歷史測演算法
『壹』 歷史上第一個機器學習演算法是什麼
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器(強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。使用adaboost分類器可以排除一些不必要的訓練數據特徵,並將關鍵放在關鍵的訓練數據上面。
『貳』 類似BP神經網路,用歷史數據訓練然後預測的演算法有哪些
萬徑人蹤滅。
『叄』 中國古代算術發展史
中國數學發展史
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」
和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。
宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。
就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。
(三)屬於幾何方面的材料
自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。
中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。
漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。
圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。
在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。
祖沖之所得的結果π=355/133要比歐洲早一千多年。
在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。
中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果.
正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。
(四)屬於三角方面的材料
三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。
劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。
在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。
十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。
在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。
『肆』 質量成本管理中質量成本的預測方法中的比例測演算法的概念
比例測演算法是計算分析法的一種。
比例測演算法經過對歷史數據作數理統計方法的處理後,有關因素之間呈現出較強的規律比例關系,則可以找到某些反映內在規律的百分比例關系,用來作預測。
『伍』 經典目標檢測演算法介紹
姓名:牛曉銀;學號:20181213993;學院:計算機科學與技術
轉自:https://zhuanlan.hu.com/p/34142321
【嵌牛導讀】:目標檢測,也叫目標提取,是一種基於目標幾何和統計特徵的圖像分割。隨著計算機技術的發展和計算機視覺原理的廣泛應用,利用計算機圖像處理技術對目標進行實時跟蹤研究越來越熱門,對目標進行動態實時跟蹤定位在智能化交通系統、軍事目標檢測及醫學導航手術中手術器械定位等方面具有廣泛的應用價值。
【嵌牛鼻子】:目標檢測、檢測模型、計算機視覺
【嵌牛提問】:你知道或者用過哪些目標檢測演算法?
【嵌牛正文】:
(一)目標檢測經典工作回顧
本文結構
兩階段模型因其對圖片的兩階段處理得名,也稱為基於區域(Region-based)的方法,我們選取R-CNN系列工作作為這一類型的代表。
R-CNN: R-CNN系列的開山之作
論文鏈接: Rich feature hierarchies for accurate object detection and semantic segmentation
本文的兩大貢獻:1)CNN可用於基於區域的定位和分割物體;2)監督訓練樣本數緊缺時,在額外的數據上預訓練的模型經過fine-tuning可以取得很好的效果。第一個貢獻影響了之後幾乎所有2-stage方法,而第二個貢獻中用分類任務(Imagenet)中訓練好的模型作為基網路,在檢測問題上fine-tuning的做法也在之後的工作中一直沿用。
傳統的計算機視覺方法常用精心設計的手工特徵(如SIFT, HOG)描述圖像,而深度學習的方法則倡導習得特徵,從圖像分類任務的經驗來看,CNN網路自動習得的特徵取得的效果已經超出了手工設計的特徵。本篇在局部區域應用卷積網路,以發揮卷積網路學習高質量特徵的能力。
R-CNN將檢測抽象為兩個過程,一是基於圖片提出若干可能包含物體的區域(即圖片的局部裁剪,被稱為Region Proposal),文中使用的是Selective Search演算法;二是在提出的這些區域上運行當時表現最好的分類網路(AlexNet),得到每個區域內物體的類別。
另外,文章中的兩個做法值得注意。
一是數據的准備。輸入CNN前,我們需要根據Ground Truth對提出的Region Proposal進行標記,這里使用的指標是IoU(Intersection over Union,交並比)。IoU計算了兩個區域之交的面積跟它們之並的比,描述了兩個區域的重合程度。
文章中特別提到,IoU閾值的選擇對結果影響顯著,這里要談兩個threshold,一個用來識別正樣本(如跟ground truth的IoU大於0.5),另一個用來標記負樣本(即背景類,如IoU小於0.1),而介於兩者之間的則為難例(Hard Negatives),若標為正類,則包含了過多的背景信息,反之又包含了要檢測物體的特徵,因而這些Proposal便被忽略掉。
另一點是位置坐標的回歸(Bounding-Box Regression),這一過程是Region Proposal向Ground Truth調整,實現時加入了log/exp變換來使損失保持在合理的量級上,可以看做一種標准化(Normalization)操作。
小結
R-CNN的想法直接明了,即將檢測任務轉化為區域上的分類任務,是深度學習方法在檢測任務上的試水。模型本身存在的問題也很多,如需要訓練三個不同的模型(proposal, classification, regression)、重復計算過多導致的性能問題等。盡管如此,這篇論文的很多做法仍然廣泛地影響著檢測任務上的深度模型革命,後續的很多工作也都是針對改進這一工作而展開,此篇可以稱得上"The First Paper"。
Fast R-CNN: 共享卷積運算
論文鏈接: Fast R-CNN
文章指出R-CNN耗時的原因是CNN是在每一個Proposal上單獨進行的,沒有共享計算,便提出將基礎網路在圖片整體上運行完畢後,再傳入R-CNN子網路,共享了大部分計算,故有Fast之名。
上圖是Fast R-CNN的架構。圖片經過feature extractor得到feature map, 同時在原圖上運行Selective Search演算法並將RoI(Region of Interset,實為坐標組,可與Region Proposal混用)映射到到feature map上,再對每個RoI進行RoI Pooling操作便得到等長的feature vector,將這些得到的feature vector進行正負樣本的整理(保持一定的正負樣本比例),分batch傳入並行的R-CNN子網路,同時進行分類和回歸,並將兩者的損失統一起來。
RoI Pooling 是對輸入R-CNN子網路的數據進行准備的關鍵操作。我們得到的區域常常有不同的大小,在映射到feature map上之後,會得到不同大小的特徵張量。RoI Pooling先將RoI等分成目標個數的網格,再在每個網格上進行max pooling,就得到等長的RoI feature vector。
文章最後的討論也有一定的借鑒意義:
multi-loss traing相比單獨訓練classification確有提升
multi-scale相比single-scale精度略有提升,但帶來的時間開銷更大。一定程度上說明CNN結構可以內在地學習尺度不變性
在更多的數據(VOC)上訓練後,精度是有進一步提升的
Softmax分類器比"one vs rest"型的SVM表現略好,引入了類間的競爭
更多的Proposal並不一定帶來精度的提升
小結
Fast R-CNN的這一結構正是檢測任務主流2-stage方法所採用的元結構的雛形。文章將Proposal, Feature Extractor, Object Classification&Localization統一在一個整體的結構中,並通過共享卷積計算提高特徵利用效率,是最有貢獻的地方。
Faster R-CNN: 兩階段模型的深度化
論文鏈接: Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks
Faster R-CNN是2-stage方法的奠基性工作,提出的RPN網路取代Selective Search演算法使得檢測任務可以由神經網路端到端地完成。粗略的講,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷積計算的特性使得RPN引入的計算量很小,使得Faster R-CNN可以在單個GPU上以5fps的速度運行,而在精度方面達到SOTA(State of the Art,當前最佳)。
本文的主要貢獻是提出Regional Proposal Networks,替代之前的SS演算法。RPN網路將Proposal這一任務建模為二分類(是否為物體)的問題。
第一步是在一個滑動窗口上生成不同大小和長寬比例的anchor box(如上圖右邊部分),取定IoU的閾值,按Ground Truth標定這些anchor box的正負。於是,傳入RPN網路的樣本數據被整理為anchor box(坐標)和每個anchor box是否有物體(二分類標簽)。RPN網路將每個樣本映射為一個概率值和四個坐標值,概率值反應這個anchor box有物體的概率,四個坐標值用於回歸定義物體的位置。最後將二分類和坐標回歸的損失統一起來,作為RPN網路的目標訓練。
由RPN得到Region Proposal在根據概率值篩選後經過類似的標記過程,被傳入R-CNN子網路,進行多分類和坐標回歸,同樣用多任務損失將二者的損失聯合。
小結
Faster R-CNN的成功之處在於用RPN網路完成了檢測任務的"深度化"。使用滑動窗口生成anchor box的思想也在後來的工作中越來越多地被採用(YOLO v2等)。這項工作奠定了"RPN+RCNN"的兩階段方法元結構,影響了大部分後續工作。
單階段(1-stage)檢測模型
單階段模型沒有中間的區域檢出過程,直接從圖片獲得預測結果,也被成為Region-free方法。
YOLO
論文鏈接: You Only Look Once: Unified, Real-Time Object Detection
YOLO是單階段方法的開山之作。它將檢測任務表述成一個統一的、端到端的回歸問題,並且以只處理一次圖片同時得到位置和分類而得名。
YOLO的主要優點:
快。
全局處理使得背景錯誤相對少,相比基於局部(區域)的方法, 如Fast RCNN。
泛化性能好,在藝術作品上做檢測時,YOLO表現比Fast R-CNN好。
YOLO的工作流程如下:
1.准備數據:將圖片縮放,劃分為等分的網格,每個網格按跟Ground Truth的IoU分配到所要預測的樣本。
2.卷積網路:由GoogLeNet更改而來,每個網格對每個類別預測一個條件概率值,並在網格基礎上生成B個box,每個box預測五個回歸值,四個表徵位置,第五個表徵這個box含有物體(注意不是某一類物體)的概率和位置的准確程度(由IoU表示)。測試時,分數如下計算:
等式左邊第一項由網格預測,後兩項由每個box預測,以條件概率的方式得到每個box含有不同類別物體的分數。 因而,卷積網路共輸出的預測值個數為S×S×(B×5+C),其中S為網格數,B為每個網格生成box個數,C為類別數。
3.後處理:使用NMS(Non-Maximum Suppression,非極大抑制)過濾得到最後的預測框
損失函數的設計
損失函數被分為三部分:坐標誤差、物體誤差、類別誤差。為了平衡類別不均衡和大小物體等帶來的影響,損失函數中添加了權重並將長寬取根號。
小結
YOLO提出了單階段的新思路,相比兩階段方法,其速度優勢明顯,實時的特性令人印象深刻。但YOLO本身也存在一些問題,如劃分網格較為粗糙,每個網格生成的box個數等限制了對小尺度物體和相近物體的檢測。
SSD: Single Shot Multibox Detector
論文鏈接: SSD: Single Shot Multibox Detector
SSD相比YOLO有以下突出的特點:
多尺度的feature map:基於VGG的不同卷積段,輸出feature map到回歸器中。這一點試圖提升小物體的檢測精度。
更多的anchor box,每個網格點生成不同大小和長寬比例的box,並將類別預測概率基於box預測(YOLO是在網格上),得到的輸出值個數為(C+4)×k×m×n,其中C為類別數,k為box個數,m×n為feature map的大小。
小結
SSD是單階段模型早期的集大成者,達到跟接近兩階段模型精度的同時,擁有比兩階段模型快一個數量級的速度。後續的單階段模型工作大多基於SSD改進展開。
檢測模型基本特點
最後,我們對檢測模型的基本特徵做一個簡單的歸納。
檢測模型整體上由基礎網路(Backbone Network)和檢測頭部(Detection Head)構成。前者作為特徵提取器,給出圖像不同大小、不同抽象層次的表示;後者則依據這些表示和監督信息學習類別和位置關聯。檢測頭部負責的類別預測和位置回歸兩個任務常常是並行進行的,構成多任務的損失進行聯合訓練。
相比單階段,兩階段檢測模型通常含有一個串列的頭部結構,即完成前背景分類和回歸後,把中間結果作為RCNN頭部的輸入再進行一次多分類和位置回歸。這種設計帶來了一些優點:
對檢測任務的解構,先進行前背景的分類,再進行物體的分類,這種解構使得監督信息在不同階段對網路參數的學習進行指導
RPN網路為RCNN網路提供良好的先驗,並有機會整理樣本的比例,減輕RCNN網路的學習負擔
這種設計的缺點也很明顯:中間結果常常帶來空間開銷,而串列的方式也使得推斷速度無法跟單階段相比;級聯的位置回歸則會導致RCNN部分的重復計算(如兩個RoI有重疊)。
另一方面,單階段模型只有一次類別預測和位置回歸,卷積運算的共享程度更高,擁有更快的速度和更小的內存佔用。讀者將會在接下來的文章中看到,兩種類型的模型也在互相吸收彼此的優點,這也使得兩者的界限更為模糊。
『陸』 在世界歷史上第一次測量子午線
張遂(僧一行)-中國古代天文學家
張遂(僧一行,公元673――727年),唐朝魏州昌樂(今河南濮陽市南樂縣)人。張遂自幼天資聰穎、刻苦好學,博覽群書。青年時代到長安拜師求學,研究天文和數學,很有成就,成為著名的學者。
武則天當皇帝後,其侄子武三思身居顯位。為沽名釣譽,到處拉攏文人名士以抬高自己,幾次欲與結交,但張遂不願與之為伍,憤然離京,東去嵩山當了和尚,取名為一行,故稱一行和尚。
公元712年,唐玄宗即位,得知一行和尚精通天文和數學,就把他召到京都長安,做了朝庭的天文學顧問。張遂在長安生活了10年,使他有機會從事天文學的觀測和歷法改革。
開元年間,唐玄宗下令讓張遂主持修訂歷法。在修訂歷法的實踐中,為了測量日、月、星辰在其軌道上的位置和掌握其運動規律,與梁令瓚共同製造了觀測天象的「渾天銅儀」和」黃道游儀」,渾天銅儀是在漢代張衡的」渾天儀」的基礎上製造的,上面畫著星宿,儀器用水力運轉,每晝夜運轉一周,與天象相符。還裝了兩個木人,一個每刻敲鼓,一個每辰敲鍾,其精密程度超過了張衡的「渾天儀」。「黃道游儀」的用處,是觀測天象時可以直接測量出日、月、星辰在軌道的座標位置。張遂使用這兩個儀器,有效的進行了對天文學的研究。
在張遂以前,天文學家包括象張衡這樣的偉大天文學家都認為恆星是不運動的。但是,張遂卻用「渾天銅儀」、「黃道游儀」等儀器,重新測定了150多顆恆星的位置,多次測定了二十八宿距天體北極的度數。從而發現恆星在運動。根據這個事實,張遂推斷出天體上的恆星肯定也是移動的。於是推翻了前人的恆星不運動的結論,張遂成了發現恆星運動的第一個中國人。英國天文學家哈雷(公元1656――1742)年也提出了恆星自己移動的觀點,但比張遂的發現晚一千多年。
張遂是重視實踐的科學家,他使用的科學方法,對他取得的成就 有決定作用。張遂和南宮說等人一起,用標竿測量日影,推算出太陽位置與節氣的關系。張遂設計製造了「復矩圖」的天文學儀器,用於測量全國各地北極的高度。他用實地測量計算得出的數據,推翻了「王畿千里,影差一寸」的不準確結論。
張遂修訂的《大衍歷》是一部具有創新精神的歷法,它繼承了中國古代天文學的優點和長處,對不足之處和缺點作了修正,因此,取得了巨大成就。最突出的表現在它比較正確地掌握了太陽在黃道上運動的速度與變化規律。自漢代以來,歷代天文學家都認為太陽在黃道上運行的速度是均勻不變的。張遂採用了不等間距二次內插法推算出每兩個節氣之間,黃經差相同,而時間距卻不同。這種演算法基本符合天文實際,在天文學上是一個巨大的進步。不僅如此,張遂的《大衍歷》應用內插法中三次差來計算月行去支黃道的度數,還提出了月行黃道一周並不返回原處,要比原處退回一度多的科學結論。《大衍歷》對中國天文學的影響是很大的,直到明末的歷法家們都採用這種計算方法,並取得了好的效果。
公元724-725年,一行組織了全國13個點的天文大地測量。這次測量以天文學家南宮說等人在河南的工作最為重要。一行從南宮說等人測量的數據中,得出了北極高度相差一度,南北距離就相差351里80步(合現代131.3公里)的結論。這個數據就是地球子午線一度的弧長。這與現在計算北緯34°5地方子午線一度弧長110.6公里,僅差20.7公里。唐朝測出子午線的長度,在當時的世界上還是第一次。一行從725年開始編訂歷法,至逝世前完成草稿,即《大衍歷》,728年頒行。 《大衍歷》結構嚴謹,演算合乎邏輯,在日食的計算上,首次考慮到全國不同地點的見食情況。《大衍歷》比以往的歷法更為精密,為後世歷法所師。733年,此歷傳入日本。
張遂在天文學上的成就,不僅在國內聞名,而且在世界上都有很大影響。他修訂的《大衍歷》是當時世界上比較先進的歷法。日本曾派留學生吉備真備來中國學習天文學,回國時帶走了《大衍歷經》一卷,《大衍歷主成》十二卷。於是《大衍歷》便在日本廣泛流傳起來,其影響甚大。此外,張遂的天文學觀點,有的比世界著名天文學家早一千多年。稱張遂是中國古代偉大的天文學家,是絲毫也不過分的。
『柒』 目標跟蹤檢測演算法(一)——傳統方法
姓名:劉帆;學號:20021210609;學院:電子工程學院
https://blog.csdn.net/qq_34919792/article/details/89893214
【嵌牛導讀】目標跟蹤演算法研究難點與挑戰在於實際復雜的應用環境 、背景相似干擾、光照條件的變化、遮擋等外界因素以及目標姿態變化,外觀變形,尺度變化、平面外旋轉、平面內旋轉、出視野、快速運動和運動模糊等。而且當目標跟蹤演算法投入實際應用時,不可避免的一個問題——實時性問題也是非常的重要。正是有了這些問題,才使得演算法研究充滿著難點和挑戰。
【嵌牛鼻子】目標跟蹤演算法,傳統演算法
【嵌牛提問】利用目標跟蹤檢測演算法要達到何目的?第一階段的單目標追蹤演算法包括什麼?具體步驟有哪些?它們有何特點?
【嵌牛正文】
第一階段
目標跟蹤分為兩個部分,一個是對指定目標尋找可以跟蹤的特徵,常用的有顏色,輪廓,特徵點,軌跡等,另一個是對目標特徵進行跟蹤。
1、靜態背景
1)背景差: 對背景的光照變化、雜訊干擾以及周期性運動等進行建模。通過當前幀減去背景圖來捕獲運動物體的過程。
2)幀差: 由於場景中的目標在運動,目標的影像在不同圖像幀中的位置不同。該類演算法對時間上連續的兩幀或三幀圖像進行差分運算,不同幀對應的像素點相減,判斷灰度差的絕對值,當絕對值超過一定閾值時,即可判斷為運動目標,從而實現目標的檢測功能。
與二幀差分法不同的是,三幀差分法(交並運算)去除了重影現象,可以檢測出較為完整的物體。幀間差分法的原理簡單,計算量小,能夠快速檢測出場景中的運動目標。但幀間差分法檢測的目標不完整,內部含有「空洞」,這是因為運動目標在相鄰幀之間的位置變化緩慢,目標內部在不同幀圖像中相重疊的部分很難檢測出來。幀間差分法通常不單獨用在目標檢測中,往往與其它的檢測演算法結合使用。
3)Codebook
演算法為圖像中每一個像素點建立一個碼本,每個碼本可以包括多個碼元(對應閾值范圍),在學習階段,對當前像素點進行匹配,如果該像素值在某個碼元的學習閾值內,也就是說與之前出現過的某種歷史情況偏離不大,則認為該像素點符合背景特徵,需要更新對應點的學習閾值和檢測閾值。
如果新來的像素值與每個碼元都不匹配,則可能是由於動態背景導致,這種情況下,我們需要為其建立一個新的碼元。每個像素點通過對應多個碼元,來適應復雜的動態背景。
在應用時,每隔一段時間選擇K幀通過更新演算法建立CodeBook背景模型,並且刪除超過一段時間未使用的碼元。
4)GMM
混合高斯模型(Gaussian of Micture Models,GMM)是較常用的背景去除方法之一(其他的還有均值法、中值法、滑動平均濾波等)。
首先我們需要了解單核高斯濾波的演算法步驟:
混合高斯建模GMM(Gaussian Mixture Model)作為單核高斯背景建模的擴展,是目前使用最廣泛的一種方法,GMM將背景模型描述為多個分布,每個像素的R、G、B三個通道像素值的變化分別由一個混合高斯模型分布來刻畫,符合其中一個分布模型的像素即為背景像素。作為最常用的一種背景建模方法,GMM有很多改進版本,比如利用紋理復雜度來更新差分閾值,通過像素變化的劇烈程度來動態調整學習率等。
5)ViBe(2011)
ViBe演算法主要特點是隨機背景更新策略,這和GMM有很大不同。其步驟和GMM類似。具體的思想就是為每個像素點存儲了一個樣本集,樣本集中采樣值就是該像素點過去的像素值和其鄰居點的像素值,然後將每一個新的像素值和樣本集進行比較來判斷是否屬於背景點。
其中pt(x)為新幀的像素值,R為設定值,p1、p2、p3….為樣本集中的像素值,以pt(x)為圓心R為半徑的圓被認為成一個集,當樣本集與此集的交集大於設定的閾值#min時,可認為此為背景像素點(交集越大,表示新像素點與樣本集越相關)。我們可以通過改變#min的值與R的值來改變模型的靈敏度。
Step1:初始化單幀圖像中每個像素點的背景模型。假設每一個像素和其鄰域像素的像素值在空域上有相似的分布。基於這種假設,每一個像素模型都可以用其鄰域中的像素來表示。為了保證背景模型符合統計學規律,鄰域的范圍要足夠大。當輸入第一幀圖像時,即t=0時,像素的背景模型。其中,NG(x,y)表示空域上相鄰的像素值,f(xi,yi)表示當前點的像素值。在N次的初始化的過程中,NG(x,y)中的像素點(xi,yi)被選中的可能次數為L=1,2,3,…,N。
Step2:對後續的圖像序列進行前景目標分割操作。當t=k時,像素點(x,y)的背景模型為BKm(x,y),像素值為fk(x,y)。按照下面判斷該像素值是否為前景。這里上標r是隨機選的;T是預先設置好的閾值。當fk(x,y)滿足符合背景#N次時,我們認為像素點fk(x,y)為背景,否則為前景。
Step3:ViBe演算法的更新在時間和空間上都具有隨機性。每一個背景點有1/ φ的概率去更新自己的模型樣本值,同時也有1/ φ的概率去更新它的鄰居點的模型樣本值。更新鄰居的樣本值利用了像素值的空間傳播特性,背景模型逐漸向外擴散,這也有利於Ghost區域的更快的識別。同時當前景點計數達到臨界值時將其變為背景,並有1/ φ的概率去更新自己的模型樣本值(為了減少緩慢移動物體的影響和攝像機的抖動)。
可以有如下總結,ViBe中的每一個像素點在更新的時候都有一個時間和空間上隨機影響的范圍,這個范圍很小,大概3x3的樣子,這個是考慮到攝像頭抖動時會有坐標的輕微來回變化,這樣雖然由於ViBe的判別方式仍認為是背景點,但是也會對後面的判別產生影響,為了保證空間的連續性,隨機更新減少了這個影響。而在樣本值保留在樣本集中的概率隨著時間的增大而變小,這就保證了像素模型在時間上面的延續特性。
6)光流
光流是由物體或相機的運動引起的圖像對象在兩個連續幀之間的視在運動模式。它是2D矢量場,其中每個矢量是一個位移矢量,顯示點從第一幀到第二幀的移動。
光流實際上是一種特徵點跟蹤方法,其計算的為向量,基於三點假設:
1、場景中目標的像素在幀間運動時亮度(像素值或其衍生值)不發生變化;2、幀間位移不能太大;3、同一表面上的鄰近點都在做相同的運動;
光流跟蹤過程:1)對一個連續視頻幀序列進行處理;2)對每一幀進行前景目標檢測;3)對某一幀出現的前景目標,找出具有代表性的特徵點(Harris角點);4)對於前後幀做像素值比較,尋找上一幀在當前幀中的最佳位置,從而得到前景目標在當前幀中的位置信息;5)重復上述步驟,即可實現目標跟蹤
2、運動場(分為相機固定,但是視角變化和相機是運動的)
1)運動建模(如視覺里程計運動模型、速度運動模型等)
運動學是對進行剛性位移的相機進行構型,一般通過6個變數來描述,3個直角坐標,3個歐拉角(橫滾、俯仰、偏航)。
Ⅰ、對相機的運動建模
由於這個不是我們本次所要討論的重點,但是在《概率機器人》一書中提出了很多很好的方法,相機的運動需要對圖像內的像素做位移矩陣和旋轉矩陣的坐標換算。除了對相機建立傳統的速度運動模型外,也可以用視覺里程計等通關過置信度的更新來得到概率最大位置。
Ⅱ、對於跟蹤目標的運動建模
該方法需要提前通過先驗知識知道所跟蹤的目標對象是什麼,比如車輛、行人、人臉等。通過對要跟蹤的目標進行建模,然後再利用該模型來進行實際的跟蹤。該方法必須提前知道要跟蹤的目標對象是什麼,然後再去跟蹤指定的目標,這是它的局限性,因而其推廣性相對比較差。(比如已知跟蹤的物體是羽毛球,那很容易通過前幾幀的取點,來建立整個羽毛球運動的拋物線模型)
2)核心搜索演算法(常見的預測演算法有Kalman(卡爾曼)濾波、擴展卡爾曼濾波、粒子濾波)
Ⅰ、Kalman 濾波
Kalman濾波器是通過前一狀態預測當前狀態,並使用當前觀測狀態進行校正,從而保證輸出狀態平穩變化,可有效抵抗觀測誤差。因此在運動目標跟蹤中也被廣泛使用。
在視頻處理的運動目標跟蹤里,每個目標的狀態可表示為(x,y,w,h),x和y表示目標位置,w和h表示目標寬高。一般地認為目標的寬高是不變的,而其運動速度是勻速,那麼目標的狀態向量就應該擴展為(x,y,w,h,dx,dy),其中dx和dy是目標當前時刻的速度。通過kalman濾波器來估計每個時刻目標狀態的大致過程為:
對視頻進行運動目標檢測,通過簡單匹配方法來給出目標的第一個和第二個狀態,從第三個狀態開始,就先使用kalman濾波器預測出當前狀態,再用當前幀圖像的檢測結果作為觀測值輸入給kalman濾波器,得到的校正結果就被認為是目標在當前幀的真實狀態。(其中,Zt為測量值,為預測值,ut為控制量,Kt為增益。)
Ⅱ、擴展卡爾曼濾波(EKF)和無跡卡爾曼濾波(UKF)
由於卡爾曼濾波的假設為線性問題,無法直接用在非線性問題上,EKF和UKF解決了這個問題(這個線性問題體現在用測量量來計算預測量的過程中)。EKF是通過構建線性函數g(x),與非線性函數相切,並對每一時刻所求得的g(x)做KF,如下圖所示。
UKF與EKF去求解雅可比矩陣擬合線性方程的方法不同,通過對那個先驗分布中的採集點,來線性化隨機變數的非線性函數。與EKF所用的方法不同,UKF產生的高斯分布和實際高斯分布更加接近,其引起的近似誤差也更小。
Ⅲ、粒子濾波
1、初始狀態:基於粒子濾波的目標追蹤方法是一種生成式跟蹤方法,所以要有一個初始化的階段。對於第一幀圖像,人工標定出待檢測的目標,對該目標區域提出特徵;
2、搜索階段:現在已經知道了目標的特徵,然後就在目標的周圍撒點(particle), 如:a)均勻的撒點;b)按高斯分布撒點,就是近的地方撒得多,遠的地方撒的少。論文里使用的是後一種方法。每一個粒子都計算所在區域內的顏色直方圖,如初始化提取特徵一樣,然後對所有的相似度進行歸一化。文中相似性使用的是巴氏距離;
3、重采樣:根據粒子權重對粒子進行篩選,篩選過程中,既要大量保留權重大的粒子,又要有一小部分權重小的粒子;
4、狀態轉移:將重采樣後的粒子帶入狀態轉移方程得到新的預測粒子;
5、測量及更新:對目標點特徵化,並計算各個粒子和目標間的巴氏距離,更新粒子的權重;
6、決策階段:每個粒子都獲得一個和目標的相似度,相似度越高,目標在該范圍出現的可能性越高,將保留的所有粒子通過相似度加權後的結果作為目標可能的位置。
3)Meanshift演算法
MeanShift演算法屬於核密度估計法,它不需要任何先驗知識而完全依靠特徵空間中樣本點的計算其密度函數值。對於一組采樣數據,直方圖法通常把數據的值域分成若干相等的區間,數據按區間分成若干組,每組數據的個數與總參數個數的比率就是每個單元的概率值;核密度估計法的原理相似於直方圖法,只是多了一個用於平滑數據的核函數。採用核函數估計法,在采樣充分的情況下,能夠漸進地收斂於任意的密度函數,即可以對服從任何分布的數據進行密度估計。
Meanshift演算法步驟
1、通過對初始點(或者上一幀的目標點)為圓心,繪制一個半徑為R的圓心,尋找特徵和該點相似的點所構成的向量;
2、所有向量相加,可以獲得一個向量疊加,這個向量指向特徵點多的方向;
3、取步驟二的向量終點為初始點重復步驟一、二,直到得到的向量小於一定的閾值,也就是說明當前位置是特徵點密度最密集的地方,停止迭代,認為該點為當前幀的目標點;
4)Camshift演算法
Camshift演算法是MeanShift演算法的改進,稱為連續自適應的MeanShift演算法。Camshift 是由Meanshift 推導而來 Meanshift主要是用在單張影像上,但是獨立一張影像分析對追蹤而言並無意義,Camshift 就是利用MeanShift的方法,對影像串列進行分析。
1、首先在影像串列中選擇目標區域。
2、計算此區域的顏色直方圖(特徵提取)。
3、用MeanShift演演算法來收斂欲追蹤的區域。
4、通過目標點的位置和向量信息計算新的窗口大小,並標示之。
5、以此為參數重復步驟三、四。
Camshift 關鍵就在於當目標的大小發生改變的時候,此演算法可以自適應調整目標區域繼續跟蹤。
3、小結
第一階段的單目標追蹤演算法基本上都是傳統方法,計算量小,在嵌入式等設備中落地較多,opencv中也預留了大量的介面。通過上面的兩節的介紹,我們不難發現,目標檢測演算法的步驟分為兩部分,一部分是對指定目標尋找可以跟蹤的特徵,常用的有顏色,輪廓,特徵點,軌跡等,另一部分是對目標特徵進行跟蹤,如上文所提及的方法。所以目標檢測方法的發展,也可總結為兩個方面,一個是如何去獲得更加具有區分性的可跟蹤的穩定特徵,另一個是如何建立幀與幀之間的數據關聯,保證跟蹤目標是正確的。
隨著以概率為基礎的卡爾曼濾波、粒子濾波或是以Meanshift為代表向量疊加方法在目標檢測的運用,使得目標檢測不再需要假設自身的一個狀態為靜止的,而是可以是運動的,更加符合復雜場景中的目標跟蹤。
『捌』 目標檢測演算法---faster rcnn 知識簡要回顧(測試篇)
Faster RCNN檢測部分主要可以分為四個模塊:
1.特徵抽取:用於抽取圖像特徵,一般可以使用vgg、resnet和mobilenet等backbone;
2.RPN(Region Proposal Network):用於產生候選框,主要做一些粗糙的分類和回歸操作;
3.RoI Pooling:主要是為了解決全連接層需要固定尺寸輸入,而實際輸入大小不一的問題;
4.Classification and Regression:精細化分類和回歸。
faster rcnn演算法大致流程如下:
彩色圖像通過backbone進行特徵提取,輸出最後一層的feature map。接著將這些feature map進一步做基於3x3卷積核的特徵提取,該目的是增強模型的魯棒性。將輸出送入兩個分支,第一個分支跟類別有關,這里主要是用於簡單分類,區分是背景還是物體,這是針對anchor而言的;第二個分支則是用於初步預測候選框的偏移量,這個也是基於anchor而言的;再將前兩個分支的結果送入圖中的proposal中,首先會根據positive類的score篩選前6000個候選框,再將anchor的坐標和得到的偏移進行整合,得到初步候選框坐標,接著在做NMS,除去重疊嚴重的框,再經過了NMS後的框中,根據類別score取前300個框。然後將結果送入roi pooing層,用於生成固定尺寸的特徵區域,以方便後邊的全連接層接受信息;全連接層用於最後提取特徵,得到精細的類別和框的偏移量。
『玖』 目標跟蹤檢測演算法(四)——多目標擴展
姓名:劉帆;學號:20021210609;學院:電子工程學院
https://blog.csdn.net/qq_34919792/article/details/89893665
【嵌牛導讀】基於深度學習的演算法在圖像和視頻識別任務中取得了廣泛的應用和突破性的進展。從圖像分類問題到行人重識別問題,深度學習方法相比傳統方法表現出極大的優勢。與行人重識別問題緊密相關的是行人的多目標跟蹤問題。
【嵌牛鼻子】深度多目標跟蹤演算法
【嵌牛提問】深度多目標跟蹤演算法有哪些?
【嵌牛正文】
第一階段(概率統計最大化的追蹤)
1)多假設多目標追蹤演算法(MHT,基於kalman在多目標上的拓展)
多假設跟蹤演算法(MHT)是非常經典的多目標跟蹤演算法,由Reid在對雷達信號的自動跟蹤研究中提出,本質上是基於Kalman濾波跟蹤演算法在多目標跟蹤問題中的擴展。
卡爾曼濾波實際上是一種貝葉斯推理的應用,通過歷史關聯的預測量和k時刻的預測量來計算後驗概率:
關聯假設的後驗分布是歷史累計概率密度的連乘,轉化為對數形式,可以看出總體後驗概率的對數是每一步觀察似然和關聯假設似然的求和。但是若同時出現多個軌跡的時候,則需要考慮可能存在的多個假設關聯。
左圖為k-3時刻三個檢測觀察和兩條軌跡的可能匹配。對於這種匹配關系,可以繼續向前預測兩幀,如圖右。得到一種三層的假設樹結構,對於假設樹根枝乾的剪枝,得到k-3時刻的最終關聯結果。隨著可能性增加,假設組合會爆炸性增多,為此,只為了保留最大關聯性,我們需要對其他的節點進行裁剪。下式為選擇方程
實際上MHT不會單獨使用,一般作為單目標追蹤的擴展添加。
2)基於檢測可信度的粒子濾波演算法
這個演算法分為兩個步驟:
1、對每一幀的檢測結果,利用貪心匹配演算法與已有的對象軌跡進行關聯。
其中tr表示一個軌跡,d是某一個檢測,他們的匹配親和度計算包含三個部分:在線更新的分類學習模型(d),用來判斷檢測結果是不是屬於軌跡tr; 軌跡的每個粒子與檢測的匹配度,採用中心距離的高斯密度函數求和(d-p)表示;與檢測尺寸大小相關的閾值函數g(tr,d),表示檢測與軌跡尺度的符合程度, 而α是預設的一個超參數。
計算出匹配親和度矩陣之後,可以採用二部圖匹配的Hungarian演算法計算匹配結果。不過作者採用了近似的貪心匹配演算法,即首先找到親和度最大的那個匹配,然後刪除這個親和度,尋找下一個匹配,依次類推。貪心匹配演算法復雜度是線性,大部分情況下,也能得到最優匹配結果。
2、利用關聯結果,計算每個對象的粒子群權重,作為粒子濾波框架中的觀察似然概率。
其中tr表示需要跟蹤的對象軌跡,p是某個粒子。指示函數I(tr)表示第一步關聯中,軌跡tr是不是關聯到某個檢測結果,當存在關聯時,計算與關聯的檢測d 的高斯密度P{n}(p-d );C{tr}§是對這個粒子的分類概率;§是粒子通過檢測演算法得到的檢測可信度,(tr)是一個加權函數,計算如下:
3)基於馬爾科夫決策的多目標跟蹤演算法
作者把目標跟蹤看作為狀態轉移的過程,轉移的過程用馬爾科夫決策過程(MDP)建模。一個馬爾科夫決策過程包括下面四個元素:(S, A, T(.),R(.))。其中S表示狀態集合,A表示動作集合,T表示狀態轉移集合,R表示獎勵函數集合。一個決策是指根據狀態s確定動作a, 即 π: SA。一個對象的跟蹤過程包括如下決策過程:
從Active狀態轉移到Tracked或者Inactive狀態:即判斷新出現的對象是否是真。
從Tracked狀態轉移到Tracked或者Lost狀態:即判斷對象是否是持續跟蹤或者暫時處於丟失狀態。
從Lost狀態轉移到Lost或者Tracked或者Inactive狀態:即判斷丟失對象是否重新被跟蹤,被終止,或者繼續處於丟失狀態。
作者設計了三個獎勵函數來描述上述決策過程:
第一個是:
即判斷新出現的對象是否為真,y(a)=1時表示轉移到跟蹤狀態,反之轉移到終止狀態。這是一個二分類問題,採用2類SVM模型學習得到。這里用了5維特徵向量:包括x-y坐標、寬、高和檢測的分數。
第二個是:
這個函數用來判斷跟蹤對象下一時刻狀態是否是出於繼續跟蹤,還是處於丟失,即跟蹤失敗。這里作者用了5個歷史模板,每個模板和當前圖像塊做光流匹配,emedFB表示光流中心偏差, 表示平均重合率。 和 是閾值。
第三個是:
這個函數用來判斷丟失對象是否重新跟蹤,或者終止,或者保持丟失狀態不變。這里當丟失狀態連續保持超過 (=50)時,則轉向終止,其他情況下通過計算M個檢測匹配,來判斷是否存在最優的匹配使上式(3-14)獎勵最大,並大於0。這里涉及兩個問題如何設計特徵以及如何學習參數。這里作者構造了12維與模板匹配相關的統計值。而參數的學習採用強化學習過程,主要思想是在犯錯時候更新二類分類器值。
第二階段 深度學習應用
1)基於對稱網路的多目標跟蹤演算法
關於Siamese網路在單目標跟蹤深度學習中有了介紹,在這里不再介紹,可以向前參考。
2)基於最小多割圖模型的多目標跟蹤演算法
上述演算法中為了匹配兩個檢測採用LUV圖像格式以及光流圖像。Tang等人在文獻中發現採用深度學習計算的類光流特徵(DeepMatching),結合表示能力更強的模型也可以得到效果很好的多目標跟蹤結果。
基於DeepMatching特徵,可以構造下列5維特徵:
其中MI,MU表示檢測矩形框中匹配的點的交集大小以及並集大小,ξv和ξw表示檢測信任度。利用這5維特徵可以學習一個邏輯回歸分類器。
同樣,為了計算邊的匹配代價,需要設計匹配特徵。這里,作者採用結合姿態對齊的疊加Siamese網路計算匹配相似度,如圖9,採用的網路模型StackNetPose具有最好的重識別性能。
綜合StackNetPose網路匹配信任度、深度光流特徵(deepMatching)和時空相關度,作者設計了新的匹配特徵向量。類似於[2], 計算邏輯回歸匹配概率。最終的跟蹤結果取得了非常突出的進步。在MOT2016測試數據上的結果如下表:
3)通過時空域關注模型學習多目標跟蹤演算法
除了採用解決目標重識別問題的深度網路架構學習檢測匹配特徵,還可以根據多目標跟蹤場景的特點,設計合適的深度網路模型來學習檢測匹配特徵。Chu等人對行人多目標跟蹤問題中跟蹤演算法發生漂移進行統計分析,發現不同行人發生交互時,互相遮擋是跟蹤演算法產生漂移的重要原因[4]。如圖10。
在這里插入圖片描述
針對這個問題,文獻[4]提出了基於空間時間關注模型(STAM)用於學習遮擋情況,並判別可能出現的干擾目標。如圖11,空間關注模型用於生成遮擋發生時的特徵權重,當候選檢測特徵加權之後,通過分類器進行選擇得到估計的目標跟蹤結果,時間關注模型加權歷史樣本和當前樣本,從而得到加權的損失函數,用於在線更新目標模型。
該過程分三步,第一步是學習特徵可見圖:
第二步是根據特徵可見圖,計算空間關注圖(Spatial Attention):
其中fatt是一個局部連接的卷積和打分操作。wtji是學習到的參數。
第三步根據空間注意圖加權原特徵圖:
對生成的加權特徵圖進行卷積和全連接網路操作,生成二元分類器判別是否是目標自身。最後用得到分類打分選擇最優的跟蹤結果。
4)基於循環網路判別融合表觀運動交互的多目標跟蹤演算法
上面介紹的演算法採用的深度網路模型都是基於卷積網路結構,由於目標跟蹤是通過歷史軌跡信息來判斷新的目標狀態,因此,設計能夠記憶歷史信息並根據歷史信息來學習匹配相似性度量的網路結構來增強多目標跟蹤的性能也是比較可行的演算法框架。
考慮從三個方面特徵計算軌跡歷史信息與檢測的匹配:表觀特徵,運動特徵,以及交互模式特徵。這三個方面的特徵融合以分層方式計算。
在底層的特徵匹配計算中,三個特徵都採用了長短期記憶模型(LSTM)。對於表觀特徵,首先採用VGG-16卷積網路生成500維的特徵ϕtA,以這個特徵作為LSTM的輸入計算循環。
對於運動特徵,取相對位移vit為基本輸入特徵,直接輸入LSTM模型計算沒時刻的輸出ϕi,對於下一時刻的檢測同樣計算相對位移vjt+1,通過全連接網路計算特徵ϕj,類似於表觀特徵計算500維特徵ϕm,並利用二元匹配分類器進行網路的預訓練。
對於交互特徵,取以目標中心位置周圍矩形領域內其他目標所佔的相對位置映射圖作為LSTM模型的輸入特徵,計算輸出特徵ϕi,對於t+1時刻的檢測計算類似的相對位置映射圖為特徵,通過全連接網路計算特徵ϕj,類似於運動模型,通過全連接網路計算500維特徵ϕI,進行同樣的分類訓練。
當三個特徵ϕA,ϕM,ϕI都計算之後拼接為完整的特徵,輸入到上層的LSTM網路,對輸出的向量進行全連接計算,然後用於匹配分類,匹配正確為1,否則為0。對於最後的網路結構,還需要進行微調,以優化整體網路性能。最後的分類打分看作為相似度用於檢測與軌跡目標的匹配計算。最終的跟蹤框架採用在線的檢測與軌跡匹配方法進行計算。
5)基於雙線性長短期循環網路模型的多目標跟蹤演算法
在對LSTM中各個門函數的設計進行分析之後,Kim等人認為僅僅用基本的LSTM模型對於表觀特徵並不是最佳的方案,在文獻[10]中,Kim等人設計了基於雙線性LSTM的表觀特徵學習網路模型。
除了利用傳統的LSTM進行匹配學習,或者類似[5]中的演算法,拼接LSTM輸出與輸入特徵,作者設計了基於乘法的雙線性LSTM模型,利用LSTM的隱含層特徵(記憶)信息與輸入的乘積作為特徵,進行匹配分類器的學習。
這里對於隱含層特徵ht-1,必須先進行重新排列(reshape)操作,然後才能乘以輸入的特徵向量xt。
其中f表示非線性激活函數,mt是新的特徵輸入。而原始的檢測圖像採用ResNet50提取2048維的特徵,並通過全連接降為256維。下表中對於不同網路結構、網路特徵維度、以及不同LSTM歷史長度時,表觀特徵的學習對跟蹤性能的影響做了驗證。
可以看出採用雙線性LSTM(bilinear LSTM)的表觀特徵性能最好,此時的歷史相關長度最佳為40,這個值遠遠超過文獻[5]中的2-4幀歷史長度。相對來說40幀歷史信息影響更接近人類的直覺。
『拾』 宇宙年齡138億歲是怎樣測算出來的呢
宇宙是我們這個世界最老的存在,因為這個世界的一切,都是有了宇宙之後才生發出來的。所有物質,從看不到的微觀世界基本粒子,到以光年計的巨大天體,都有一個誕生、成長、成熟、衰老、死亡的過程。
我們通過看一個人的皮膚、頭發、精神狀態等外觀,通過檢查一個人的骨骼狀態和各項生理指標得出這個人的大致年齡;我們可以通過探查元素同位素的半衰期,計算出地球、月亮等天體的年齡。
那麼宇宙這個萬事萬物的源頭,年齡是怎麼測算得出來的呢?
就是說在326萬光年遠的地方星系膨脹的速度為67.8公里每秒。根據這個常數,我們就能夠得到星系之間退行速度(v)和它們之間的距離(d)有一個正比關系,這樣v=哈伯常數*d。
測出了兩個星系間的退行速度和距離,就能夠推算出大爆炸後兩個星系分開所花費的時間,這個時間就是宇宙的年齡。
時空通訊用這種方法簡單計算出宇宙年齡為144億歲,但科學界經過長期的測算和修正,並結合宇宙微波背景輻射的研究,認為精確的宇宙年齡為138.2億歲。
根據這個方法,還能夠測算出宇宙膨脹到現在的可視范圍為半徑465億光年。