視頻跟蹤演算法
A. 視覺追蹤的分類
(1)單攝像頭與多攝像頭
在視頻跟蹤的過程中,根據使用的攝像頭的數目,可將目標跟蹤方法分為單攝像頭跟蹤方法(Monocular camera)與多攝像頭跟蹤方法(Multiple cameras)。由於單攝像頭視野有限,大范圍場景下的目標跟蹤需要使用多攝像頭系統。基於多個攝像頭的跟蹤方法有利於解決遮擋問題,場景混亂、環境光照突變情況下的目標跟蹤問題。
(2)攝像頭靜止與攝像頭運動
在實際的目標跟蹤系統中,攝像頭可以是固定在某個位置,不發生變化,也可以是運動,不固定的。例如,對於大多數的視頻監視系統而言,都是在攝像機靜止狀態下,對特定關注區域進目標的識別跟蹤;而在視覺導航等的應用系統中,攝像頭往往隨著無人汽車、無人機等載體進行運動。
(3)單目標跟蹤與多目標跟蹤
根據跟蹤目標的數量可以將跟蹤演算法分為單目標跟蹤與多目標跟蹤。相比單目標跟蹤而言,多目標跟蹤問題更加復雜和困難。多目標跟蹤問題需要考慮視頻序列中多個獨立目標的位置、大小等數據,多個目標各自外觀的變化、不同的運動方式、動態光照的影響以及多個目標之間相互遮擋、合並與分離等情況均是多目標跟蹤問題中的難點。
(4)剛體跟蹤與非剛體跟蹤
根據被跟蹤目標的結構屬性,可將跟蹤目標分為剛體與非剛體。所謂剛體,是指具備剛性結構、不易形變的物體,例如車輛等目標;非剛體通常指外形容易變形的物體,例如布料表面、衣服表面等。針對剛體目標的跟蹤一直得到廣泛深入的研究,而非剛體目標的跟蹤,由於目標發生變形以及出現自身遮擋等現象,不能直接應用基於剛體目標的跟蹤演算法針對非剛體目標的跟蹤一直是非常困難並且具有挑戰性的課題。
(5)可見光與紅外圖像的目標跟蹤
根據感測器成像的類型不同,目標跟蹤還可以分為基於可見光圖像的跟蹤和基於紅外圖像的跟蹤。目標的紅外圖像和目標的可見光圖像不同,它不是人眼所能看到的可見光圖像,而是目標表面溫度分布的圖像。紅外圖像屬於被動式成像,無需各種光源照明,全天候工作,安全隱敝,使用方便;紅外光較之可見光的波長長得多,透煙霧性能較好,可在夜間工作。可見光圖像具有光譜信息豐富、解析度高、動態范圍大等優點,但在夜間和低能見度等條件下,成像效果差。
比較常用的目標跟蹤演算法有以下幾種:基於目標運動特徵的跟蹤演算法,如:幀差分法、基於光流的跟蹤方法等;基於視頻序列前後相關性的目標跟蹤演算法,如:基於模板的相關跟蹤演算法、基於特徵點的相關跟蹤演算法等;基於目標特徵參數的跟蹤演算法,如基於輪廓的跟蹤演算法、基於特徵點的跟蹤演算法等。另外,很多研究者將小波、人工智慧、神經網路等相關知識應用於目標跟蹤領域,並取得了很好的效果。以上這些演算法各有其優缺點,應該根據應用場合進行選擇。
B. 視頻跟蹤都是用Opencv么
Opencv只是提供了一個圖像處理的庫,就是它自己的函數,而我們在硬體上的實現都是不會用它的,都是自己採用c語言或c++編寫的代碼,你說的跟蹤演算法也是需要自己開發的,根據自己的精度要求,選擇合適的演算法。應該沒有源代碼能提供,目前跟蹤是熱點,有的代碼都只是能簡單跟蹤,不會很精確。
C. 汽車的自動跟隨系統依靠前車的什麼進行檢測
自動跟蹤技術實際上是由大量的感測器和控制系統組成的。第一個車頭處,有監測前面車輛距離的雷達感測器,有測對方車速的測速器,左右兩側還有幾個雷達感測器監測車身兩側是否有來車。
自動跟蹤可提供運動目標的空間定位、姿態、結構行為和性能,是運動目標的多功能和高精度的跟蹤和測量手段,自動跟蹤由位置感測器、信號處理系統、伺服系統和跟蹤架等部分組成。
自動視頻跟蹤演算法模塊一般提供:目標捕捉、自動跟蹤、平台控制、電子穩像、圖像縮放平移旋轉、OSD功能。
自動跟蹤是連續跟蹤並測量運動目標軌跡參數的系統。自動跟蹤的目標是以一定速度和加速度運動的車輛、艦船、飛機、導彈和人造衛星等。
自動跟蹤可提供運動目標的空間定位、姿態、結構行為和性能,是運動目標的多功能和高精度的跟蹤和測量手段,自動跟蹤由位置感測器、信號處理系統、伺服系統和跟蹤架等部分組成。
D. 計算機視覺中,目前有哪些經典的目標跟蹤演算法
第一章介紹運動的分類、計算機視覺領域中運動分析模型、計算機視覺領域運動檢測和目標跟蹤技術研究現狀、計算機視覺領域中運動分析技術的難點等內容;
第二章介紹傳統的運動檢測和目標跟蹤演算法,包括背景差分法、幀間差分法、光流場評估演算法等;
第三章介紹具有周期性運動特徵的低速目標運動檢測和跟蹤演算法,並以CCD測量系統為例介紹該演算法的應用;
第四章介紹高速運動目標識別和跟蹤演算法,並以激光通信十信標光捕獲和跟蹤系統為例介紹該演算法的應用;
第五章介紹具有復雜背景的目標運動檢測過程中採用的光流場演算法,包括正規化相關的特性及其改進光流場評估演算法,並介紹改進光流場演算法的具體應用;
第六章介紹互補投票法實現可信賴運動向量估計。
E. opencv中目標跟蹤的演算法有哪些
是對MeanShift演算法的改進演算法,可以在跟蹤的過程中隨著目標大小的變化實時調整搜索窗口大小,對於視頻序列中的每一幀還是採用MeanShift來尋找最優迭代結果,至於如何實現自動調整窗口大小的,
F. 視頻顏色的識別與跟蹤實驗問題產生的原因
摘要 實際環境中光照變化、目標運動復雜性、遮擋、目標與背景顏色相似、雜亂背景等都會增加目標檢測與跟蹤演算法設計的難度,其難點問題主要在以下幾個方面:
G. 目標跟蹤檢測演算法(一)——傳統方法
姓名:劉帆;學號:20021210609;學院:電子工程學院
https://blog.csdn.net/qq_34919792/article/details/89893214
【嵌牛導讀】目標跟蹤演算法研究難點與挑戰在於實際復雜的應用環境 、背景相似干擾、光照條件的變化、遮擋等外界因素以及目標姿態變化,外觀變形,尺度變化、平面外旋轉、平面內旋轉、出視野、快速運動和運動模糊等。而且當目標跟蹤演算法投入實際應用時,不可避免的一個問題——實時性問題也是非常的重要。正是有了這些問題,才使得演算法研究充滿著難點和挑戰。
【嵌牛鼻子】目標跟蹤演算法,傳統演算法
【嵌牛提問】利用目標跟蹤檢測演算法要達到何目的?第一階段的單目標追蹤演算法包括什麼?具體步驟有哪些?它們有何特點?
【嵌牛正文】
第一階段
目標跟蹤分為兩個部分,一個是對指定目標尋找可以跟蹤的特徵,常用的有顏色,輪廓,特徵點,軌跡等,另一個是對目標特徵進行跟蹤。
1、靜態背景
1)背景差: 對背景的光照變化、雜訊干擾以及周期性運動等進行建模。通過當前幀減去背景圖來捕獲運動物體的過程。
2)幀差: 由於場景中的目標在運動,目標的影像在不同圖像幀中的位置不同。該類演算法對時間上連續的兩幀或三幀圖像進行差分運算,不同幀對應的像素點相減,判斷灰度差的絕對值,當絕對值超過一定閾值時,即可判斷為運動目標,從而實現目標的檢測功能。
與二幀差分法不同的是,三幀差分法(交並運算)去除了重影現象,可以檢測出較為完整的物體。幀間差分法的原理簡單,計算量小,能夠快速檢測出場景中的運動目標。但幀間差分法檢測的目標不完整,內部含有「空洞」,這是因為運動目標在相鄰幀之間的位置變化緩慢,目標內部在不同幀圖像中相重疊的部分很難檢測出來。幀間差分法通常不單獨用在目標檢測中,往往與其它的檢測演算法結合使用。
3)Codebook
演算法為圖像中每一個像素點建立一個碼本,每個碼本可以包括多個碼元(對應閾值范圍),在學習階段,對當前像素點進行匹配,如果該像素值在某個碼元的學習閾值內,也就是說與之前出現過的某種歷史情況偏離不大,則認為該像素點符合背景特徵,需要更新對應點的學習閾值和檢測閾值。
如果新來的像素值與每個碼元都不匹配,則可能是由於動態背景導致,這種情況下,我們需要為其建立一個新的碼元。每個像素點通過對應多個碼元,來適應復雜的動態背景。
在應用時,每隔一段時間選擇K幀通過更新演算法建立CodeBook背景模型,並且刪除超過一段時間未使用的碼元。
4)GMM
混合高斯模型(Gaussian of Micture Models,GMM)是較常用的背景去除方法之一(其他的還有均值法、中值法、滑動平均濾波等)。
首先我們需要了解單核高斯濾波的演算法步驟:
混合高斯建模GMM(Gaussian Mixture Model)作為單核高斯背景建模的擴展,是目前使用最廣泛的一種方法,GMM將背景模型描述為多個分布,每個像素的R、G、B三個通道像素值的變化分別由一個混合高斯模型分布來刻畫,符合其中一個分布模型的像素即為背景像素。作為最常用的一種背景建模方法,GMM有很多改進版本,比如利用紋理復雜度來更新差分閾值,通過像素變化的劇烈程度來動態調整學習率等。
5)ViBe(2011)
ViBe演算法主要特點是隨機背景更新策略,這和GMM有很大不同。其步驟和GMM類似。具體的思想就是為每個像素點存儲了一個樣本集,樣本集中采樣值就是該像素點過去的像素值和其鄰居點的像素值,然後將每一個新的像素值和樣本集進行比較來判斷是否屬於背景點。
其中pt(x)為新幀的像素值,R為設定值,p1、p2、p3….為樣本集中的像素值,以pt(x)為圓心R為半徑的圓被認為成一個集,當樣本集與此集的交集大於設定的閾值#min時,可認為此為背景像素點(交集越大,表示新像素點與樣本集越相關)。我們可以通過改變#min的值與R的值來改變模型的靈敏度。
Step1:初始化單幀圖像中每個像素點的背景模型。假設每一個像素和其鄰域像素的像素值在空域上有相似的分布。基於這種假設,每一個像素模型都可以用其鄰域中的像素來表示。為了保證背景模型符合統計學規律,鄰域的范圍要足夠大。當輸入第一幀圖像時,即t=0時,像素的背景模型。其中,NG(x,y)表示空域上相鄰的像素值,f(xi,yi)表示當前點的像素值。在N次的初始化的過程中,NG(x,y)中的像素點(xi,yi)被選中的可能次數為L=1,2,3,…,N。
Step2:對後續的圖像序列進行前景目標分割操作。當t=k時,像素點(x,y)的背景模型為BKm(x,y),像素值為fk(x,y)。按照下面判斷該像素值是否為前景。這里上標r是隨機選的;T是預先設置好的閾值。當fk(x,y)滿足符合背景#N次時,我們認為像素點fk(x,y)為背景,否則為前景。
Step3:ViBe演算法的更新在時間和空間上都具有隨機性。每一個背景點有1/ φ的概率去更新自己的模型樣本值,同時也有1/ φ的概率去更新它的鄰居點的模型樣本值。更新鄰居的樣本值利用了像素值的空間傳播特性,背景模型逐漸向外擴散,這也有利於Ghost區域的更快的識別。同時當前景點計數達到臨界值時將其變為背景,並有1/ φ的概率去更新自己的模型樣本值(為了減少緩慢移動物體的影響和攝像機的抖動)。
可以有如下總結,ViBe中的每一個像素點在更新的時候都有一個時間和空間上隨機影響的范圍,這個范圍很小,大概3x3的樣子,這個是考慮到攝像頭抖動時會有坐標的輕微來回變化,這樣雖然由於ViBe的判別方式仍認為是背景點,但是也會對後面的判別產生影響,為了保證空間的連續性,隨機更新減少了這個影響。而在樣本值保留在樣本集中的概率隨著時間的增大而變小,這就保證了像素模型在時間上面的延續特性。
6)光流
光流是由物體或相機的運動引起的圖像對象在兩個連續幀之間的視在運動模式。它是2D矢量場,其中每個矢量是一個位移矢量,顯示點從第一幀到第二幀的移動。
光流實際上是一種特徵點跟蹤方法,其計算的為向量,基於三點假設:
1、場景中目標的像素在幀間運動時亮度(像素值或其衍生值)不發生變化;2、幀間位移不能太大;3、同一表面上的鄰近點都在做相同的運動;
光流跟蹤過程:1)對一個連續視頻幀序列進行處理;2)對每一幀進行前景目標檢測;3)對某一幀出現的前景目標,找出具有代表性的特徵點(Harris角點);4)對於前後幀做像素值比較,尋找上一幀在當前幀中的最佳位置,從而得到前景目標在當前幀中的位置信息;5)重復上述步驟,即可實現目標跟蹤
2、運動場(分為相機固定,但是視角變化和相機是運動的)
1)運動建模(如視覺里程計運動模型、速度運動模型等)
運動學是對進行剛性位移的相機進行構型,一般通過6個變數來描述,3個直角坐標,3個歐拉角(橫滾、俯仰、偏航)。
Ⅰ、對相機的運動建模
由於這個不是我們本次所要討論的重點,但是在《概率機器人》一書中提出了很多很好的方法,相機的運動需要對圖像內的像素做位移矩陣和旋轉矩陣的坐標換算。除了對相機建立傳統的速度運動模型外,也可以用視覺里程計等通關過置信度的更新來得到概率最大位置。
Ⅱ、對於跟蹤目標的運動建模
該方法需要提前通過先驗知識知道所跟蹤的目標對象是什麼,比如車輛、行人、人臉等。通過對要跟蹤的目標進行建模,然後再利用該模型來進行實際的跟蹤。該方法必須提前知道要跟蹤的目標對象是什麼,然後再去跟蹤指定的目標,這是它的局限性,因而其推廣性相對比較差。(比如已知跟蹤的物體是羽毛球,那很容易通過前幾幀的取點,來建立整個羽毛球運動的拋物線模型)
2)核心搜索演算法(常見的預測演算法有Kalman(卡爾曼)濾波、擴展卡爾曼濾波、粒子濾波)
Ⅰ、Kalman 濾波
Kalman濾波器是通過前一狀態預測當前狀態,並使用當前觀測狀態進行校正,從而保證輸出狀態平穩變化,可有效抵抗觀測誤差。因此在運動目標跟蹤中也被廣泛使用。
在視頻處理的運動目標跟蹤里,每個目標的狀態可表示為(x,y,w,h),x和y表示目標位置,w和h表示目標寬高。一般地認為目標的寬高是不變的,而其運動速度是勻速,那麼目標的狀態向量就應該擴展為(x,y,w,h,dx,dy),其中dx和dy是目標當前時刻的速度。通過kalman濾波器來估計每個時刻目標狀態的大致過程為:
對視頻進行運動目標檢測,通過簡單匹配方法來給出目標的第一個和第二個狀態,從第三個狀態開始,就先使用kalman濾波器預測出當前狀態,再用當前幀圖像的檢測結果作為觀測值輸入給kalman濾波器,得到的校正結果就被認為是目標在當前幀的真實狀態。(其中,Zt為測量值,為預測值,ut為控制量,Kt為增益。)
Ⅱ、擴展卡爾曼濾波(EKF)和無跡卡爾曼濾波(UKF)
由於卡爾曼濾波的假設為線性問題,無法直接用在非線性問題上,EKF和UKF解決了這個問題(這個線性問題體現在用測量量來計算預測量的過程中)。EKF是通過構建線性函數g(x),與非線性函數相切,並對每一時刻所求得的g(x)做KF,如下圖所示。
UKF與EKF去求解雅可比矩陣擬合線性方程的方法不同,通過對那個先驗分布中的採集點,來線性化隨機變數的非線性函數。與EKF所用的方法不同,UKF產生的高斯分布和實際高斯分布更加接近,其引起的近似誤差也更小。
Ⅲ、粒子濾波
1、初始狀態:基於粒子濾波的目標追蹤方法是一種生成式跟蹤方法,所以要有一個初始化的階段。對於第一幀圖像,人工標定出待檢測的目標,對該目標區域提出特徵;
2、搜索階段:現在已經知道了目標的特徵,然後就在目標的周圍撒點(particle), 如:a)均勻的撒點;b)按高斯分布撒點,就是近的地方撒得多,遠的地方撒的少。論文里使用的是後一種方法。每一個粒子都計算所在區域內的顏色直方圖,如初始化提取特徵一樣,然後對所有的相似度進行歸一化。文中相似性使用的是巴氏距離;
3、重采樣:根據粒子權重對粒子進行篩選,篩選過程中,既要大量保留權重大的粒子,又要有一小部分權重小的粒子;
4、狀態轉移:將重采樣後的粒子帶入狀態轉移方程得到新的預測粒子;
5、測量及更新:對目標點特徵化,並計算各個粒子和目標間的巴氏距離,更新粒子的權重;
6、決策階段:每個粒子都獲得一個和目標的相似度,相似度越高,目標在該范圍出現的可能性越高,將保留的所有粒子通過相似度加權後的結果作為目標可能的位置。
3)Meanshift演算法
MeanShift演算法屬於核密度估計法,它不需要任何先驗知識而完全依靠特徵空間中樣本點的計算其密度函數值。對於一組采樣數據,直方圖法通常把數據的值域分成若干相等的區間,數據按區間分成若干組,每組數據的個數與總參數個數的比率就是每個單元的概率值;核密度估計法的原理相似於直方圖法,只是多了一個用於平滑數據的核函數。採用核函數估計法,在采樣充分的情況下,能夠漸進地收斂於任意的密度函數,即可以對服從任何分布的數據進行密度估計。
Meanshift演算法步驟
1、通過對初始點(或者上一幀的目標點)為圓心,繪制一個半徑為R的圓心,尋找特徵和該點相似的點所構成的向量;
2、所有向量相加,可以獲得一個向量疊加,這個向量指向特徵點多的方向;
3、取步驟二的向量終點為初始點重復步驟一、二,直到得到的向量小於一定的閾值,也就是說明當前位置是特徵點密度最密集的地方,停止迭代,認為該點為當前幀的目標點;
4)Camshift演算法
Camshift演算法是MeanShift演算法的改進,稱為連續自適應的MeanShift演算法。Camshift 是由Meanshift 推導而來 Meanshift主要是用在單張影像上,但是獨立一張影像分析對追蹤而言並無意義,Camshift 就是利用MeanShift的方法,對影像串列進行分析。
1、首先在影像串列中選擇目標區域。
2、計算此區域的顏色直方圖(特徵提取)。
3、用MeanShift演演算法來收斂欲追蹤的區域。
4、通過目標點的位置和向量信息計算新的窗口大小,並標示之。
5、以此為參數重復步驟三、四。
Camshift 關鍵就在於當目標的大小發生改變的時候,此演算法可以自適應調整目標區域繼續跟蹤。
3、小結
第一階段的單目標追蹤演算法基本上都是傳統方法,計算量小,在嵌入式等設備中落地較多,opencv中也預留了大量的介面。通過上面的兩節的介紹,我們不難發現,目標檢測演算法的步驟分為兩部分,一部分是對指定目標尋找可以跟蹤的特徵,常用的有顏色,輪廓,特徵點,軌跡等,另一部分是對目標特徵進行跟蹤,如上文所提及的方法。所以目標檢測方法的發展,也可總結為兩個方面,一個是如何去獲得更加具有區分性的可跟蹤的穩定特徵,另一個是如何建立幀與幀之間的數據關聯,保證跟蹤目標是正確的。
隨著以概率為基礎的卡爾曼濾波、粒子濾波或是以Meanshift為代表向量疊加方法在目標檢測的運用,使得目標檢測不再需要假設自身的一個狀態為靜止的,而是可以是運動的,更加符合復雜場景中的目標跟蹤。
H. sift演算法是什麼
Sift演算法是David Lowe於1999年提出的局部特徵描述子,並於2004年進行了更深入的發展和完善。Sift特徵匹配演算法可以處理兩幅圖像之間發生平移、旋轉、仿射變換情況下的匹配問題,具有很強的匹配能力。
這一演算法的靈感也十分的直觀,人眼觀測兩張圖片是否匹配時會注意到其中的典型區域(特徵點部分),如果我們能夠實現這一特徵點區域提取過程,再對所提取到的區域進行描述就可以實現特徵匹配了。
sift演算法的應用
SIFT演算法目前在軍事、工業和民用方面都得到了不同程度的應用,其應用已經滲透了很多領域,典型的應用如下:物體識別;機器人定位與導航;圖像拼接;三維建模;手勢識別;視頻跟蹤;筆記鑒定;指紋與人臉識別;犯罪現場特徵提取。
I. 若對一個視頻圖像中的人物進行跟蹤,會用到哪些圖像處理技術請用流程圖將之間
錄像監控人物活動時通常需要對人物進行跟蹤。人物的行為信息可以從他們運動產生軌跡線的特點以及他們之間的相互作用中推得。對單個對象的位置或者軌跡線進行分析,可以檢測出人物是否處在禁區、在跑、在跳或是在躲藏。把兩個人或是更多人的信息聯系在一起,就可以得到他們之間的互動信息。從採集的圖像獲取其中包含的物體信息的過程中,兩個步驟顯得尤為重要:前景檢測和目標跟蹤。本文中,我們提出了一種簡單的基於亮度對比度的前景檢測方法和一種僅僅依賴於對象匹配信息的跟蹤演算法,而不需要對模型進行統計學描述或是運動特性預測那麼麻煩。用到的追蹤器是英國工程和自然科學研究委員會在PerSer[14]項目中研發的軟體中的一部分。最初計劃與倫敦地鐵站(室內)的CCTVfootage合作,但相比獲得目標的精確軌跡,他們更側重於實時性和對象間相互作用的研究。雖然沒用到背景更新技術,這個演算法已經經過了PETS2001圖像集的測試,證明它能夠提供簡單的運動軌跡。建議事件監測的進一步研究要基於對象重心和運動軌跡