當前位置:首頁 » 操作系統 » 標簽推薦演算法

標簽推薦演算法

發布時間: 2022-10-15 00:09:19

㈠ 論淘寶搜索推薦演算法排序機制及2021年搜索的方向。

[寫在前面]淘寶搜索引擎至今反復多次,搜索順序也從最初的統計模型升級到機械學習模型,到2010年為止沒有標簽沒有基礎標簽,隨著計算能力的提高,2010年後開始挖掘用戶的基礎標簽,從3年到2013年開始使用大規模的機械學習和實時特徵
但你有沒有想過為什麼2016-2017年的兩年是各種各樣的黑搜索盛行的一年,為什麼今天幾乎消失了?
最根本的原因是從統計演算法模型到機械學習模型的轉型期。
說白了,這時不收割就沒有收割的機會。因為統計模型即將退出歷史舞台。
因此,各路大神各自擴大了統計模型演算法中的影響因素。統計演算法無論在哪裡,點擊率和坑產都很容易搜索。
那兩年成了中小賣家的狂歡盛宴,很多大神的煙火也是旺盛的。
今天推薦演算法的第三代使用後,加上疫情的影響進行了鮮明的比較,真的很感慨。
淘寶真的沒有流量了嗎?電器商務真的做不到嗎?還是大家的思維沒有改變,停留在2016-2017年的黑搜宴會上不想醒來?
2017年、2018年、2019年是淘寶推薦演算法反復最快的3年,每年的演算法升級都不同,整體上到2019年9月為止統計演算法模型的影響因素還很大,從2019年下半年開始第三代推薦演算法後,全面的真正意義進入了以機械學習模型為中心的推薦演算法時代。
各路大神也無法驗證,加上百年疫情的影響,很多大神的隱蔽布也泄露了。
基本上以統計模型為主,訓練基本上沒有聲音,典型的是坑產游戲。
如果現在還能看到的話,基本上可以判斷他不是在訓練,而是在製作印刷用紙,一定會推薦使用資源,資源是多麼安全。
刷子的生產增加真的沒有效果嗎?不是我以前的文章說:不是不行,而是從坑產的角度思考,而是從改變競爭環境的角度思考,用補充書改變競爭環境,改變場地,有新的天地,任何手段都要為商業本質服務。
正文
概述統計演算法模型時代。
統計模型時代搜索引擎的排名是最原始的排名思考,如果你的類別不錯,關鍵詞比較正確,就能得到很大的流量,當時產品需求少,只要上下架的優化就能使產品上升。
到2016年為止沒有坑產游戲嗎?黑色搜索的效果不好嗎?其實,什麼時候坑產是最核心的機密,誰來教大家,什麼時候教的最多的是類別優化,關鍵詞優化,大部分優化都圍繞關鍵詞,電器商的老人想起了你什麼時候得到關鍵詞的人得到了世界。
有人告訴我做坑產,關鍵詞找到生意也來了。什麼時候知道坑產也沒有人給你刷子,大規模的補充書也出現在黑色搜索盛行的時期。
為什麼關鍵詞者得天下?
搜索關鍵詞是用戶目前意圖最直觀的表達,也是用戶表達意圖最直接的方式。
搜索的用戶購物意圖最強,成交意願也最強,現在搜索也是轉化率最高的流量來源。
統計時代關鍵詞背後直接依賴的是類別商品,只要製作類別和關鍵詞分詞即可,哪個時代最出現的黑馬通常是類別機會、關鍵詞機會、黑科學技術機會。
最基本的是商業本質,什麼時候產品需求少,沒有很多現在的類別,自己找類別,現在想想什麼概念。
記得什麼時候類別錯了,搜索也可以來。如果你的商品點擊反饋好的話,錯誤的類別沒有什麼影響,現在試試吧
搜索類是搜索的基礎。
什麼時候能稱霸,背後有商業邏輯,用戶行為數據好就行了。
但無論如何發展檢索都離不開關鍵詞。例如,上述關鍵詞是用戶表達意圖的最直接的方法,是當前消費者的檢索行為和購買行為發生了根本性的變化。
檢索依然根據消費者的行為數據和關鍵詞來判斷需求,這就是機械學習模型時代。
機器學習模式時代-推薦搜索演算法。
現在的商品體積和消費者購物行為的豐富性,統計演算法不能滿足檢索的本質要求。
所以現在搜索引擎開始發展深度學習模式更精細的建模-推薦搜索演算法,搜索排名更智能。
在此重點討論推薦檢索演算法,
2017、2018、2019是推薦檢索演算法真正意義發展的3年,3年3個系統版本每年更換一次,很多電器商人都不知道頭腦。
推薦檢索演算法和統計演算法模型的最大區別在於,Query的處理能力和演算法有召回機制
簡單表示推薦演算法的程序:
1:對檢索關鍵詞進行分詞、重寫的處理進行類別預判
2:根據用戶信息,即用戶以前的行為數據記錄和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作等信息存檔
3:根據檢索用戶信息,根據檢索用戶以前的行為數據檢索引擎和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作為等信息存檔3:根據檢索用戶信息的檢索用戶信息
也就是說,在第一關召回階段基本上與統計模型時代的最佳化途徑相同,核心是標題分詞和類別,現在最大的區別是根據用戶信息推薦最佳化,這是標簽和正確人群標簽圖像最佳化的基本意義。
為什麼現在一直在談論標簽,談論人標簽圖像?入池實際上是為了匹配真正的消費者用戶信息,通過直通車測試來判斷人群也是為了通過性別、年齡和購買力來優化匹配真正的消費者。
召回機制:
通過構建子單元索引方式加快商品檢索,不必經歷平台上億級的所有商品。該索引是搜索引擎中的倒置索引,利用倒置索引初始篩選商品的過程是召回階段。
在這個階段,不會進行復雜的計算,主要是根據現在的搜索條件進行商品候選集的快速圈定。
之後再進行粗排和精排,計算的復雜程度越來越高,計算的商品集合逐漸減少,最後完成整個排序過程。
主要召迴路徑分為
1:語言召回
2:向量召回
這些都是商業秘密不方便的說明,有興趣的是學習我們的在線會員課程標簽重疊游戲6是基於語言和向量召回的基礎邏輯實戰落地的課程。
下一階段進入粗行列,粗行列受這些因素的影響:
粗行列作為召回後的第一個門檻,希望用戶體驗以時間低的模型快速排序和篩選商品,第一關系將過濾到不適合本次檢索詞要求的商品
為了實現這個目的,首先要明確影響粗排名得分的因素
1:類別匹配得分和文本匹配得分,
2:商品信息質量(商品發布時間、商品等級、商品等級)
3:商品組合得分
點擊得分
交易得分賣方服務商業得分
在粗排列框架下,系統粗排列演算法根據商品類別的預測得分進行得分
點擊得分交易得分
交易得分賣方服務商業得分粗排列框架下,系統粗排列的大排列
最後是精排,檢索順序的主要目標是高相關性、高個性化的正確性。
每個用戶的喜好不同,系統會根據每個用戶的Query結合用戶信息進行召回。然後通過粗排後,商品數量從萬級下降到千級。
千級商品經排後直接向用戶展示,搜索過程中商品集合的思考和具體變化如下圖

前面的召回、粗排主要解決主題相關性,通過主題相關性的限制,首先縮小商品集合和我們的在線會員課程標簽
精排階段系是真正系統推薦演算法發揮真正威力時,應根據用戶行為反饋迅速進行機械學習建模,判斷用戶真實性、准確性和可持續控制性。
為什麼現在的游戲和黑色技術暫時出現,核心是系統演算法模型機械學習模型,系統分析用戶有問題,不正確,不穩定,維持性差,可以迅速調整。
也就是說,即使發現脆弱性,研究快速有效的方法,系統也會根據你精排階段的用戶行為迅速分析學習建模,發現模型有問題,你的玩法就結束了。
猜機器學習建模的速度有多快?
想玩黑色的東西早點死去吧。
現在使用的檢索順序模型主要是
CTR模型和CVR模型,具體模型過於復雜也不需要深入,但影響這兩種模型的最基本因素是用戶行為數據
真的不能假的,假的也不能假的演算法模型越來越智能化,演算法越來越強,只有回歸商業本質才能真正解決演算法模型背後真正想解決的問題,演算法基於商業邏輯。
2021年搜索向哪個方向發生變化:
2020年電器商人和螞蟻是不平凡的一年。2020年也是螞蟻從神壇上拉下來的元年,現在螞蟻有各種各樣的黑色。
基於中小賣家的走勢無疑是阿里必須正面面對的現實。
如何讓中小賣家迴流或留在平台上,搜索該怎麼做?
檢索一定是基於三方的考慮,買方、賣方和平台本身,現在市場上又開始提倡坑產搜索邏輯,坑產妖風又開始,根據推薦搜索演算法邏輯來談這個問題。
為什麼坑產思維是不死的小強,每次危機都會跳出來。
以統計模型為中心的坑產時代是淘寶從2003年到2015年一直使用的搜索演算法模型長達13年。
同時也是淘寶和中國網分紅的野蠻生長期,統計演算法模式讓太多電商賺錢。除了
之外,十年的奴役思維已經習慣了,在電器商圈,坑產游戲一定有人相信,其他人不一定被認可。所以,我們夾著尾巴發展的原因,時間真的可以證明一切,不用多說,做自己。
習慣性思維加上特殊時期的賺錢蝴蝶效應,使許多電器商人活在歷史的長夢中。正確地說,統計演算法模型的真正廢除是在2019年下半年。
同學說坑產永遠有效,我也這么想。
永遠有效的是起爆模型坑產權重驅動和統計演算法模型中的坑產排名不同。
起爆模型的坑產要素永遠有效,這永遠不會改變。
但是,如何有效地加上這個起爆模型的坑產權重,並不像模仿購物的意圖那麼簡單。
坑產游戲在2021年絕對不行。淘寶不會把現在的演算法系統換成15年前的。
基於三方利益:
購買者體驗
賣方利益
平台的發展
搜索肯定會向高精度和高控制性發展。以標簽為中心的用戶標簽圖像仍然是影響流量精度的基本因素。
必須從標簽的角度考慮和優化種子組的圖像。
通過種子組的圖像向相似人擴展到葉類人,業界喜好人最後向相關人擴展也是擴大流量的過程渠道。
基於推薦搜索演算法邏輯:
精密排列階段演算法更強,精度更高,轉化率更高,持續穩定性更強。
基於中小賣方流通的現狀,優化精排階段並非中小賣方能夠簡單接觸。
推薦演算法從搜索排名階段出現在哪個階段?
個人判斷
一是召回階段
二是粗排階段
上述提到召回階段的演算法簡單復蓋商品為萬級,排序規則也比較簡單,中小賣方在召回階段提高精度尤為重要。
在這個萬級商品庫中,如上下架的權重上升,中小賣方有機會上升到主頁,從子單元的索引召回中尋找機會。
或者根據中小賣方的新產品和中小賣方的店鋪水平進行特別優先搜索推薦,使中小賣方的新產品在低銷售狀態下顯示,可以實現錦囊演算法。
中小賣方有機會搜索主頁,不調用用戶信息直接打開主頁的展示權可能是中小賣方最大的支持。
根據召回階段的用戶行為數據,在粗排階段以比例融入用戶信息,即標簽的影響。
在初始召回階段,類別和分詞權重,看業者主圖場景反應背後的人們反饋,用系統引導,給中小賣方真正參考的流量方向和成交方向。
誰瘋狂地印刷用紙直接關閉黑屋,理解印刷用紙優化競爭場景,從優化人群的角度出發,適當放寬處罰。
通過召回階段,得到的用戶信息會影響粗體結果。在這個階段,用戶信息的權重比例不應該太大,流量卡也不應該太死。
在各檢索順序階段用戶信息,即用戶標簽對檢索的影響權重的問題。
這個方向我的個人觀點是可能的。

㈡ 個性化推薦演算法的四大策略02

在復雜的推薦系統中,推薦演算法作為其最核心、最關鍵的部分,很大程度上決定了推薦系統性能的好壞,且重點體現在數據決策層。

在個性化推薦系統中,簡單推薦策略主要分為:基於熱門推薦推薦、基於基本信息推薦、基於內容推薦、基於關聯規則推薦。

熱門推薦,顧名思義就是使用統計的方法將最熱門的物品進行推薦,越熱門的物品被點擊的可能性越大。

基於基本信息推薦是根據用戶的基本信息如:領域、職位、工作年齡、性別和所在地等給用戶推薦感興趣或者相關的內容,比如年齡-關聯電影表、收入-關聯商品類型表,性別-文章關聯表等等。

因為基於熱門推薦與基於基本信息推薦使用比較簡單,所以這兩個推薦策略應用比較廣泛。

基於內容推薦是指(Content Based Recommandation)利用用戶和物品的相關信息,例如前述用戶和物品畫像信息及用戶對物品的行為構建的模型,例如瀏覽、點擊、打電話、收藏、評論、下單等。內容推薦演算法根據用戶行為推斷用戶偏好,並為用戶推薦相同偏好的物品。

基於內容推薦的計算過程一般分為四個步驟:

由這些共性屬性查找其他物品,並實施推薦。

基於關聯規則推薦(Association Rules)是通過數據挖掘的方法找到物品之間的相關關系,再進行標簽推薦,比如大家所熟知的「啤酒」和「尿布」,就是某超市工作人員通過對顧客的購物清單進行分析後,才發現了啤酒和尿布之間的共現關系。

而衡量物品之間的關聯性時,主要看支持度、置信度和提升度這三大指標。

支持度表示 AB 共現情況占所有情況的比例,則有表達式 Support(A->B)=P(A&B),它往往用來評估搜索詞當中該詞出現的概率。

置信度表示 AB 共現情況占 A 情況的比例,其表達式為 Confidence(A->B)=P(A&B)/P(A)。

提升度表示以 A 為前提下 B 出現的情況與 B 情況的比例,表達式為 Lift(A->B)=P(B|A)/P(B) ,它往往用來評估推薦效果。

在計算 Lift(A->B) 時,主要出現以下三種情況:

Lift(A->B)>1 時,說明搜索 A 時推薦 B 比直接推薦 B 的效果更好

Lift(A->B)=1 時,說明搜索 A 和搜素 B 屬於獨立事件,二者沒什麼關系

Lift(A->B)<1 時,說明搜索 A 和搜索 B 負相關,搜索 A 還不如不去推薦 B。

㈢ 推薦演算法簡介

寫在最前面:本文內容主要來自於書籍《推薦系統實踐》和《推薦系統與深度學習》。

推薦系統是目前互聯網世界最常見的智能產品形式。從電子商務、音樂視頻網站,到作為互聯網經濟支柱的在線廣告和新穎的在線應用推薦,到處都有推薦系統的身影。推薦演算法是推薦系統的核心,其本質是通過一定的方式將用戶和物品聯系起來,而不同的推薦系統利用了不同的方式。

推薦系統的主要功能是以個性化的方式幫助用戶從極大的搜索空間中快速找到感興趣的對象。因此,目前所用的推薦系統多為個性化推薦系統。個性化推薦的成功應用需要兩個條件:

在推薦系統的眾多演算法中,基於協同的推薦和基於內容的推薦在實踐中得到了最廣泛的應用。本文也將從這兩種演算法開始,結合時間、地點上下文環境以及社交環境,對常見的推薦演算法做一個簡單的介紹。

基於內容的演算法的本質是對物品內容進行分析,從中提取特徵,然後基於用戶對何種特徵感興趣來推薦含有用戶感興趣特徵的物品。因此,基於內容的推薦演算法有兩個最基本的要求:

下面我們以一個簡單的電影推薦來介紹基於內容的推薦演算法。

現在有兩個用戶A、B和他們看過的電影以及打分情況如下:

其中問好(?)表示用戶未看過。用戶A對《銀河護衛隊 》《變形金剛》《星際迷航》三部科幻電影都有評分,平均分為 4 .7 分 ( (5+4+5 ) / 3=4.7 );對《三生三世》《美人魚》《北京遇上西雅圖》三部愛情電影評分平均分為 2.3 分 ( ( 3十2+2 ) /3=2.3 )。現在需要給A推薦電影,很明顯A更傾向於科幻電影,因此推薦系統會給A推薦獨立日。而對於用戶B,通過簡單的計算我們可以知道更喜歡愛情電影,因此給其推薦《三生三世》。當然,在實際推薦系統中,預測打分比這更加復雜些,但是其原理是一樣的。

現在,我們可以將基於內容的推薦歸納為以下四個步驟:

通過上面四步就能快速構建一個簡單的推薦系統。基於內容的推薦系統通常簡單有效,可解釋性好,沒有物品冷啟動問題。但他也有兩個明顯的缺點:

最後,順便提一下特徵提取方法:對於某些特徵較為明確的物品,一般可以直接對其打標簽,如電影類別。而對於文本類別的特徵,則主要是其主題情感等,則些可以通過tf-idf或LDA等方法得到。

基於協同的演算法在很多地方也叫基於鄰域的演算法,主要可分為兩種:基於用戶的協同演算法和基於物品的協同演算法。

啤酒和尿布的故事在數據挖掘領域十分有名,該故事講述了美國沃爾瑪超市統計發現啤酒和尿布一起被購買的次數非常多,因此將啤酒和尿布擺在了一起,最後啤酒和尿布的銷量雙雙增加了。這便是一個典型的物品協同過濾的例子。

基於物品的協同過濾指基於物品的行為相似度(如啤酒尿布被同時購買)來進行物品推薦。該演算法認為,物品A和物品B具有很大相似度是因為喜歡物品A的用戶大都也喜歡物品B。

基於物品的協同過濾演算法主要分為兩步:

基於物品的協同過濾演算法中計算物品相似度的方法有以下幾種:
(1)基於共同喜歡物品的用戶列表計算。

此外,John S. Breese再其論文中還提及了IUF(Inverse User Frequence,逆用戶活躍度)的參數,其認為活躍用戶對物品相似度的貢獻應該小於不活躍的用戶,應該增加IUF參數來修正物品相似度的公式:

上面的公式只是對活躍用戶做了一種軟性的懲罰, 但對於很多過於活躍的用戶, 比如某位買了當當網80%圖書的用戶, 為了避免相似度矩陣過於稠密, 我們在實際計算中一般直接忽略他的興趣列表, 而不將其納入到相似度計算的數據集中。

(2)基於餘弦相似度計算。

(3)熱門物品的懲罰。
從上面(1)的相似度計算公式中,我們可以發現當物品 i 被更多人購買時,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都會增長。對於熱門物品,分子 N(i) ∩ N(j) 的增長速度往往高於 N(i),這就會使得物品 i 和很多其他的物品相似度都偏高,這就是 ItemCF 中的物品熱門問題。推薦結果過於熱門,會使得個性化感知下降。以歌曲相似度為例,大部分用戶都會收藏《小蘋果》這些熱門歌曲,從而導致《小蘋果》出現在很多的相似歌曲中。為了解決這個問題,我們對於物品 i 進行懲罰,例如下式, 當α∈(0, 0.5) 時,N(i) 越小,懲罰得越厲害,從而使熱門物品相關性分數下降( 博主註:這部分未充分理解 ):

此外,Kary pis在研究中發現如果將ItemCF的相似度矩陣按最大值歸一化, 可以提高推薦的准確率。 其研究表明, 如果已經得到了物品相似度矩陣w, 那麼可以用如下公式得到歸一化之後的相似度矩陣w':

歸一化的好處不僅僅在於增加推薦的准確度,它還可以提高推薦的覆蓋率和多樣性。一般來說,物品總是屬於很多不同的類,每一類中的物品聯系比較緊密。假設物品分為兩類——A和B, A類物品之間的相似度為0.5, B類物品之間的相似度為0.6, 而A類物品和B類物品之間的相似度是0.2。 在這種情況下, 如果一個用戶喜歡了5個A類物品和5個B類物品, 用ItemCF給他進行推薦, 推薦的就都是B類物品, 因為B類物品之間的相似度大。 但如果歸一化之後, A類物品之間的相似度變成了1, B類物品之間的相似度也是1, 那麼這種情況下, 用戶如果喜歡5個A類物品和5個B類物品, 那麼他的推薦列表中A類物品和B類物品的數目也應該是大致相等的。 從這個例子可以看出, 相似度的歸一化可以提高推薦的多樣性。

那麼,對於兩個不同的類,什麼樣的類其類內物品之間的相似度高,什麼樣的類其類內物品相似度低呢?一般來說,熱門的類其類內物品相似度一般比較大。如果不進行歸一化,就會推薦比較熱門的類裡面的物品,而這些物品也是比較熱門的。因此,推薦的覆蓋率就比較低。相反,如果進行相似度的歸一化,則可以提高推薦系統的覆蓋率。

最後,利用物品相似度矩陣和用戶打過分的物品記錄就可以對一個用戶進行推薦評分:

基於用戶的協同演算法與基於物品的協同演算法原理類似,只不過基於物品的協同是用戶U購買了A物品,會計算經常有哪些物品與A一起購買(也即相似度),然後推薦給用戶U這些與A相似的物品。而基於用戶的協同則是先計算用戶的相似性(通過計算這些用戶購買過的相同的物品),然後將這些相似用戶購買過的物品推薦給用戶U。

基於用戶的協同過濾演算法主要包括兩個步驟:

步驟(1)的關鍵是計算用戶的興趣相似度,主要是利用用戶的行為相似度計算用戶相似度。給定用戶 u 和 v,N(u) 表示用戶u曾經有過正反饋(譬如購買)的物品集合,N(v) 表示用戶 v 曾經有過正反饋的物品集合。那麼我們可以通過如下的 Jaccard 公式簡單的計算 u 和 v 的相似度:

或通過餘弦相似度:

得到用戶之間的相似度之後,UserCF演算法會給用戶推薦和他興趣最相似的K個用戶喜歡的物品。如下的公式度量了UserCF演算法中用戶 u 對物品 i 的感興趣程度:

首先回顧一下UserCF演算法和ItemCF演算法的推薦原理:UserCF給用戶推薦那些和他有共同興趣愛好的用戶喜歡的物品, 而ItemCF給用戶推薦那些和他之前喜歡的物品具有類似行為的物品。

(1)從推薦場景考慮
首先從場景來看,如果用戶數量遠遠超過物品數量,如購物網站淘寶,那麼可以考慮ItemCF,因為維護一個非常大的用戶關系網是不容易的。其次,物品數據一般較為穩定,因此物品相似度矩陣不必頻繁更新,維護代價較小。

UserCF的推薦結果著重於反應和用戶興趣相似的小群體的熱點,而ItemCF的推薦結果著重於維系用戶的歷史興趣。換句話說,UserCF的推薦更社會化,反應了用戶所在小型興趣群體中物品的熱門程度,而ItemCF的推薦更加個性化,反應了用戶自己的個性傳承。因此UserCF更適合新聞、微博或微內容的推薦,而且新聞內容更新頻率非常高,想要維護這樣一個非常大而且更新頻繁的表無疑是非常難的。

在新聞類網站中,用戶的興趣愛好往往比較粗粒度,很少會有用戶說只看某個話題的新聞,而且往往某個話題也不是每天都會有新聞。 個性化新聞推薦更強調新聞熱點,熱門程度和時效性是個性化新聞推薦的重點,個性化是補充,所以 UserCF 給用戶推薦和他有相同興趣愛好的人關注的新聞,這樣在保證了熱點和時效性的同時,兼顧了個性化。

(2)從系統多樣性(也稱覆蓋率,指一個推薦系統能否給用戶提供多種選擇)方面來看,ItemCF的多樣性要遠遠好於UserCF,因為UserCF更傾向於推薦熱門物品。而ItemCF具有較好的新穎性,能夠發現長尾物品。所以大多數情況下,ItemCF在精度上較小於UserCF,但其在覆蓋率和新穎性上面卻比UserCF要好很多。

在介紹本節基於矩陣分解的隱語義模型之前,讓我們先來回顧一下傳統的矩陣分解方法SVD在推薦系統的應用吧。

基於SVD矩陣分解在推薦中的應用可分為如下幾步:

SVD在計算前會先把評分矩陣 A 缺失值補全,補全之後稀疏矩陣 A 表示成稠密矩陣,然後將分解成 A' = U∑V T 。但是這種方法有兩個缺點:(1)補成稠密矩陣後需要耗費巨大的儲存空間,對這樣巨大的稠密矩陣進行儲存是不現實的;(2)SVD的計算復雜度很高,對這樣大的稠密矩陣中進行計算式不現實的。因此,隱語義模型就被發明了出來。

更詳細的SVD在推薦系統的應用可參考 奇異值分解SVD簡介及其在推薦系統中的簡單應用 。

隱語義模型(Latent Factor Model)最早在文本挖掘領域被提出,用於找到文本的隱含語義。相關的演算法有LSI,pLSA,LDA和Topic Model。本節將對隱語義模型在Top-N推薦中的應用進行詳細介紹,並通過實際的數據評測該模型。

隱語義模型的核心思想是通過隱含特徵聯系用戶興趣和物品。讓我們通過一個例子來理解一下這個模型。

現有兩個用戶,用戶A的興趣涉及偵探小說、科普圖書以及一些計算機技術書,而用戶B的興趣比較集中在數學和機器學習方面。那麼如何給A和B推薦圖書呢?

我們可以對書和物品的興趣進行分類。對於某個用戶,首先得到他的興趣分類,然後從分類中挑選他可能喜歡的物品。簡言之,這個基於興趣分類的方法大概需要解決3個問題:

對於第一個問題的簡單解決方案是找相關專業人員給物品分類。以圖書為例,每本書出版時,編輯都會給出一個分類。但是,即使有很系統的分類體系,編輯給出的分類仍然具有以下缺點:(1)編輯的意見不能代表各種用戶的意見;(2)編輯很難控制分類的細粒度;(3)編輯很難給一個物品多個分類;(4)編輯很難給一個物品多個分類;(5)編輯很難給出多個維度的分類;(6)編輯很難決定一個物品在某一個類別中的權重。

為了解決上述問題,研究員提出可以從數據出發,自動找到那些分類,然後進行個性化推薦。隱語義模型由於採用基於用戶行為統計的自動聚類,較好地解決了上面提出的5個問題。

LFM將矩陣分解成2個而不是3個:

推薦系統中用戶和物品的交互數據分為顯性反饋和隱性反饋數據。隱式模型中多了一個置信參數,具體涉及到ALS(交替最小二乘法,Alternating Least Squares)中對於隱式反饋模型的處理方式——有的文章稱為「加權的正則化矩陣分解」:

一個小細節:在隱性反饋數據集中,只有正樣本(正反饋)沒有負反饋(負樣本),因此如何給用戶生成負樣本來進行訓練是一個重要的問題。Rong Pan在其文章中對此進行了探討,對比了如下幾種方法:

用戶行為很容易用二分圖表示,因此很多圖演算法都可以應用到推薦系統中。基於圖的模型(graph-based model)是推薦系統中的重要內容。很多研究人員把基於領域的模型也稱為基於圖的模型,因為可以把基於領域的模型看作基於圖的模型的簡單形式。

在研究基於圖的模型之前,需要將用戶行為數據表示成圖的形式。本節的數據是由一系列用戶物品二元組 (u, i) 組成的,其中 u 表示用戶對物品 i 產生過行為。

令 G(V, E) 表示用戶物品二分圖,其中 V=V U UV I 由用戶頂點 V U 和物品節點 V I 組成。對於數據集中每一個二元組 (u, i) ,圖中都有一套對應的邊 e(v u , v i ),其中 v u ∈V U 是用戶對應的頂點,v i ∈V I 是物品i對應的頂點。如下圖是一個簡單的物品二分圖,其中圓形節點代表用戶,方形節點代表物品,用戶物品的直接連線代表用戶對物品產生過行為。比如下圖中的用戶A對物品a、b、d產生過行為。

度量圖中兩個頂點之間相關性的方法很多,但一般來說圖中頂點的相關性主要取決於下面3個因素:

而相關性高的一對頂點一般具有如下特徵:

舉個例子,如下圖,用戶A和物品c、e沒有邊直連,但A可通過一條長度為3的路徑到達c,而Ae之間有兩條長度為3的路徑。那麼A和e的相關性要高於頂點A和c,因而物品e在用戶A的推薦列表中應該排在物品c之前,因為Ae之間有兩條路徑。其中,(A,b,C,e)路徑經過的頂點的出度為(3,2,2,2),而 (A,d,D,e) 路徑經過了一個出度比較大的頂點D,所以 (A,d,D,e) 對頂點A與e之間相關性的貢獻要小於(A,b,C,e)。

基於上面3個主要因素,研究人員設計了很多計算圖中頂點相關性的方法,本節將介紹一種基於隨機遊走的PersonalRank演算法。

假設要給用戶u進行個性化推薦,可以從用戶u對應的節點 v u 開始在用戶物品二分圖上進行隨機遊走。遊走到任一節點時,首先按照概率α決定是繼續遊走還是停止這次遊走並從 v u 節點重新開始遊走。若決定繼續遊走,則從當前節點指向的節點中按照均勻分布隨機選擇一個節點作為遊走下次經過的節點。這樣,經過很多次隨機遊走後,每個物品被訪問到的概率會收斂到一個數。最終的推薦列表中物品的權重就是物品節點的訪問概率。

上述演算法可以表示成下面的公式:

雖然通過隨機遊走可以很好地在理論上解釋PersonalRank演算法,但是該演算法在時間復雜度上有明顯的缺點。因為在為每個用戶進行推薦時,都需要在整個用戶物品二分圖上進行迭代,知道所有頂點的PR值都收斂。這一過程的時間復雜度非常高,不僅無法在線進行實時推薦,離線計算也是非常耗時的。

有兩種方法可以解決上面PersonalRank時間復雜度高的問題:
(1)減少迭代次數,在收斂之前停止迭代。但是這樣會影響最終的精度。

(2)從矩陣論出發,重新涉及演算法。另M為用戶物品二分圖的轉移概率矩陣,即:

網路社交是當今社會非常重要甚至可以說是必不可少的社交方式,用戶在互聯網上的時間有相當大的一部分都用在了社交網路上。

當前國外最著名的社交網站是Facebook和Twitter,國內的代表則是微信/QQ和微博。這些社交網站可以分為兩類:

需要指出的是,任何一個社交網站都不是單純的社交圖譜或興趣圖譜。如QQ上有些興趣愛好群可以認識不同的陌生人,而微博中的好友也可以是現實中認識的。

社交網路定義了用戶之間的聯系,因此可以用圖定義社交網路。我們用圖 G(V,E,w) 定義一個社交網路,其中V是頂點集合,每個頂點代表一個用戶,E是邊集合,如果用戶va和vb有社交網路關系,那麼就有一條邊 e(v a , v b ) 連接這兩個用戶,而 w(v a , v b )定義了邊的權重。一般來說,有三種不同的社交網路數據:

和一般購物網站中的用戶活躍度分布和物品流行度分布類似,社交網路中用戶的入度(in degree,表示有多少人關注)和出度(out degree,表示關注多少人)的分布也是滿足長尾分布的。即大部分人關注的人都很少,被關注很多的人也很少。

給定一個社交網路和一份用戶行為數據集。其中社交網路定義了用戶之間的好友關系,而用戶行為數據集定義了不同用戶的歷史行為和興趣數據。那麼最簡單的演算法就是給用戶推薦好友喜歡的物品集合。即用戶u對物品i的興趣 p ui 可以通過如下公式計算。

用戶u和用戶v的熟悉程度描述了用戶u和用戶在現實社會中的熟悉程度。一般來說,用戶更加相信自己熟悉的好友的推薦,因此我們需要考慮用戶之間的熟悉度。下面介紹3中衡量用戶熟悉程度的方法。

(1)對於用戶u和用戶v,可以使用共同好友比例來計算他們的相似度:

上式中 out(u) 可以理解為用戶u關注的用戶合集,因此 out(u) ∩ out(v) 定義了用戶u、v共同關注的用戶集合。

(2)使用被關注的用戶數量來計算用戶之間的相似度,只要將公式中的 out(u) 修改為 in(u):

in(u) 是指關注用戶u的集合。在無向社交網路中,in(u)和out(u)是相同的,而在微博這種有向社交網路中,這兩個集合的含義就不痛了。一般來說,本方法適合用來計算微博大V之間的相似度,因為大v往往被關注的人數比較多;而方法(1)適用於計算普通用戶之間的相似度,因為普通用戶往往關注行為比較豐富。

(3)除此之外,還可以定義第三種有向的相似度:這個相似度的含義是用戶u關注的用戶中,有多大比例也關注了用戶v:

這個相似度有一個缺點,就是在該相似度下所有人都和大v有很大的相似度,這是因為公式中的分母並沒有考慮 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,來降低大v與其他用戶的相似度:

上面介紹了3種計算用戶之間相似度(或稱熟悉度)的計算方法。除了熟悉程度,還需要考慮用戶之間的興趣相似度。我們和父母很熟悉,但很多時候我們和父母的興趣確不相似,因此也不會喜歡他們喜歡的物品。因此,在度量用戶相似度時,還需要考慮興趣相似度,而興趣相似度可以通過和UserCF類似的方法度量,即如果兩個用戶喜歡的物品集合重合度很高,兩個用戶的興趣相似度很高。

最後,我們可以通過加權的形式將兩種權重合並起來,便得到了各個好有用戶的權重了。

有了權重,我們便可以針對用戶u挑選k個最相似的用戶,把他們購買過的物品中,u未購買過的物品推薦給用戶u即可。打分公式如下:

其中 w' 是合並後的權重,score是用戶v對物品的打分。

node2vec的整體思路分為兩個步驟:第一個步驟是隨機遊走(random walk),即通過一定規則隨機抽取一些點的序列;第二個步驟是將點的序列輸入至word2vec模型從而得到每個點的embedding向量。

隨機遊走在前面基於圖的模型中已經介紹過,其主要分為兩步:(1)選擇起始節點;(2)選擇下一節點。起始節點選擇有兩種方法:按一定規則抽取一定量的節點或者以圖中所有節點作為起始節點。一般來說會選擇後一種方法以保證所有節點都會被選取到。

在選擇下一節點方法上,最簡單的是按邊的權重來選擇,但在實際應用中需要通過廣度優先還是深度優先的方法來控制遊走范圍。一般來說,深度優先發現能力更強,廣度優先更能使社區內(較相似)的節點出現在一個路徑里。

斯坦福大學Jure Leskovec教授給出了一種可以控制廣度優先或者深度優先的方法。

以上圖為例,假設第一步是從t隨機遊走到v,這時候我們要確定下一步的鄰接節點。本例中,作者定義了p和q兩個參數變數來調節遊走,首先計算其鄰居節點與上一節點t的距離d,根據下面的公式得到α:

一般從每個節點開始遊走5~10次,步長則根據點的數量N遊走根號N步。如此便可通過random walk生成點的序列樣本。

得到序列之後,便可以通過word2vec的方式訓練得到各個用戶的特徵向量,通過餘弦相似度便可以計算各個用戶的相似度了。有了相似度,便可以使用基於用戶的推薦演算法了。

推薦系統需要根據用戶的歷史行為和興趣預測用戶未來的行為和興趣,因此大量的用戶行為數據就成為推薦系統的重要組成部分和先決條件。如何在沒有大量用戶數據的情況下設計個性化推薦系統並且讓用戶對推薦結果滿意從而願意使用推薦系統,就是冷啟動問題。

冷啟動問題主要分為三類:

針對用戶冷啟動,下面給出一些簡要的方案:
(1)有效利用賬戶信息。利用用戶注冊時提供的年齡、性別等數據做粗粒度的個性化;
(2)利用用戶的社交網路賬號登錄(需要用戶授權),導入用戶在社交網站上的好友信息,然後給用戶推薦其好友喜歡的物品;
(3)要求用戶在登錄時對一些物品進行反饋,手機用戶對這些物品的興趣信息,然後給用推薦那些和這些物品相似的物品;
(4)提供非個性化推薦。非個性化推薦的最簡單例子就是熱門排行榜,我們可以給用戶推薦熱門排行榜,然後等到用戶數據收集到一定的時候,在切換為個性化推薦。

對於物品冷啟動,可以利用新加入物品的內容信息,將它們推薦給喜歡過和他們相似的物品的用戶。

對於系統冷啟動,可以引入專家知識,通過一定高效的方式快速建立起物品的相關度表。

在上面介紹了一些推薦系統的基礎演算法知識,這些演算法大都是比較經典且現在還在使用的。但是需要注意的是,在實踐中,任何一種推薦演算法都不是單獨使用的,而是將多種推薦演算法結合起來,也就是混合推薦系統,但是在這里並不準備介紹,感興趣的可以查閱《推薦系統》或《推薦系統與深度學習》等書籍。此外,在推薦中非常重要的點擊率模型以及基於矩陣的一些排序演算法在這里並沒有提及,感興趣的也可自行學習。

雖然現在用的很多演算法都是基於深度學習的,但是這些經典演算法能夠讓我們對推薦系統的發展有一個比較好的理解,同時,更重要的一點——「推陳出新」,只有掌握了這些經典的演算法,才能提出或理解現在的一些更好地演算法。

㈣ 推薦系統產品和演算法概述丨產品雜談系列

本文主要是對最近所學的推薦系統的總結,將會簡單概述非個性化範式、群組個性化範式、完全個性化範式、標的物關聯標的物範式、笛卡爾積範式等5種常用的推薦範式的設計思路。

許多產品的推薦演算法都依賴於三類數據:標的物相關的描述信息(如推薦鞋子,則包括鞋子的版型、適用對象、材質等信息、用戶畫像數據(指的是用戶相關數據,如性別、年齡、收入等)、用戶行為數據(例如用戶在淘寶上的瀏覽、收藏、購買等)。這三類數據是推薦模型的主要組成部分,除此之外一些人工標注的數據(例如為商品人工打上標簽)、第三方數據也能夠用於補充上述的三類數據。

服務端在有以上數據的基礎上,就可以從三個維度進行推薦:

根據個性化推薦的顆粒度,我們可以將基於用戶維度的推薦分為非個性化推薦、群組個性化推薦及完全個性化推薦三種類型。

非個性化推薦指的是每個用戶看到的推薦內容都是一樣的 在互聯網產品中,我們最常見的非個性化推薦的例子是各種排行榜,如下圖是酷狗音樂的排行榜推薦,通過各個維度計算各類榜單,不管是誰看到這個榜單,上面的排序和內容都是一致的。

群組個性化推薦指的是將具有相同特徵的用戶聚合成一組,同一組用戶在某些方面具備相似性,系統將為這一組用戶推薦一樣的內容 。這種推薦方式是很多產品進行用戶精細化運營時會採用的方式,通過用戶畫像系統圈定一批批用戶,並對這批用戶做統一的運營。例如音樂軟體的推薦播放,若以搖滾樂為基準將一批用戶聚合成組,則為這些用戶提供的每日推薦歌單是相同的內容和順序,但與另一組愛聽民謠的用戶相比,兩組用戶看到的每日推薦內容將是不同的。

完全個性化指的是為每個用戶推薦的內容都不一樣,是根據每一位用戶的行為及興趣來為用戶做推薦,是當今互聯網產品中最常用的一種推薦方式 。大多數情況下我們所說的推薦就是指這種形式的推薦,例如淘寶首頁的「猜你喜歡」就是一個完全個性化的推薦,千人千面,每個人看到的推薦尚品都不一樣。

完全個性化可以只基於用戶行為進行推薦,在構建推薦演算法時只考慮到用戶個人的特徵和行為 ,不需要考慮其他用戶,這也是最常見的內容推薦方式。除此之外, 還可以基於群組行為進行完全個性化推薦,除了利用用戶自身的行為外,還依賴於其他用戶的行為構建推薦演算法模型 。例如,用戶屬性和行為相似的一群用戶,其中90%的用戶買了A商品後也買了B商品,則當剩下的10%用戶單獨購買B商品時,我們可以為該用戶推薦商品A。

基於群組行為進行的完全個性化推薦可以認為是全體用戶的協同進化,常見的協同過濾、基於模型的推薦等都屬於這類推薦形式。

基於標的物的推薦指的是用戶在訪問標的物詳情頁或者退出標的物詳情頁時,可以根據標的物的描述信息為用戶推薦一批相似的或者相關的標的物,對應的是最開始提到的「標的物關聯標的物範式」 。如下圖酷狗的相似歌曲推薦,

除了音樂產品外,視頻網站、電商、短視頻等APP都大量使用基於標的物維度的推薦。如下圖便是YouTube基於標的物關聯標的物的推薦。在YouTube上我觀看一個周傑倫的音樂視頻時,YouTube在該頁面下方為我推薦更多與周傑倫有關的視頻。

基於用戶和標的物交叉維度的推薦指的是將用戶維度和標的物維度結合起來,不同用戶訪問同一標的物的詳情頁時看到的推薦內容也不一樣,對應的是開頭提到的笛卡爾積推薦範式。 拿酷狗音樂對相似歌曲的推薦來舉例,如果該推薦採用的是用戶和標的物交叉維度的推薦的話,不同用戶看到的「沒有理想的人不傷心」這首歌曲,下面的相似歌曲是不一樣的。拿淘寶舉例的話,一樣是搜索「褲子」這一關鍵詞,不同的人搜索得到的搜索結果和排序是不同的,可能用戶A搜索出來優先展示的是牛仔褲,而用戶B優先展示的是休閑褲,淘寶將結合搜索關鍵詞與用戶個人的歷史行為特徵展示對應的搜索結果和排序。

對於基於笛卡爾積推薦範式設計的推薦系統來說,由於每個用戶在每個標的物上的推薦列表都不一樣,我們是沒辦法是先將所有組合計算出來並儲存(組合過多,數量是非常巨大的),因此對於系統來說,能否在用戶請求的過程中快速地為用戶計算個性化推薦的標的物列表將會是一個比較大的挑戰,對於整個推薦系統的架構也有更高的要求,因此在實際應用中,該種推薦方式用的比較少。

非個性化範式指的是為所有用戶推薦一樣的標的物列表,常見的各種榜單就是基於此類推薦規則,如電商APP中的新品榜、暢銷榜等。排行榜就是基於某個規則來對標的物進行排序,將排序後的部分標的物推薦給用戶。例如新品榜是按照商品上架的時間順序來倒序排列,並將排序在前列的產品推薦給用戶。而暢銷榜則是按照商品銷量順序降序排列,為用戶推薦銷量靠前的商品。

根據具體的產品和業務場景,即使同樣是非個性化範式推薦,在具體實施時也可能會比較復雜。例如在電商APP中暢銷榜的推薦可能還會將地域、時間、價格等多個維度納入考慮范圍內,基於每個維度及其權重進行最終的排序推薦。

大部分情況下,非個性化範式推薦可以基於簡單的計數統計來生成推薦,不會用到比較復雜的機器學習演算法,是一種實施門檻較低的推薦方式。基於此,非個性化範式推薦演算法可以作為產品冷啟動或者默認的推薦演算法。

完全個性化範式是目前的互聯網產品中最常用的推薦模式,可用的推薦方法非常多。下面對常用的演算法進行簡單梳理。

該推薦演算法只需要考慮到用戶自己的歷史行為而不需要考慮其他用戶的行為,其核心思想是:標的物是有描述屬性的,用戶對標的物的操作行為為用戶打上了相關屬性的烙印,這些屬性就是用戶的興趣標簽,那麼我們就可以基於用戶的興趣來為用戶生成推薦列表。還是拿音樂推薦來舉例子,如果用戶過去聽了搖滾和民謠兩種類型的音樂,那麼搖滾和民謠就是這個用戶聽歌時的偏好標簽,此時我們就可以為該用戶推薦更多的搖滾類、民謠類歌曲。

基於內容的個性化推薦在實操中有以下兩類方式。

第一種是基於用戶特徵標識的推薦。
標的物是有很多文本特徵的,例如標簽、描述信息等,我們可以將這些文本信息基於某種演算法轉化為特徵向量。有了標的物的特徵向量後,我們可以將用戶所有操作過的標的物的特徵向量基於時間加權平均作為用戶的特徵向量,並根據用戶特徵向量與標的物特徵向量的乘積來計算用戶與標的物的相似度,從而計算出該用戶的標的物推薦列表。

第二種是基於倒排索引查詢的推薦。
如果我們基於標的物的文本特徵(如標簽)來表示標的物屬性,那麼基於用戶對該標的物的歷史行為,我們可以構建用戶畫像,該畫像即是用戶對於各個標簽的偏好,並且對各個標簽都有相應的偏好權重。

在構建完用戶畫像後,我們可以基於標簽與標的物的倒排索引查詢表,以標簽為關鍵詞,為用戶進行個性化推薦。

舉個粗暴的例子,有歌曲A、B、C分別對應搖滾、民謠、古風三個音樂標簽,我聽了歌曲A、B,則在我身上打了搖滾和民謠的標簽,又基於我聽這兩個歌曲的頻率,計算了我對「搖滾」和「民謠」的偏好權重。
在倒排索引查詢表中,搖滾和民謠又會分別對應一部分歌曲,所以,可以根據我對搖滾和民謠的偏好權重從查詢表中篩選一部分歌曲並推薦給我。

基於倒排索引查詢的推薦方式是非常自然直觀的,只要用戶有一次行為,我們就可以據此為用戶進行推薦。但反過來,基於用戶興趣給用戶推薦內容,容易局限推薦范圍,難以為用戶推薦新穎的內容。

基於協同過濾的推薦演算法,核心思想是很樸素的」物以類聚、人以群分「的思想。所謂物以類聚,就是計算出每個標的物最相似的標的物列表,我們就可以為用戶推薦用戶喜歡的標的物相似的標的物,這就是基於物品的協同過濾。所謂人以群分,就是我們可以將與該用戶相似的用戶喜歡過的標的物(而該用戶未曾操作過)的標的物推薦給該用戶,這就是基於用戶的協同過濾。

常見的互聯網產品中,很多會採用基於標的物的協同過濾,因為相比之下用戶的變動概率更大,增長速度可能較快,這種情況下,基於標的物的協同過濾演算法將會更加的穩定。

協同過濾演算法思路非常簡單直觀,也易於實現,在當今的互聯網產品中應用廣泛。但協同過濾演算法也有一些難以避免的問題,例如產品的冷啟動階段,在沒有用戶數據的情況下,沒辦法很好的利用協同過濾為用戶推薦內容。例如新商品上架時也會遇到類似的問題,沒有收集到任何一個用戶對其的瀏覽、點擊或者購買行為,也就無從基於人以群分的概念進行商品推薦。

基於模型的推薦演算法種類非常多,我了解到的比較常見的有遷移學習演算法、強化學習演算法、矩陣分解演算法等,且隨著近幾年深度學習在圖像識別、語音識別等領域的進展,很多研究者和實踐者也將其融入到推薦模型的設計當中,取得了非常好的效果。例如阿里、京東等電商平台,都是其中的佼佼者。

由於該演算法涉及到比較多的技術知識,在下也處於初步學習階段,就不班門弄斧做過多介紹了,有興趣的朋友可以自行進行學習。

群組個性化推薦的第一步是將用戶分組,因此,採用什麼樣的分組原則就顯得尤為重要。常見的分組方式有兩種。

先基於用戶的人口統計學數據(如年齡、性別等)或者用戶行為數據(例如對各種不同類型音樂的播放頻率)構建用戶畫像。用戶畫像一般用於做精準的運營,通過顯示特徵將一批人圈起來形成同一組,對這批人做針對性的運營。因為前頭已經提到此演算法,這里不再重復介紹。

聚類是非常直觀的一種分組思路,將行為偏好相似的用戶聚在一起成為一個組,他們有相似的興趣。常用的聚類策略有如下兩類。

標的物關聯標的物就是為每個標的物推薦一組標的物。該推薦演算法的核心是怎麼從一個標的物關聯到其他的標的物。這種關聯關系可以是相似的(例如嘉士伯啤酒和喜力啤酒),也可以是基於其他維度的關聯(例如互補品,羽毛球拍和羽毛球)。常用的推薦策略是相似推薦。下面給出3種常用的生成關聯推薦的策略。

這類推薦方式一般是利用已知的數據和標的物信息來描述一個標的物,通過演算法的方式將其向量化,從而根據不同標的物向量之間的相似度來急速標的物之間的相似度,從而實現相識標的物的推薦。

在一個成熟的產品中,我們可以採集到的非常多的用戶行為,例如在電商平台中,我們可以手機用戶搜索、瀏覽、收藏、點贊等行為,這些行為就代表了用戶對某個標的物的某種偏好,因此,我們可以根據用戶的這些行為來進行關聯推薦。

例如,可以將用戶的行為矩陣分解為用戶特徵矩陣和物品特徵矩陣,物品特徵矩陣可以看成是衡量物品的一個向量,利用該向量我們就可以計算兩個標的物之間的相似度了,從而為該用戶推薦相似度高的其他產品。

再例如, 採用購物籃的思路做推薦,這種思路非常適合圖書、電商等的推薦 。 以電商為例,我們可以把用戶經常一起瀏覽(或者購買)的商品形成一個列表,將過去一段時間所有的列表收集起來。對於任何一個商品,我們都可以找到與它一起被瀏覽或者購買的其他商品及其次數,並根據次數來判斷其關聯性,從而進行關聯推薦。

我們可以對用戶進行分組,同樣,我們也能夠對標的物進行聚類分組。通過某位參考維度,我們將一些列具有相似性的標的物分成一組,當我們為用戶進行推薦的時候,便可以將同一組內的其他標的物作為推薦對象,推薦給用戶。

笛卡爾積範式的推薦演算法一般是先採用標的物關聯標的物範式計算出待推薦的標的物列表。再根據用戶的興趣來對該推薦列表做調整(例如根據不同興趣的權重重新調整推薦列表的排序)、增加(例如基於個性化增加推薦對象)、刪除(例如過濾掉已經看過的),由於其復雜程度較高在實際業務場景中應用較少,這邊不再詳細介紹。

好了,本次的介紹就到此為止了。本次主要是做了一個非常簡單的推薦演算法概述,在實際的業務場景中,還經常需要與產品形態或者更多的未讀(如時間、地點等)相結合,是一個很有意思的領域,有興趣的朋友可以進一步了解。

㈤ 07_推薦系統演算法詳解

     基於人口統計學的推薦與用戶畫像、基於內容的推薦、基於協同過濾的推薦。

1、基於人口統計學的推薦機制( Demographic-based Recommendation)是一種最易於實現的推薦方法,它只是簡單的根據系統用戶的基本信息發現用戶的相關程度,然後將相似用戶喜愛的其他物品推薦給當前用戶。

2、對於沒有明確含義的用戶信息(比如登錄時間、地域等上下文信息),可以通過聚類等手段,給用戶打上分類標簽。

3、對於特定標簽的用戶,又可以根據預設的規則(知識)或者模型,推薦出對應的物品。

4、用戶信息標簽化的過程一般又稱為 用戶畫像 ( User Profiling)。

(1)用戶畫像( User Profile)就是企業通過收集與分析消費者社會屬性、生活習慣、消費行為等主要信息的數據之後,完美地抽象出一個用戶的商業全貌作是企業應用大數據技術的基本方式。

(2)用戶畫像為企業提供了足夠的信息基礎,能夠幫助企業快速找到精準用戶群體以及用戶需求等更為廣泛的反饋信息。

(3)作為大數據的根基,它完美地抽象出一個用戶的信息全貌,為進一步精準、快速地分析用戶行為習慣、消費習慣等重要信息,提供了足夠的數據基礎。

1、 Content- based Recommendations(CB)根據推薦物品或內容的元數據,發現物品的相關性,再基於用戶過去的喜好記錄,為用戶推薦相似的物品。

2、通過抽取物品內在或者外在的特徵值,實現相似度計算。比如一個電影,有導演、演員、用戶標簽UGC、用戶評論、時長、風格等等,都可以算是特徵。

3、將用戶(user)個人信息的特徵(基於喜好記錄或是預設興趣標簽),和物品(item)的特徵相匹配,就能得到用戶對物品感興趣的程度。在一些電影、音樂、圖書的社交網站有很成功的應用,有些網站還請專業的人員對物品進行基因編碼/打標簽(PGC)。

4、 相似度計算:

5、對於物品的特徵提取——打標簽(tag)

        - 專家標簽(PGC)

        - 用戶自定義標簽(UGC)

        - 降維分析數據,提取隱語義標簽(LFM)

     對於文本信息的特徵提取——關鍵詞

        - 分詞、語義處理和情感分析(NLP)

        - 潛在語義分析(LSA)

6、 基於內容推薦系統的高層次結構

7、 特徵工程

(1)特徵( feature):數據中抽取出來的對結果預測有用的信息。

         特徵的個數就是數據的觀測維度。

         特徵工程是使用專業背景知識和技巧處理數據,使得特徵能在機器學習演算法上發揮更好的作用的過程。

         特徵工程一般包括特徵清洗(采樣、清洗異常樣本),特徵處理和特徵選擇。

         特徵按照不同的數據類型分類,有不同的特徵處理方法:數值型、類別型、時間型、統計型。

(2)數值型特徵處理

        用連續數值表示當前維度特徵,通常會對數值型特徵進行數學上的處理,主要的做法是歸一化和離散化。

        * 幅度調整歸一化:

            特徵與特徵之間應該是平等的,區別應該體現在 特徵內部 。

            例如房屋價格和住房面積的幅度是不同的,房屋價格可能在3000000~15000000(萬)之間,而住房面積在40-300(平方米)之間,那麼明明是平等的兩個特徵,輸入到相同的模型中後由於本身的幅值不同導致產生的效果不同,這是不合理的

                        

        * 數值型特徵處理——離散化

        離散化的兩種方式:等步長——簡單但不一定有效;等頻——min -> 25% -> 75% -> max

        兩種方法對比:

            等頻的離散化方法很精準,但需要每次都對數據分布進行一遍從新計算,因為昨天用戶在淘寶上買東西的價格分布和今天不一定相同,因此昨天做等頻的切分點可能並不適用,而線上最需要避免的就是不固定,需要現場計算,所以昨天訓練出的模型今天不一定能使用。

            等頻不固定,但很精準,等步長是固定的,非常簡單,因此兩者在工業上都有應用。

(3) 類別型特徵處理

        類別型數據本身沒有大小關系,需要將它們編碼為數字,但它們之間不能有預先設定的大小關系,因此既要做到公平,又要區分開它們,那麼直接開辟多個空間。

        One-Hot編碼/啞變數:One-Hot編碼/啞變數所做的就是將類別型數據平行地展開,也就是說,經過One-Hot編碼啞變數後,這個特徵的空間會膨脹。

(4) 時間型特徵處理

        時間型特徵既可以做連續值,又可以看做離散值。

        連續值:持續時間(網頁瀏覽時長);間隔時間(上一次購買/點擊離現在的時間間隔)。

        離散值:一天中哪個時間段;一周中的星期幾;一年中哪個月/星期;工作日/周末。

(5) 統計型特徵處理

        加減平均:商品價格高於平均價格多少,用戶在某個品類下消費超過多少。

        分位線:商品屬於售出商品價格的分位線處。

        次序性:商品處於熱門商品第幾位。

        比例類:電商中商品的好/中/差評比例。

8、 推薦系統常見反饋數據 :

9、 基於UGC的推薦

     用戶用標簽來描述對物品的看法,所以用戶生成標簽(UGC)是聯系用戶和物品的紐帶,也是反應用戶興趣的重要數據源。

    一個用戶標簽行為的數據集一般由一個三元組(用戶,物品,標簽)的集合表示,其中一條記錄(u,i,b)表示用戶u給物品打上了標簽b。

    一個最簡單的演算法:

        - 統計每個用戶最常用的標簽

        - 對於每個標簽,統計被打過這個標簽次數最多的物品

        - 對於一個用戶,首先找到他常用的標簽,然後找到具有這些標簽的最熱門的物品,推薦給他

        - 所以用戶u對物品i的興趣公式為 ,其中 使用戶u打過標簽b的次數, 是物品i被打過標簽b的次數。

    簡單演算法中直接將用戶打出標簽的次數和物品得到的標簽次數相乘,可以簡單地表現出用戶對物品某個特徵的興趣。

    這種方法傾向於給熱門標簽(誰都會給的標簽,如「大片」、「搞笑」等)、熱門物品(打標簽人數最多)比較大的權重,如果一個熱門物品同時對應著熱門標簽,那它就會「霸榜」,推薦的個性化、新穎度就會降低。

    類似的問題,出現在新聞內容的關鍵字提取中。比如以下新聞中,哪個關鍵字應該獲得更高的權重?

10、 TF-IDF:詞頻逆文檔頻率 ( Term Frequency- -Inverse Document Frequency,TF-DF)是一種用於資訊檢索與文本挖掘的常用加權技術。

        TFDF是一種統計方法,用以評估一個字詞對於一個文件集或一個語料庫中的其中份文件的重要程度。字詞的重要性隨著它在文件中出現的次數成正比增加,但同時會隨著它在語料庫中出現的頻率成反比下降。

                    TFIDF=TF IDF

         TF-IDF的主要思想是 :如果某個詞或短語在一篇文章中出現的頻率TF高,並且在其他文章中很少出現,則認為此詞或者短語具有很好的類別區分能力,適合用來分類。

        TF-DF加權的各種形式常被搜索引擎應用,作為文件與用戶查詢之間相關程度的度量或評級。

         詞頻( Term Frequency,TF) :指的是某一個給定的詞語在該文件中出現的頻率。這個數字是對詞數的歸一化,以防止偏向更長的文件。(同一個詞語在長文件里可能會比短文件有更高的詞數,而不管該詞語重要與否。) ,其中 表示詞語 i 在文檔 j 中出現的頻率, 表示 i 在 j 中出現的次數, 表示文檔 j 的總詞數。

         逆向文件頻率( Inverse Document Frequency,IDF) :是一個詞語普遍重要性的度量,某一特定詞語的IDF,可以由總文檔數目除以包含該詞語之文檔的數目,再將得到的商取對數得到 ,其中 表示詞語 i 在文檔集中的逆文檔頻率,N表示文檔集中的文檔總數, 表示文檔集中包含了詞語 i 的文檔數。

(11) TF-IDF對基於UGC推薦的改進 : ,為了避免熱門標簽和熱門物品獲得更多的權重,我們需要對「熱門進行懲罰。

          借鑒TF-IDF的思想,以一個物品的所有標簽作為「文檔」,標簽作為「詞語」,從而計算標簽的「詞頻」(在物品所有標簽中的頻率)和「逆文檔頻率」(在其它物品標簽中普遍出現的頻率)。

           由於「物品i的所有標簽」 應該對標簽權重沒有影響,而 「所有標簽總數」 N 對於所有標簽是一定的,所以這兩項可以略去。在簡單演算法的基礎上,直接加入對熱門標簽和熱門物品的懲罰項: ,其中, 記錄了標簽 b 被多少個不同的用戶使用過, 記錄了物品 i 被多少個不同的用戶打過標簽。

(一)協同過濾(Collaborative Filtering, CF)

1、基於協同過濾(CF)的推薦:基於內容( Content based,CB)主要利用的是用戶評價過的物品的內容特徵,而CF方法還可以利用其他用戶評分過的物品內容。

    CF可以解決CB的一些局限:

         - 物品內容不完全或者難以獲得時,依然可以通過其他用戶的反饋給出推薦。

        - CF基於用戶之間對物品的評價質量,避免了CB僅依賴內容可能造成的對物品質量判斷的干。

        - CF推薦不受內容限制,只要其他類似用戶給出了對不同物品的興趣,CF就可以給用戶推薦出內容差異很大的物品(但有某種內在聯系)

    分為兩類:基於近鄰和基於模型。

2、基於近鄰的推薦系統:根據的是相同「口碑」准則。是否應該給Cary推薦《泰坦尼克號》?

(二)基於近鄰的協同過濾

1、 基於用戶(User-CF): 基於用戶的協同過濾推薦的基本原理是,根據所有用戶對物品的偏好,發現與當前用戶口味和偏好相似的「鄰居」用戶群,並推薦近鄰所偏好的物品。

     在一般的應用中是採用計算「K-近鄰」的演算法;基於這K個鄰居的歷史偏好信息,為當前用戶進行推薦。

    User-CF和基於人口統計學的推薦機制:

        - 兩者都是計算用戶的相似度,並基於相似的「鄰居」用戶群計算推薦。

        - 它們所不同的是如何計算用戶的相似度:基於人口統計學的機制只考慮用戶本身的特徵,而基於用戶的協同過濾機制可是在用戶的歷史偏好的數據上計算用戶的相似度,它的基本假設是,喜歡類似物品的用戶可能有相同或者相似的口味和偏好。

2、基於物品(Item-CF):基於項目的協同過濾推薦的基本原理與基於用戶的類似,只是使用所有用戶對物品的偏好,發現物品和物品之間的相似度,然後根據用戶的歷史偏好信息,將類似的物品推薦給用戶。

    Item-CF和基於內容(CB)的推薦

       - 其實都是基於物品相似度預測推薦,只是相似度計算的方法不一樣,前者是從用戶歷史的偏好推斷,而後者是基於物品本身的屬性特徵信息。

   同樣是協同過濾,在基於用戶和基於項目兩個策略中應該如何選擇呢?

        - 電商、電影、音樂網站,用戶數量遠大於物品數量。

        - 新聞網站,物品(新聞文本)數量可能大於用戶數量。

3、 User-CF和Item-CF的比較

     同樣是協同過濾,在User-CF和ltem-CF兩個策略中應該如何選擇呢?

     Item-CF應用場景

       -  基於物品的協同過濾( Item-CF ) 推薦機制是 Amazon在基於用戶的機制上改良的一種策略因為在大部分的Web站點中,物品的個數是遠遠小於用戶的數量的,而且物品的個數和相似度相對比較穩定,同時基於物品的機制比基於用戶的實時性更好一些,所以 Item-CF 成為了目前推薦策略的主流。

     User-CF應用場景

        - 設想一下在一些新聞推薦系統中,也許物品一一也就是新聞的個數可能大於用戶的個數,而且新聞的更新程度也有很快,所以它的相似度依然不穩定,這時用 User-cf可能效果更好。

    所以,推薦策略的選擇其實和具體的應用場景有很大的關系。

4、 基於協同過濾的推薦優缺點

 (1)基於協同過濾的推薦機制的優點:

        它不需要對物品或者用戶進行嚴格的建模,而且不要求對物品特徵的描述是機器可理解的,所以這種方法也是領域無關的。

       這種方法計算出來的推薦是開放的,可以共用他人的經驗,很好的支持用戶發現潛在的興趣偏好。

(2)存在的問題

        方法的核心是基於歷史數據,所以對新物品和新用戶都有「冷啟動」的問題。

        推薦的效果依賴於用戶歷史好數據的多少和准確性。

        在大部分的實現中,用戶歷史偏好是用稀疏矩陣進行存儲的,而稀疏矩陣上的計算有些明顯的問題,包括可能少部分人的錯誤偏好會對推薦的准確度有很大的影響等等。

        對於一些特殊品味的用戶不能給予很好的推薦。

(三)基於模型的協同過濾

1、基本思想

(1)用戶具有一定的特徵,決定著他的偏好選擇

(2)物品具有一定的特徵,影響著用戶需是否選擇它。

(3)用戶之所以選擇某一個商品,是因為用戶特徵與物品特徵相互匹配。

    基於這種思想,模型的建立相當於從行為數據中提取特徵,給用戶和物品同時打上「標簽」;這和基於人口統計學的用戶標簽、基於內容方法的物品標簽本質是一樣的,都是特徵的提取和匹配。

    有顯性特徵時(比如用戶標簽、物品分類標簽)我們可以直接匹配做出推薦;沒有時,可以根據已有的偏好數據,去發據出隱藏的特徵,這需要用到隱語義模型(LFM)。

2、基於模型的協同過濾推薦,就是基於樣本的用戶偏好信息,訓練一個推薦模型,然後根據實時的用戶喜好的信息進行預測新物品的得分,計算推薦

    基於近鄰的推薦和基於模型的推薦

        - 基於近鄰的推薦是在預測時直接使用已有的用戶偏好數據,通過近鄰數據來預測對新物品的偏好(類似分類)

        - 而基於模型的方法,是要使用這些偏好數據來訓練模型,找到內在規律,再用模型來做預測(類似回歸)

    訓練模型時,可以基於標簽內容來提取物品特徵,也可以讓模型去發據物品的潛在特徵;這樣的模型被稱為 隱語義模型 ( Latent Factor Model,LFM)。

(1)隱語義模型(LFM):用隱語義模型來進行協同過濾的目標:

            - 揭示隱藏的特徵,這些特徵能夠解釋為什麼給出對應的預測評分

            - 這類特徵可能是無法直接用語言解釋描述的,事實上我們並不需要知道,類似「玄學」

        通過矩陣分解進行降維分析

            - 協同過濾演算法非常依賴歷史數據,而一般的推薦系統中,偏好數據又往往是稀疏的;這就需要對原始數據做降維處理。

            - 分解之後的矩陣,就代表了用戶和物品的隱藏特徵

        隱語義模型的實例:基於概率的隱語義分析(pLSA)、隱式迪利克雷分布模型(LDA)、矩陣因子分解模型(基於奇異值分解的模型,SVD)

(2)LFM降維方法——矩陣因子分解

(3)LFM的進一步理解

    我們可以認為,用戶之所以給電影打出這樣的分數,是有內在原因的,我們可以挖掘出影響用戶打分的隱藏因素,進而根據未評分電影與這些隱藏因素的關聯度,決定此未評分電影的預測評分。

    應該有一些隱藏的因素,影響用戶的打分,比如電影:演員、題材、年代…甚至不定是人直接可以理解的隱藏因子。

    找到隱藏因子,可以對user和Iiem進行關聯(找到是由於什麼使得user喜歡/不喜歡此Item,什麼會決定user喜歡/不喜歡此item),就可以推測用戶是否會喜歡某一部未看過的電影。

(4)矩陣因子分解

(5)模型的求解——損失函數

(6)模型的求解演算法——ALS

    現在,矩陣因子分解的問題已經轉化成了一個標準的優化問題,需要求解P、Q,使目標損失函數取最小值。

    最小化過程的求解,一般採用隨機梯度下降演算法或者交替最小二乘法來實現交替最小二乘法( Alternating Least Squares,ALS)

    ALS的思想是,由於兩個矩陣P和Q都未知,且通過矩陣乘法耦合在一起,為了使它們解耦,可以先固定Q,把P當作變數,通過損失函數最小化求出P,這就是一個經典的最小二乘問題;再反過來固定求得的P,把Q當作變數,求解出Q:如此交替執行,直到誤差滿足閱值條件,或者到達迭代上限。

(7)梯度下降演算法

㈥ 信息流的那點事:3 推薦演算法是如何實現的

講完信息流流行的原因( 信息流的那點事:2 為什麼信息流如此流行 ),這一篇,我們來從產品的視角,來看看推薦演算法在技術上是如何實現的。

根據需要的技術和運營成本,可以將主流的推薦演算法分為三類:基於內容元數據的推薦、基於用戶畫像的推薦、基於協同過濾演算法的推薦。

基於元數據的推薦是比較基礎的推薦演算法,基本原理是給內容打標簽,具體元數據的選取根據的內容有所不同,比較通用的角度有內容的關鍵詞、類型、作者、來源等,打開一款頭條類app,選擇屏蔽一條內容,就可以看到一些該內容的元數據。

有了內容的元數據,就可以根據內容間的關聯,可以進行相關內容的推薦,喜歡看奇葩說的用戶,可能也會喜歡看同是米未傳媒出品的飯局的誘惑。根據內容的元數據,也可以記錄並逐漸明確用戶的內容偏好,進行數據積累,便於結合用戶的喜好進行對應的精準推薦,這也就是下面要說的基於用戶畫像的推薦的內容。

用戶畫像,類比一下就是給用戶打標簽,主要由三部分組成:用戶的基礎數據(年齡、性別等)、應用使用數據(應用使用頻率、時長等)和內容偏好數據(喜好的內容分類、種類等)。

對於基礎數據,不同年齡的用戶的內容偏好有很大差異,年輕人可能更喜歡新歌熱歌,而中年人可能更愛聽懷舊一些的歌曲;根據應用使用數據,可以進行用戶分層,活躍用戶可以多推薦內容促進使用,快要流失用戶可以推送一些打開率較高的內容來挽回,運營活動也可以更有針對性;基於內容偏好數據,可以記錄並逐漸明確用戶的內容偏好,從而進行更精準的推薦,從愛看娛樂新聞,到愛看國內明星,再到愛看某個小鮮肉,隨著內容偏好數據的逐步積累,頭條類產品的推薦也就越精確。

協同過濾演算法,簡單來說,就是尋找相近的用戶或內容來進行推薦,主要有基於用戶的協同過濾推薦和基於項目的協同過濾推薦兩種。

(1)基於用戶的協同過濾推薦

基於用戶的協同過濾推薦演算法,就是通過演算法分析出與你內容偏好相近的用戶,將他喜歡的內容推薦給你,這種推薦給你志同道合的人愛看的內容的思路,更相近於生活中的朋友作為同道中人的推薦。舉例來說,如果你喜歡ABC,而其他用戶在和你一樣喜歡ABC的同時,還都喜歡D,那麼就會把D推薦給你。

(2).基於內容的協同過濾推薦

基於內容的協同過濾推薦演算法,就是通過演算法分析出內容和內容之間的關聯度,根據你喜歡的內容推薦最相關的內容,常見的看了這個內容的用戶85%也喜歡xxx,就是這種思路。舉例來說,如果你喜歡A,而喜歡A的用戶都喜歡B,那麼就會把B推薦給你。

相比於純粹的基於內容元數據的推薦,基於內容的協同過濾推薦更能發現一些內容間深層次的聯系,比如羅輯思維經常推薦各種內容,僅僅根據內容元數據來推薦,一集羅輯思維最相關的應該是另外一集,並不能推薦內容元數據相關性不太大的節目里推薦的內容;但由於可能很多用戶看完後都會搜索查看節目里推薦的內容,基於內容的協同過濾推薦就會發現兩者的相關性,進行推薦。

介紹推薦演算法的思路時,我們一直談到一個詞「內容偏好」,這也就是實現推薦演算法時一個核心的問題——需要通過怎樣的數據,才能判定用戶的內容偏好?主流的思路有一下三種:

讓用戶手動選擇,顯然是最簡單的思路,然而由於選擇的空間必然有限,只能讓用戶從幾個大類中間挑選,無法涵蓋全部內容的同時,粒度過大推薦也就很難精準。而且剛打開應用就讓用戶選擇,或者是讓用戶使用一段時間後在去補充選擇,這樣的操作都太重可能造成用戶流失。

既然手動選擇很難實現,我們就需要從用戶的使用數據中挖掘,主流的思路就是根據用戶一些主動操作來判斷,點擊閱讀了就說明喜歡,點了贊或者回復分享就是特別喜歡,如果跳過了內容就減少推薦,點擊了不感興趣,就不再推薦。

根據用戶使用的操作來判斷內容偏好,在不斷地使用中積累與細化數據,對內容偏好的判斷也就越來越准確,這就是頭條系應用的主要策略,這樣的策略對於下沉市場的不願做出主動選擇的沉默用戶,是一個非常適合的策略,但這樣只看點擊與操作,不關注內容實際質量的策略也會造成標題黨、內容低俗等問題,在後文會進一步介紹。

既然選擇不能完全代表用戶的內容偏好,如何使判斷更加精準呢?就要從一些更加隱性的數據入手了,比如對於文章,除了點擊,閱讀時間,閱讀完成度,是否查看文章的相關推薦內容,都是可以考慮的角度,相比純粹的點擊判斷,可以一定程度上解決標題黨的問題。再比如看視頻,如果快進次數過多,雖然看完了,可能也不是特別感興趣,而值得反復回看的內容,命中內容偏好的幾率就相對較高。

介紹完了推薦演算法的原理與數據來源,讓我們來試著還原一下一條內容的完整分發流程。

首先,是內容的初始化與冷啟動。可以通過演算法對內容進行分析提取或者人工處理,提取內容的來源、分類、關鍵詞等元數據,再根據用戶畫像計算內容興趣匹配度,分發給有對應內容偏好的用戶,,也可以通過內容原匹配度,向關系鏈分發,完成內容的冷啟動。

然後,可以根據用戶閱讀時間,閱讀完成度,互動數等數據,對該內容的質量進行分析,相應的增加或者減少推薦,實現內容動態分發調節。

最後,就是協同過濾演算法發揮作用的時間,對於優質內容,可以通過基於用戶的協同過濾推薦,推薦給與該內容受眾有類似愛好的用戶,也可以基於項目的協同過濾推薦,推薦給愛觀看同類內容的用戶,讓優質內容的傳播不在局限於關系鏈。

在真正的推薦演算法實現過程中,除了基礎的內容原匹配度,內容匹配度和內容質量,還有很多值得考慮的問題,比如新聞通知等時效性內容就要短時間加權,超時則不推薦;對於用戶的內容偏好也不能永遠維持,隨著時間用戶可能會喜歡新的內容,如果一定時間內用戶對以前喜歡的內容不感興趣,就要減少該種類推薦;還有為了不陷入越喜歡越推薦,最後全部是一種內容,讓用戶厭煩的境地,對於用戶的偏好也要設定一個上限;為了保持新鮮度,需要幫助用戶發現他可能喜歡的新內容.....

最後,通過數據可以了解我們如何閱讀這篇文章,但任何數據都無法准確描述我們閱讀後的感受與收獲;再高級的演算法也只是演算法,它雖然可能比我們更了解我們實際的的內容偏好,但無法了解到我們對於內容的追求。

這可能也就是頭條系產品雖然收獲了巨大成功,但也收到了標題黨、低俗化、迴音室效應等指責的原因,下一篇,讓我們來聊聊,信息流產品的面臨的問題與可能的解決方法。

㈦ 常見的推薦演算法

根據用戶興趣和行為,向用戶推薦所需要的信息,幫助用戶在海量的信息中快速發現自己真正需要的東西。 所以推薦系統要解決的問題用戶沒用明確的需求以及信息存在過載 。推薦系統一般要基於以下來搭建:
1、根據業務來定義自身產品的熱門標准
2、用戶信息:比如性別、年齡、職業、收入等
3、用戶行為
4、社會化關系

1、非個性化推薦
在冷啟動方面我們精彩用非個性化推薦來解決問題。常見的有:熱門推薦,編輯推薦,最新推薦等。下面是3個場景下的排序介紹:
熱門推薦:根據業務類型確定排名核心指標,比如閱讀數,其次要考慮避免馬太效應,所以增加1個維度:時間。一般情況一個內容的熱度是隨著時間不斷下降的,所以需要設定重力因子G,它決定熱度隨著時間流逝下降的速度。熱度初始值由閱讀數決定,我們假設R為閱讀書,距離發帖時間的時間為T,重力因子為G,熱度為rank。 根據熱度隨著時間而不斷下降,且是非線性的,所以我們用指數函數來表達時間和熱度的關系:rank=R/(T)^G,下圖為熱度的基本曲線:

通過該函數,我們可以隨意調整參數來控制曲線的平坦和陡峭,如果G越大,曲線越陡峭說明熱度下降越快。如果我們要調整熱度初始值,可對R進行調整,比如R1=R^0.8,來縮短每篇文章的初始熱度值
編輯推薦:一般由編輯在後台進行設置
最新推薦:如果無其他規則,一般按內容更新時間/創建時間來倒序

2、基於用戶基本信息推薦(人口統計學)
根據系統用戶的基本信息如:領域、職位、工作年齡、性別和所在地等。根據這些信息給用戶推薦感興趣或者相關的內容。
常見的用戶基本信息有:性別,年齡,工作、收入、領域、職位、所在地,手機型號、網路條件、安裝渠道、操作系統等等。根據這些信息來關聯我們數據源,比如年齡-關聯電影表、收入-關聯商品類型表,性別-文章關聯表等等。然後設定權重,給予個性化的推薦。
步驟1:用戶建模,收集用戶基本信息,建立興趣圖譜,標簽體系樹狀結構然後配上權重
步驟2:內容建模,細分內容的元數據,將步驟1的用戶標簽和元數據連接,然後進行推薦

2、基於內容基本的推薦
根據推薦物品或者信息的元數據,發現物品或者信息的相關性, 然後基於用戶以往的喜好記錄 ,推薦給用戶相似的物品。
內容的一些基本屬性:tag、領域、主題、類型、關鍵字、來源等

3、基於協同過濾的推薦
這種演算法基於一種物以類聚人以群分的假設, 喜歡相同物品的用戶更有可能具有相同的興趣 。基於協同過濾推薦系統一般應用於有用戶評分的系統中,通過分數去刻畫用戶對於物品的喜好。根據維度可分為2種:
1、基於用戶:找到和你相似的人推薦他們看過而你沒有看過的內容
比如下面,系統判斷甲乙2個用戶是相似的,那麼會給甲推薦短視頻相關內容,會給乙推薦數據分析相關內容
甲:產品經理、運營、數據分析
乙:產品經理、運營、短視頻
丙:比特幣、創業、矽谷
步驟1:找到和目標用戶興趣相似的用戶集合
步驟2:找到集合中用戶喜歡的且目標用戶沒有被推薦過的內容

2、基於物品:以物為本建立各商品之間相似度關系矩陣,用戶看了x也會看y
比如下面,甲和乙分別不約而同看了產品經理和數據分析,說明喜歡產品經理和數據分析的用戶重合度高,說明兩個內容相似。所以給喜歡產品經理的人推薦數據分析,給喜歡數據分析的人推薦產品經理。
這么理解:喜歡產品經理的人有m人,喜歡數據分析有n人,其中m中有80%用戶與n中80%的用戶是一樣的,就意味著喜歡產品經理的用戶也會喜歡數據分析。
產品經理:甲、乙,丁
數據分析:甲、乙,戊
增長黑客:甲、丙
喜歡物品A的用戶,可能也會喜歡與物品A相似的物品B,通過歷史行為計算出2個物品的相似度(比如m人喜歡A,n人喜歡B,有k人喜歡A又喜歡B,那麼A和B的相似度可計算為k/m或者n,因為k屬於m和n),這個推薦和內容推薦演算法區別是內容推薦演算法是根據內容的屬性來關聯, 而基於物品的協同過濾則是根據用戶的行為對內容進行關聯

4、基於用戶社交關系推薦
用戶與誰交朋友或者關系好,在一定程度上朋友的需求和自身的需求是相似的。所以向用戶推薦好友喜歡的東西。本質上是好友關系鏈版的基於用戶的協調過濾

5、推薦思路的拓展
根據不同使用場景進行不同的推薦,可細分的場景包括用戶使用的:時間、地點、心情、網路環境、興趣、上下文信息以及使用場景。每個場景的推薦內容都不一樣,所以往往一個系統都是由多種推薦方式組成,比如加權混合。
加權混合:用線性公式將幾種不同的推薦按照一定權重組合起來,具體權重值需要反復測試調整。例子:加權混合=推薦1結果*a+推薦2結果*b+...+推薦n結果*n,其中abn為權重,和為1

下面分享一張來自知乎的圖,供學習,侵刪:

基於用戶信息的推薦 與 基於用戶的協同過濾:
兩者都是計算用戶的相似度, 但基於用戶信息的推薦只考慮用戶本身信息來計算相似度,而基於用戶的協同過濾是基於用戶歷史偏好來計算相似度

基於內容的信息推薦 與 基於物品的協同過濾:
兩者都是計算物品的相似度, 但是基於內容的信息推薦只考慮物品本身的屬性特徵來計算相似度,而基於物品的協同過濾是基於用戶歷史偏好來計算相似度

基於用戶信息的推薦特點:
1、不需要歷史數據,對用戶基本信息建模
2、不依賴於物品,所以其他領域可無縫接入
3、因為用戶基本信息一般變化不大,所以推薦效果一般

基於內容信息的推薦特點:
1、物品屬性有限,很難獲得有效又全的數據
2、需要獲取用戶喜歡的歷史內容,再來推薦與內容相似的東西,所以有冷啟動問題

基於用戶/基於物品的協同過濾推薦特點:
1、需要獲取用戶的歷史偏好,所以有冷啟動問題
2、推薦效果依賴於大數據,數據越多,推薦效果就越好

㈧ 推薦演算法有哪些

推薦演算法大致可以分為三類:基於內容的推薦演算法、協同過濾推薦演算法和基於知識的推薦演算法。 基於內容的推薦演算法,原理是用戶喜歡和自己關注過的Item在內容上類似的Item,比如你看了哈利波特I,基於內容的推薦演算法發現哈利波特II-VI,與你以前觀看的在內容上面(共有很多關鍵詞)有很大關聯性,就把後者推薦給你,這種方法可以避免Item的冷啟動問題(冷啟動:如果一個Item從沒有被關注過,其他推薦演算法則很少會去推薦,但是基於內容的推薦演算法可以分析Item之間的關系,實現推薦),弊端在於推薦的Item可能會重復,典型的就是新聞推薦,如果你看了一則關於MH370的新聞,很可能推薦的新聞和你瀏覽過的,內容一致;另外一個弊端則是對於一些多媒體的推薦(比如音樂、電影、圖片等)由於很難提內容特徵,則很難進行推薦,一種解決方式則是人工給這些Item打標簽。 協同過濾演算法,原理是用戶喜歡那些具有相似興趣的用戶喜歡過的商品,比如你的朋友喜歡電影哈利波特I,那麼就會推薦給你,這是最簡單的基於用戶的協同過濾演算法(user-based collaboratIve filtering),還有一種是基於Item的協同過濾演算法(item-based collaborative filtering),這兩種方法都是將用戶的所有數據讀入到內存中進行運算的,因此成為Memory-based Collaborative Filtering,另一種則是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚類,SVD,Matrix Factorization等,這種方法訓練過程比較長,但是訓練完成後,推薦過程比較快。 最後一種方法是基於知識的推薦演算法,也有人將這種方法歸為基於內容的推薦,這種方法比較典型的是構建領域本體,或者是建立一定的規則,進行推薦。 混合推薦演算法,則會融合以上方法,以加權或者串聯、並聯等方式盡心融合。 當然,推薦系統還包括很多方法,其實機器學習或者數據挖掘裡面的方法,很多都可以應用在推薦系統中,比如說LR、GBDT、RF(這三種方法在一些電商推薦裡面經常用到),社交網路裡面的圖結構等,都可以說是推薦方法。

㈨ 個性化推薦演算法

隨著演算法的普及,大量的產品有了個性化推薦的功能,這也成為內容類產品的標配。個性化定製化逐漸成為了互聯網思維的新補充,被提升到了越來越重要的地位。演算法推薦經過了很長一段時間的發展,才逐漸達到能給用戶驚喜的階段。比如在電商領域,推薦演算法可以挖掘用戶潛在購買需求,縮短用戶選取商品的時間,提升用戶的購物體驗;在新聞或段視頻領域,推薦演算法可以推送用戶喜歡的內容,提高用戶的閱讀效率,減少用戶選擇內容的時間,也增加了用戶在產品上的停留時長。

演算法應用階段

內容類產品發展初期,推薦演算法一般為「熱度演算法」,就是系統把熱點內容優先推薦送給用戶,完成熱點內容的高閱讀率。在積累了一定的用戶數據後,會發現用戶閱讀內容過於集中於熱點信息,長尾信息中的優質資源往往被忽略,造成資源浪費。「千人一面」的狀況已不是一個優質的解決方案,所以演算法逐漸演變為「個性化推薦」,也就是協同過濾的方法論支撐下的一種演算法。協同過濾能很好的根據用戶的喜好,推薦匹配的內容,減少資源浪費,增加用戶使用的友好體驗。真正做到「千人千面」。

推薦演算法的信息來源

第三方數據

一個新系統在初期沒有數據積累的情況下,可與第三方合作,互授部分信息共享。比如,很多系統支持微信登陸,這時候可以獲取客戶的微信信息,生活地點,部分生活習慣等。同時會獲取用戶的社交信息,共同好友越多表明圈子越相似,可以推薦更多相似的內容。

用戶行為數據

記錄用戶在系統內的使用習慣,可以准確的描述單個用戶的行為特徵,愛好特徵等有效的信息,系統根據提取出的分析結果,將內容與之匹配,完成更精準的推薦。如,某用戶經常瀏覽體育信息,系統將對應推薦更多體育相關的咨詢,省去用戶搜索篩選的時間。

基於生活習慣

基於生活習慣,生活常識的推薦,往往也可以作為內置的一個信息來源途徑。比如,外賣的app推薦用戶的餐廳,一般默認是位置優先,就近推薦,如果是快中午的時間段使用,系統默認推薦午餐,其次是晚餐。靠生活常識作出的系統演算法,可以更符合人類的習慣,給用戶更好的體驗。

熱度演算法

熱度演算法簡單的說就是把最核心的內容優先推薦,用新聞舉例,每一條新聞都具有實效性,隨著時間的推移,該條新聞的關注度降低,關注點被新的熱點新聞取代。量化以上的過程,把各個影響因素設定為變數,會得出以下的公式:

新聞熱度=初始熱度分+用戶交互熱度分-衰減熱度分

初始熱度分為新聞產生時,系統對新聞主體的預判熱度值。預判的分值一般為以下兩種模式,一種情況,按照新聞類別的不同,娛樂新聞大於財經新聞,大於國際新聞,大於文化新聞等等系統的預設,依次給出不同的初始熱度分;另一種情況,系統預置熱詞詞庫,用新聞的關鍵詞和詞庫的去匹配,匹配度高的,初始熱度分高。

用戶的交互熱度分也是一個變數,先要明確用的哪些行為會影響新聞熱度,然後對這些行為量化,加權或打分等方式。例如,網易雲音樂,用戶的聽歌,重復循環,收藏,評論,分享等行為,系統為每一種行為打分,求和後得出用戶交互的熱度分:

用戶交互熱度分=聽歌X10+循環X5+收藏X10+評論X5+分享X3

此公式還可以繼續細化,每一種操作的分值也可以作為變數,在產品前期時,傳播產品為主要任務,所以分享的加權要大一些,隨著網易雲的發展,社區的概念逐漸強化,評論區互動的加權會加大,所以評論的分值會增加,系統隨時調整分數加權,得出更准確的用戶交互的影響值。

衰減熱度分是一個隨時間變化而變化的數值,往往是一個函數的表達。用新聞舉例,新聞的熱度會隨著時間的推移而衰減,並且趨勢是越來越快,人們在接受新的熱點後,迅速忘記「舊聞」,直至熱度趨近於零。根據理論數據,構建函數,准確的表達衰減分值。

還有很多其他的影響因素,比如傳播次數,傳播層數,停留時長等等,都會影響熱度值,要想更精準的表達,就需要把涉及到的因素都作為變數,不斷完善演算法,才能更精準的完成推薦。

個性化推薦演算法

隨著用戶量的增加,產品日活的增加,用戶也不能僅限於千人一面熱點閱讀的模式中,個性化推薦在此時顯得尤為重要。個性化推薦有兩種常見的解決方案,一種是基於內容的推薦演算法,推薦內容往往是根據用戶的使用習慣得來,較為精準;另一種是基於用戶的協同推薦演算法,系統會根據以往使用內容,為用戶建模,然後根據群體中個體的使用習慣,推薦更多超預期的內容,達到預測推薦的效果。

基於內容的推薦演算法-預期內

基於內容的推薦演算法,靠收集用戶的使用習慣,進而推薦相關的內容。系統使用分詞庫匹配、關鍵詞匹配等等方式,達到內容的匹配,做到內容的精確劃分。比如,用戶瀏覽了某部科幻電影,系統就會按照該電影所對應的標簽,如科幻,然後系統推薦相同標簽的影片給用戶。

這樣的推薦方案,確定性強,推薦的內容都是根據用戶的歷史來確定,不能挖掘用戶的潛在需求。

基於用戶的協同推薦-超預期

做到精準推薦後,系統會繼續挖掘更潛在的推薦需求,給用戶超預期的推薦體驗。這就到了基於用戶協同推薦的階段。簡單的說,這種演算法是增加了用戶建模的環節,將同標簽的用戶群分,對比群體中單個個體的特徵,默認這種特徵為這類人的潛在特徵,再將此特徵內容推薦給同標簽的用戶,達到超預期的推薦效果。

比如,某用戶購買了一個蘋果手機,系統會將此用戶歸類為果粉,系統識別出很多果粉除了買蘋果的商品,還會購買小米作為備用機,這個特徵會被系統識別為潛在需求,推薦給果粉,減少果粉選擇備用機的時間。

這樣的推薦演算法,不僅能完成精準的推薦,還能給用戶小驚喜,讓系統「有溫度」。但是這樣的推薦方式,往往需要積累了大量用戶資料為基礎,才可以精確的完成。

㈩ 猜你喜歡是如何猜的——常見推薦演算法介紹

自從頭條系的產品今日頭條和抖音火了之後,個性化推薦就進入了大眾的視野,如果我們說搜索時人找信息的話,那麼推薦就是信息找人。搜索是通過用戶主動輸入索引信息告訴機器自己想要的東西,那麼推薦的這個索引是什麼才能讓信息找到人呢?

第一類索引是「你的歷史」,即基於你以前在平台上對某物品產生的行為(點贊,轉發,評論或者收藏),尋找與你產生過相似行為的用戶所喜歡的其他物品或者與你喜歡的物品相似的其他物品來為你推薦。這一基於用戶行為相似的演算法有:協同過濾演算法、基於內容的推薦演算法和基於標簽的推薦演算法。

基於用戶的協同過濾演算法是尋找與A用戶有相似行為的所有B用戶所喜歡的而A用戶還不知道的物品推薦給A用戶 。該演算法包括兩個步驟:

-根據用戶所喜歡的物品計算用戶間相似度,找到與目標用戶相似的用戶集合;

-找到該用戶集合所喜歡的而目標用戶所不知道的物品。

那麼,找出一批物品以後哪個先推薦哪個後推薦?用戶間相似程度大的先推薦,用戶對物品的感興趣程度大要先推薦。即假設A用戶與B用戶的相似程度為0.9,與C用戶的相似程度為0.7,用戶B喜歡物品a和物品b的程度分別為1和2,用戶C喜歡物品a和物品b的程度分別為0.1和0.5,那麼先推薦物品b。多個用戶多個物品,只要擬定了用戶間的相似度和用戶對物品的感興趣程度,即可對物品進行打分並且進行綜合排序。

基於物品的協同過濾演算法是根據用戶行為而不是物品本身的相似度來判斷物品的相似度 ,即如果物品A和物品B被很多的用戶同時喜歡,那麼我們就認為物品A和物品B是相似的。該演算法也是包括兩個步驟:

-根據用戶行為計算物品間的相似度;

-根據物品的相似度和用戶的歷史行為給用戶生成推薦列表。

與UserCF相似的是,同樣會遇到推薦的先後順序問題,那麼ItemCF所遵循的原則是:物品間相似程度大的先推薦,用戶對物品的感興趣程度大要先推薦。假設用戶對物品a和物品b感興趣的程度分別為1和0.5,物品a與物品c和物品d的相似度分別為0.5和0.1,物品b與物品c和物品d的相似度分別為0.3和0.4,那麼先推薦物品d。用戶喜歡多個物品,並且多個物品與其他物品都有相似的情況下,只要擬定了用物品間的相似度和用戶對物品的感興趣程度,即可對物品進行打分並且進行綜合排序。

協同過濾演算法的核心都是通過用戶行為來計算相似度,User-CF是通過用戶行為來計算用戶間的相似度,Item-CF是通過用戶行為來計算物品間的相似度。

推薦演算法很重要的一個原理是為用戶推薦與用戶喜歡的物品相似的用戶又不知道的物品。物品的協同過濾演算法是通過用戶行為來衡量物品間的相似(喜歡物品A的用戶中,同時喜歡物品B的用戶比例越高,物品A與物品B的相似程度越高),而基於內容的推薦演算法衡量則是通過物品本身的內容相似度來衡量物品間的相似。

假如,你看了東野圭吾的《解憂雜貨店》,那麼下次系統會給你推薦東野圭吾的《白夜行》。假設你看了小李子的《泰坦尼克號》,系統再給你推薦小李子的《荒野獵人》。

該演算法與前兩種不同的是,將用戶和物品之間使用「標簽」進行聯系,讓用戶對喜歡的物品做記號(標簽),將同樣具有這些記號(標簽)的其他物品認為很大程度是相似的並推薦給用戶。其基本步驟如下:

統計用戶最常用的標簽

對於每個標簽,統計最常被打過這個標簽次數最多的物品

將具有這些標簽最熱門的物品推薦給該用戶

目前,國內APP中,豆瓣就是使用基於標簽的推薦演算法做個性化的推薦。

第二類索引是「你的朋友」,基於你的社交好友來進行推薦,即基於社交網路的推薦。例如,微信看一看中的功能「朋友在看」就是最簡單的基於社交網路的推薦,只要用戶點擊公眾號文章的「在看」,就會出現在其好友的「朋友在看」的列表中。

復雜一點的演算法會考慮用戶之間的熟悉程度和興趣的相似度來進行推薦。目前,在信息流推薦領域,基於社交網路進行推薦的最流行的演算法是Facebook的EdgeRank演算法,即為用戶推薦其好友最近產生過重要行為(評論點贊轉發收藏)的信息。

第三類索引是「你所處的環境」,基於你所處的時間、地點等上下文信息進行推薦。例如,我們看到很APP中的「最近最熱門」,就是基於時間上下文的非個性化推薦;以及,美團和餓了么這些基於位置提供服務的APP中,「附近商家」這一功能就是基於用戶位置進行推薦。高德地圖在為用戶推薦駕駛路線時,會考慮不同路線的擁堵程度、紅綠燈數量等計算路線用和路程距離再進行綜合排序推薦。

很多時候,基於時間上下文的推薦會協同過濾這類個性化推薦演算法結合使用。例如,在使用協同過濾推薦策略的時候,會將時間作為其中一個因素考慮進入推薦策略中,最近的信息先推薦。

以上就是常見的推薦演算法。作為產品人,我們不需要知道如何實現,但是我們必須知道這些推薦演算法的原理,知道在什麼場景下如何去做推薦才能提升推薦的效率,這才是產品經理的價值所在。

參考資料:《推薦演算法實戰》項亮

熱點內容
迭代法編程c 發布:2025-05-15 04:58:01 瀏覽:814
用什麼dns伺服器地址快 發布:2025-05-15 04:52:59 瀏覽:26
手機端so反編譯 發布:2025-05-15 04:50:55 瀏覽:610
linuxlamp安裝 發布:2025-05-15 04:50:45 瀏覽:578
sqlplus緩存區怎麼設置 發布:2025-05-15 04:50:44 瀏覽:858
shell腳本環境變數 發布:2025-05-15 04:45:18 瀏覽:693
安卓nba2k18什麼時候出 發布:2025-05-15 04:38:42 瀏覽:393
王者安卓轉蘋果為什麼顯示失敗 發布:2025-05-15 04:35:49 瀏覽:18
手機優酷緩存視頻格式 發布:2025-05-15 04:13:45 瀏覽:210
公益電影分鏡頭腳本插畫 發布:2025-05-15 04:08:37 瀏覽:961