當前位置:首頁 » 操作系統 » 多目標粒子群演算法matlab

多目標粒子群演算法matlab

發布時間: 2022-10-09 00:42:41

㈠ MATLAB中粒子群演算法定義

你要自己寫這個fun_PSOtrain_QNN的演算法,神經網路工具箱里沒有這個函數

㈡ 粒子群演算法解決兩個函數的多目標優化的matlab代碼。

http://www.doc88.com/p-60698612387.html

http://wenku..com/view/1c27aa8702d276a200292e1e.html

㈢ 用粒子群演算法求解線性約束整數規劃的Matlab程序

對粒子群的約束問題涉及的比較少。這兒摘抄下網路的內容:

PSO演算法推廣到約束優化問題,分為兩類:(http://ke..com/view/1531379.htm)
(1)罰函數法。罰函數的目的是將約束優化問題轉化成無約束優化問題。
(2)將粒子群的搜索范圍都限制在條件約束簇內,即在可行解范圍內尋優。

第一種方法有相關論文,看了下,感覺比較適合等式約束情況,比較類似於在適應度函數中加入拉格朗日乘子的做法,如果論文下不到的話,請留言。

第二種做法倒是用過。大概講下。
針對你的問題,初始化兩維向量,但是由於存在不等式約束,所以考慮先初始化向量的第一維,然後動態算出第二維的范圍,隨機出第二維變數。然後就是計算適應度值,全局、局部最優。
更新過程一樣,先更新第一維變數,然後動態計算第二維的范圍,更新第二維,如果更新後超過了邊界,則取邊界值(或者也可以再次重新更新,直到滿足條件,直覺上感覺第一種還好點,第二種可能會出現無法更新的情況),更新完畢後,計算適應度,更新全局、局部最優解。

補充兩個鏈接吧
http://download.csdn.net/detail/yinjian_2004/1567342
論文:基於改進粒子群優化演算法的約束多目標優化

㈣ matlab用粒子群演算法求解方程組最優解

這關鍵是適應度函數的問題,你可以編寫如下適應度函數:
F=|E(X1y1+X2y2)-0|+|D(X1y1+X2y2)-1|,F值越小越好,||指的是絕對值。

而變數你就選取X1和X2里的每個元素。比如X1=[x1,x2,x3];X2=[x4,x5,x6];你就可以設置PSO的變數為x1到x6這六個值。
答畢,不懂追問。

㈤ matlab工具箱里moga怎麼用

本來想找MOPSO多目標粒子群演算法的matlab工具箱的,但是還沒找到。只是有人看到用Matlab的MOGA工具箱。
也挺好的,至少可以直接拿過來做MOP多目標問題的求解。

NSGA-II is a very famous multi-objective optimization algorithm. I submitted an example previously and wanted to make this submission useful to others by creating it as a function. Even though this function is very specific to benchmark problems, with a little bit more modification this can be adopted for any multi-objective optimization.
The function is nsga_2(pop,gen). The input arguments for the function are population size and number of generations. For customization purposes the user is free to modify the objective function (function of several decision variables) by modifying an m file (evaluate_objective.m). Couple of sample objective functions is already described in the file. The user also has the freedom to define the decision space.
For more information on NSGA-II visit Kanpur Genetic Algorithm Laboratory at

㈥ 關於matlab中的粒子群問題

蟻群演算法。。。。

㈦ 求帶約束條件的粒子群演算法的MATLAB編程


這個比較簡單,可以很容易的做出來
Matlab中提供了兩種方法,數值和解析
1.數值解法使用filter函數
對於遞推公式
a(1)*y(n)+a(2)*y(n-1)
+
...
+
a(na+1)*y(n-na)
=
b(1)*x(n)
+
b(2)*x(n-1)
+
...
+
b(nb+1)*x(n-nb)
我們可以變成如下
filter(b,a,x,zi)其中a和b就是上面的系數,x是需要計算的n,zi是初值
由於使用filter函數需要信號基礎
我們這里不詳細說明
2.解析解法就是Z變換
%首先我們要改變遞推公式如下,否則沒法的到正確結果
%y(n+1)=2y(n),y(0)=-2
L=ztrans(sym('y(n+1)'));%等式左邊的Z變換
R=ztrans(sym('2*y(n)'));%等式右邊的Z變換
S=L-R
%將初值y(0)帶入,我們可以根據y(-1)推出y(0)=-2
%令Y=ztrans(y(n),n,z),y0=y(0),求解出S中的y(n)的Z變換結果
y0=-2;
s=subs(S,{'ztrans(y(n),n,z)','y(0)'},{'Y',y0});
%求解出y(n)的Z變換結果
Y=solve(s,'Y')
%對Y進行反Z變化
iztrans(Y)
S
=
z*ztrans(y(n),n,z)-y(0)*z-2*ztrans(y(n),n,z)
Y
=
-2*z/(z-2)
ans
=
-2*2^n

㈧ 粒子群優化演算法(PSO)的matlab運行程序~~謝謝大家啦!

%不知道你具體的問題是什麼,下面是一個最基本的pso演算法解決函數極值問題,如果是一些大型的問題,需要對速度、慣性常數、和自適應變異做進一步優化,希望對你有幫助
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
%下面是主程序
%% 清空環境
clc
clear

%% 參數初始化
%粒子群演算法中的兩個參數
c1 = 1.49445;
c2 = 1.49445;

maxgen=200; % 進化次數
sizepop=20; %種群規模

Vmax=1;%速度限制
Vmin=-1;
popmax=5;%種群限制
popmin=-5;

%% 產生初始粒子和速度
for i=1:sizepop
%隨機產生一個種群
pop(i,:)=5*rands(1,2); %初始種群
V(i,:)=rands(1,2); %初始化速度
%計算適應度
fitness(i)=fun(pop(i,:)); %染色體的適應度
end

%找最好的染色體
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %個體最佳
fitnessgbest=fitness; %個體最佳適應度值
fitnesszbest=bestfitness; %全局最佳適應度值

%% 迭代尋優
for i=1:maxgen

for j=1:sizepop

%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;

%種群更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;

%自適應變異(避免粒子群演算法陷入局部最優)
if rand>0.8
k=ceil(2*rand);%ceil朝正無窮大方向取整
pop(j,k)=rand;
end

%適應度值
fitness(j)=fun(pop(j,:));

%個體最優更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end

%群體最優更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end

end
yy(i)=fitnesszbest;

end

%% 結果分析
plot(yy)
title(['適應度曲線 ' '終止代數=' num2str(maxgen)]);
xlabel('進化代數');ylabel('適應度');

㈨ 粒子群演算法求函數優化的MATLAB程序

我文庫中有詳細註解的MATLAB粒子群演算法程序,你只需改動目標函數和幾個參數即可。
希望對你有所幫助

㈩ 我QQ是534193499,想向你請教matlab的粒子群演算法

粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。 PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。但是它沒有遺傳演算法用的交叉(crossover)以及變異(mutation),而是粒子在解空間追隨最優的粒子進行搜索。同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域。

熱點內容
辦公室視頻劇本腳本 發布:2025-05-15 12:03:51 瀏覽:488
編譯失敗什麼意思 發布:2025-05-15 11:58:18 瀏覽:86
lcs腳本官網 發布:2025-05-15 11:56:15 瀏覽:87
三國志戰略版打9級礦什麼配置 發布:2025-05-15 11:41:29 瀏覽:952
安卓加速器怎麼關 發布:2025-05-15 11:38:16 瀏覽:464
密碼鎖壞了如何打開 發布:2025-05-15 11:30:19 瀏覽:837
怎樣增加共享文件夾連接數量 發布:2025-05-15 11:24:50 瀏覽:961
安卓如何關閉單應用音量 發布:2025-05-15 11:22:31 瀏覽:351
抖音電腦後台伺服器中斷 發布:2025-05-15 11:11:59 瀏覽:307
sql2008伺服器 發布:2025-05-15 11:03:27 瀏覽:306