是典型最短路徑演算法,用於計算一個節點到其他節點的最短路徑。該演算法使用的是貪心策略:每次都找出剩餘頂點中與源點距離最近的一個頂點。

給定一帶權圖,圖中每條邊的權值是非負的,代表著兩頂點之間的距離。指定圖中的一頂點為源點,找出源點到其它頂點的最短路徑和其長度的問題,即是單源最短路徑問題。

Dijkstra的原理

(1)初始化時,S只含有源節點。

(2)從U中選取一個距離v最小的頂點k加入S中(該選定的距離就是v到k的最短路徑長度)。

(3)以k為新考慮的中間點,修改U中各頂點的距離;若從源節點v到頂點u的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改後的距離值是頂點k的距離加上k到u的距離。

熱點內容
dsp混合編程 發布:2025-05-14 11:23:10 瀏覽:246
mysql添加存儲過程 發布:2025-05-14 11:23:01 瀏覽:877
房車旅遊自媒體有腳本嗎 發布:2025-05-14 11:18:18 瀏覽:124
android輸入法鍵盤 發布:2025-05-14 11:15:48 瀏覽:656
谷歌商店安卓手機在哪裡 發布:2025-05-14 11:13:46 瀏覽:534
編程貓銷售女 發布:2025-05-14 11:13:36 瀏覽:334
安卓卡無翼怎麼出小黑屋 發布:2025-05-14 11:13:00 瀏覽:580
買商用筆記本電腦主要看哪些配置 發布:2025-05-14 11:12:15 瀏覽:949
如何在伺服器里做一把神器 發布:2025-05-14 11:11:19 瀏覽:710
cl編譯選項 發布:2025-05-14 11:09:25 瀏覽:620