當前位置:首頁 » 操作系統 » 蟻群演算法路徑

蟻群演算法路徑

發布時間: 2022-11-13 03:05:43

A. 求教:蟻群演算法選擇最短路徑問題

這個例子其實是當初數模比賽時用來完成碎片拼接的,但其所用到原理還是求解最短路徑的原理。但這里的最短路徑和數據結構中最短路徑有一定的區別。在數據結構中,對於最短路徑的求解常用的一般有Dijkstra演算法與Floyd演算法,但對於要求出一條經過所有的點的並且要求路徑最短,這些演算法還是有一定的局限性的。而蟻群演算法則很好地滿足了這些條件。話說回來,很想吐槽一下網路流傳的一些蟻群演算法的例子,當初學習這個時候,身邊也沒有相關的書籍,只好到網上找例子。網上關於這個演算法源代碼的常見的有2個版本,都是出自博客,但是在例子都代碼是不完整的,缺失了一部分,但就是這樣的例子,居然流傳甚廣,我很好奇那些轉載這些源碼的人是否真的有去學習過這些,去調試過。當然,我下面的例子也是無法直接編譯通過的,因為涉及到圖像讀取處理等方面的東西,所以就只貼演算法代碼部分。但是對於這個問題蟻群演算法有一個比較大的缺點,就是收斂很慢,不過對於數量小的路徑,效果還是很好的。function bestqueue =aco1(nt,nc_max,m ,st, sd ,Alpha ,Beta ,Rho ,Q,gethead,getend)%參數解釋:%nt 路徑所經過的點的個數;%nc_max 迭代的次數;%m 螞蟻的個數;%st 起點序號;%sd 終點序號;%Alpha 信息素系數;�ta 啟發因子系數;%Rho 蒸發系數;% Q 信息量;%gethead getend 是用來求距離矩陣的,可根據實際情況修改
% nt = 209;%碎片個數full = zeros(nt,nt);tic;%初始化距離矩陣for i =1:nt for t = 1:nt if i ~= t full(i,t) = sum(abs(getend(:,i) - gethead(:,t))); else full(i,t) = inf; end endend% a =full(156,187)eta = 1./full;%啟發因子,取距離的倒數% eta% e = eta(4,2)tau = ones(nt,nt);%信息素矩陣% tabu = zeros(nt,nt);%禁忌矩陣,取螞蟻數量和碎片數量一致,以減少迭代次數nc =1;%初始化迭代次數;rbest=zeros(nc_max,nt);%各代最佳路線rbest(:,1) = (linspace(st,st,nc_max))';rbest(:,nt) =(linspace(sd,sd,nc_max))'; lbest=zeros(nc_max,1);%各代最佳路線的長度pathlen = 0;%臨時記錄每代最佳路線長度stime = 1;%記錄代數進度for i = 1:nc_max % 代數循環 delta_tau=zeros(nt,nt);%初始化改變數 stime for t = 1:m % 對螞蟻群體的循環, tabu=zeros(1,nt);%禁忌向量,標記已訪問的碎片,初試值設為0,訪問之後則變為1; viseted = zeros(1,nt);%記錄已訪問的元素的位置 tabu(st) = 1;%st為起點,在此表示為碎片矩陣的編號,因為已經將蟻群放在起點,故也應將禁忌向量和位置向量的狀態進行修改 tabu(sd) =1;%同上 visited(nt) = sd ;%同上; visited(1) = st;%同上; ht = 0; for r = 2:nt-1 %記錄了還沒訪問的圖片編號 vp = 1;%visited指示量 pp = [];%置空的概率向量 jc = 0; %獲取尚未訪問的位置的向量。 wv = zeros( nt -2 - ht ); for k =1 : nt if tabu(k) == 0 jc = jc +1; wv(jc) = k; end end% a =(tau(visited(end),ju(3))^Alpha)*(eta(visited(end),ju(3))^Beta)% visited(end) %計算選擇的概率 for k=1:length(wv) pp(k)=(tau(visited(vp),wv(k))^Alpha)*(eta(visited(vp),wv(k))^Beta);%下一張碎片的選擇概率計算,p =(信息素^信息素系數)*(啟發因子^啟發因子系數) end pp=pp./(sum(pp));%歸一化 pcum =cumsum(pp); psl = find(pcum >= rand);%輪盤賭法 to_visit= wv(psl(1)) ;%完成選點 tabu(to_visit) =1; visited(r) = to_visit; ht =ht +1;%已訪問碎片個數變化 vp =vp+1; end %路徑變化信息 %對單個螞蟻的路徑進行統計 sum1 =0; for pr = 1:nt -1 x = visited(pr); y = visited(pr+1) ; sum1 =sum1 + full(x,y); end% vcell{t} =visited;%元胞記錄每個螞蟻的路徑,即碎片順序;% msum(t) = sum1; %信息素變化; for ww=1:(nt-1) delta_tau(visited(ww),visited(ww+1))=delta_tau(visited(ww),visited(ww+1)) + Q/sum1; end% delta_tau(visited(end),visited(1))=delta_tau(visited(end),visited(1))+Q/(sum1/100);% if t == m & i == nc_max % bestqueue = visited% end if t == m bestqueue = visited end end tau=(1-Rho).*tau+delta_tau; %完成信息素的更新,找出現有的最新的最佳路徑,即信息素最多的路徑; stime =stime +1;end toc;

B. 蟻群演算法中轉移概率是怎麼用的.不同的螞蟻為什麼會選擇不同的路徑

因為不同路徑的信息素和啟發信息不同,所以向每條路徑轉移的概率也不同。
具體實現可以運用輪盤賭選擇,轉移概率越大的路徑就會有更多的螞蟻選擇。

C. 基本蟻群演算法-螞蟻覓食路徑的演變

       高清完整版: http://www.acfun.cn/v/ac4623849

  螞蟻在覓食過程中能夠在其經過的路徑上留下一種稱之為 信息素 的物質,並在覓食過程中能夠感知這種物質的強度,並指導自己的行動方向,它們總是朝著 信息素 強度高的方向移動,因此大量的螞蟻組成的集體覓食就表現為一種對 信息素 的正反饋現象。
   某一條路徑越短,路徑上經過的螞蟻就越多,其信息素遺留的也就越多,信息素的濃度也就越高,螞蟻選擇這條路的幾率也就越高,由此構成正反饋的過程,從而逐漸地逼近最優路徑,並找到最優路徑。

演算法簡要流程
(1)初始化。
(2)選擇從初始節點下一步可以到達的所有節點,根據公式

(3)更新路徑以及路徑長度。
(4)重復(2),(3)兩步,直到找到食物或者無路可走之後退出。
(5)重復(2),(3),(4)直到m只螞蟻全部完成旅途,一代算是結束。
(6)信息素更新。每次所有螞蟻旅行完成後對信息素進行全局更新,過去的信息素逐漸消逝,並加入新的信息素。其中沒有找到食物的螞蟻不予以計算。根據公式

(7)重復(2)~(6),直到n代螞蟻全部完成旅行。

地圖信息

演算法開始前的初始化工作和要用到的公式函數:

演算法開始

D. 蟻群演算法及其應用實例

       蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種對自然界螞蟻的尋徑方式進行模擬而得到的一種仿生演算法,是一種用來在圖中尋找優化路徑的機率型演算法。
       螞蟻在運動過程中,可以在行走的路徑上留下信息素,後來的螞蟻可以感知到信息素的存在,信息素濃度越高的路徑越容易被後來的螞蟻選擇,從而形成一種正反饋現象。
       它能夠求出從原點出發,經過若干個給定的需求點,最終返回原點的最短路徑。這也就是著名的旅行商問題(Traveling Saleman Problem,TSP)。

       若螞蟻從A點出發到D點覓食,它可以隨機從ABD或ACD中選擇一條路。假設初始時為每條路分配一隻螞蟻,每個時間單位行走一步,則經過8個時間單位後,情形如下圖所示:ABD路線的螞蟻到達D點,ACD路線的螞蟻到達C點。

       那麼,再過8個時間單位,很容易可以得到下列情形:ABD路線的螞蟻回到A點,ACD路線的螞蟻到達D點。

α 代表信息素量對是否選擇當前路徑的影響程度,反映了蟻群在路徑搜索中隨機性因素作用的強度。
α 越大,螞蟻選擇以前走過的路徑的可能性越大,搜索的隨機性就會減弱。
α 過小,會導致蟻群搜索過早陷入局部最優,取值范圍通常為[1,4]。

β 反映了啟發式信息在指導蟻群搜索中的相對重要程度,蟻群尋優過程中先驗性、確定性因素作用的強度。
β 過大,雖然收斂速度加快,但是易陷入局部最優。
β 過小,蟻群易陷入純粹的隨機搜索,很難找到最優解。通常取[0,5]。

ρ 反映了信息素的蒸發程度,相反,1-ρ 表示信息素的保留水平
ρ 過大,信息素會發過快,容易導致最優路徑被排除。
ρ 過小,各路徑上信息素含量差別過小,以前搜索過的路徑被在此選擇的可能性過大,會影響演算法的隨機性和全局搜索能力。通常取[0.2,0.5]。

m過大,每條路徑上信息素趨於平均,正反饋作用減弱,從而導致收斂速度減慢。
m過小,可能導致一些從未搜索過的路徑信息素濃度減小為0,導致過早收斂,解的全局最優性降低

總信息量Q對演算法性能的影響有賴於αβρ的選取,以及演算法模型的選擇。
Q對ant-cycle模型蟻群演算法的性能沒有明顯影響,不必特別考慮,可任意選取。

E. 蟻群演算法中轉移概率是怎麼用的.不同的螞蟻為什麼會選擇不同的路徑

因為不同路徑的信息素和啟發信息不同,所以向每條路徑轉移的概率也不同;
具體實現可以運用輪盤賭選擇,轉移概率越大的路徑就會有更多的螞蟻選擇.。
Prime 演算法和 Kruskal 演算法都是用來求加權連通簡單圖中權和最小的支撐樹(即最小樹)的,Prime演算法的時間復雜度為O(n^2) (n 為頂點數),Kruskal 演算法的時間復雜度為 O(eln(e)) (e為邊數),這兩種演算法都是多項式時間演算法,也就是說,最小樹問題已經有了有效演算法去求解,屬於P問題。
Dijkstra 演算法求解的是加權連通簡單圖中一個頂點到其它每個頂點的具有最小權和的有向路,最簡單版本的時間復雜度是O(n^2),也是多項式時間演算法。
而蟻群演算法是一種近似演算法,它不是用來解決已存在精確有效演算法的問題的,而是用來解決至今沒有找到精確的有效演算法的問題的,比如旅行商問題(TSP)。
旅行商問題也可以說是求「最短路徑」,但它是求一個完全圖的最小哈密頓圈,這個問題至今未找到多項式時間演算法,屬於NPC問題,也就是說,當問題規模稍大一點,現有的精確演算法的運算量就會急劇增加。
文中的某些觀點引自知乎大神余幸恩,感謝幫忙!~

F. 蟻群演算法是什麼

蟻群演算法,又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。 它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。

原理
設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼地編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。

然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?

G. 蟻群演算法最佳路徑獲取

智能網聯汽車路徑規劃的蟻群演算法可以簡單地描述為:以當前網格為中心,在每隻螞蟻的起點放置m個螞蟻,根據某個策略進行選擇,然後進入下一個網格,利用本地信息更新策略更新信息素。
當第一個螞蟻k到達目標節點時,由於它首先到達並且花費的時間最少,因此在當前一輪優化中,它獲得的路徑是最優的,在k所得的路徑上執行全局信息更新並保存,此路徑是當前的最佳路徑。

H. 什麼是蟻群演算法

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型技術。它由Marco Dorigo於1992年在他的博士論文中引入,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。
蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值.
蟻群演算法是一種求解組合最優化問題的新型通用啟發式方法,該方法具有正反饋、分布式計算和富於建設性的貪婪啟發式搜索的特點。通過建立適當的數學模型,基於故障過電流的配電網故障定位變為一種非線性全局尋優問題。由柳洪平創建。
預期的結果:
各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種信息素,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物!有些螞蟻並沒有象其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果令開辟的道路比原來的其他道路更短,那麼,漸漸,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。
原理:
為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。
然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?下面詳細說明:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內。
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素。每個螞蟻都僅僅能感知它范圍內的環境信息。環境以一定的速率讓信息素消失。
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去。否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻多會以小概率犯錯誤,從而並不是往信息素最多的點移動。螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應。
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動。為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開。
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為。
7、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少。
根據這幾條規則,螞蟻之間並沒有直接的關系,但是每隻螞蟻都和環境發生交互,而通過信息素這個紐帶,實際上把各個螞蟻之間關聯起來了。比如,當一隻螞蟻找到了食物,它並沒有直接告訴其它螞蟻這兒有食物,而是向環境播撒信息素,當其它的螞蟻經過它附近的時候,就會感覺到信息素的存在,進而根據信息素的指引找到了食物。
問題:
說了這么多,螞蟻究竟是怎麼找到食物的呢?
在沒有螞蟻找到食物的時候,環境沒有有用的信息素,那麼螞蟻為什麼會相對有效的找到食物呢?這要歸功於螞蟻的移動規則,尤其是在沒有信息素時候的移動規則。首先,它要能盡量保持某種慣性,這樣使得螞蟻盡量向前方移動(開始,這個前方是隨機固定的一個方向),而不是原地無謂的打轉或者震動;其次,螞蟻要有一定的隨機性,雖然有了固定的方向,但它也不能像粒子一樣直線運動下去,而是有一個隨機的干擾。這樣就使得螞蟻運動起來具有了一定的目的性,盡量保持原來的方向,但又有新的試探,尤其當碰到障礙物的時候它會立即改變方向,這可以看成一種選擇的過程,也就是環境的障礙物讓螞蟻的某個方向正確,而其他方向則不對。這就解釋了為什麼單個螞蟻在復雜的諸如迷宮的地圖中仍然能找到隱蔽得很好的食物。
當然,在有一隻螞蟻找到了食物的時候,其他螞蟻會沿著信息素很快找到食物的。
螞蟻如何找到最短路徑的?這一是要歸功於信息素,另外要歸功於環境,具體說是計算機時鍾。信息素多的地方顯然經過這里的螞蟻會多,因而會有更多的螞蟻聚集過來。假設有兩條路從窩通向食物,開始的時候,走這兩條路的螞蟻數量同樣多(或者較長的路上螞蟻多,這也無關緊要)。當螞蟻沿著一條路到達終點以後會馬上返回來,這樣,短的路螞蟻來回一次的時間就短,這也意味著重復的頻率就快,因而在單位時間里走過的螞蟻數目就多,灑下的信息素自然也會多,自然會有更多的螞蟻被吸引過來,從而灑下更多的信息素……;而長的路正相反,因此,越來越多地螞蟻聚集到較短的路徑上來,最短的路徑就近似找到了。也許有人會問局部最短路徑和全局最短路的問題,實際上螞蟻逐漸接近全局最短路的,為什麼呢?這源於螞蟻會犯錯誤,也就是它會按照一定的概率不往信息素高的地方走而另闢蹊徑,這可以理解為一種創新,這種創新如果能縮短路途,那麼根據剛才敘述的原理,更多的螞蟻會被吸引過來。
引申
跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:
1、多樣性
2、正反饋
多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。
引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。
既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。
蟻群演算法的實現
下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。
其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。

I. 蟻群演算法可以求最長路徑嗎

可以去計算它的最長路徑了,因為在算的過程中,路徑的方法上也比較簡單。

J. matlab蟻群演算法路徑優化

你用D保存了隨機點,D的標號就是對應隨機點

熱點內容
安卓如何修改cpu 發布:2025-05-16 21:58:20 瀏覽:364
pythonainb 發布:2025-05-16 21:45:56 瀏覽:855
淘汰伺服器可以做家用電腦嗎 發布:2025-05-16 21:41:31 瀏覽:842
遊程編碼c語言 發布:2025-05-16 21:26:51 瀏覽:586
帝來哪個配置值得購買 發布:2025-05-16 21:12:29 瀏覽:462
什麼是nodejs前端伺服器 發布:2025-05-16 21:12:17 瀏覽:405
編譯選項立即綁定未定義符號 發布:2025-05-16 20:55:13 瀏覽:906
linuxmysql慢日誌 發布:2025-05-16 20:47:58 瀏覽:272
村兩委有哪些配置 發布:2025-05-16 20:34:47 瀏覽:294
我的世界有什麼伺服器好玩的 發布:2025-05-16 20:28:57 瀏覽:484