鍾差預測演算法
『壹』 中國的北斗導航系統需要多少顆衛星
北斗衛星導航系統空間段由5顆靜止軌道衛星和30顆非靜止軌道衛星組成。
中國北斗衛星導航系統(BeiDou Navigation Satellite System,BDS)是中國自行研製的全球衛星導航系統。是繼美國全球定位系統(GPS)、俄羅斯格洛納斯衛星導航系統(GLONASS)之後第三個成熟的衛星導航系統。北斗衛星導航系統(BDS)和美國GPS、俄羅斯GLONASS、歐盟GALILEO,是聯合國衛星導航委員會已認定的供應商。
北斗衛星導航系統由空間段、地面段和用戶段三部分組成,可在全球范圍內全天候、全天時為各類用戶提供高精度、高可靠定位、導航、授時服務,並具短報文通信能力,已經初步具備區域導航、定位和授時能力,定位精度10米,測速精度0.2米/秒,授時精度10納秒。
2012年12月27日,北斗系統空間信號介面控制文件正式版1.0正式公布,北斗導航業務正式對亞太地區提供無源定位、導航、授時服務。
2013年12月27日,北斗衛星導航系統正式提供區域服務一周年新聞發布會在國務院新聞辦公室新聞發布廳召開,正式發布了《北斗系統公開服務性能規范(1.0版)》和《北斗系統空間信號介面控制文件(2.0版)》兩個系統文件。
2014年11月23日,國際海事組織海上安全委員會審議通過了對北斗衛星導航系統認可的航行安全通函,這標志著北斗衛星導航系統正式成為全球無線電導航系統的組成部分,取得面向海事應用的國際合法地位。
中國的衛星導航系統已獲得國際海事組織的認可。
北斗衛星導航系統空間段由5顆靜止軌道衛星和30顆非靜止軌道衛星組成,中國計劃2012年左右,「北斗」系統將覆蓋亞太地區,2020年左右覆蓋全球。中國正在實施北斗衛星導航系統建設,已成功發射16顆北斗導航衛星。根據系統建設總體規劃,2012年左右,系統將首先具備覆蓋亞太地區的定位、導航和授時以及短報文通信服務能力。2020年左右,建成覆蓋全球的北斗衛星導航
35顆衛星在離地面2萬多千米的高空上,以固定的周期環繞地球運行,使得在任意時刻,在地面上的任意一點都可以同時觀測到4顆以上的衛星。
由於衛星的位置精確可知,在接收機對衛星觀測中,我們可得到衛星到接收機的距離,利用三維坐標中的距離公式,利用3顆衛星,就可以組成3個方程式,解出觀測點的位置(X,Y,Z)。考慮到衛星的時鍾與接收機時鍾之間的誤差,實際上有4個未知數,X、Y、Z和鍾差,因而需要引入第4顆衛星,形成4個方程式進行求解,從而得到觀測點的經緯度和高程。
事實上,接收機往往可以鎖住4顆以上的衛星,這時,接收機可按衛星的星座分布分成若干組,每組4顆,然後通過演算法挑選出誤差最小的一組用作定位,從而提高精度。[6]
衛星定位實施的是「到達時間差」(時延)的概念:利用每一顆衛星的精確位置和連續發送的星上原子鍾生成的導航信息獲得從衛星至接收機的到達時間差。
衛星在空中連續發送帶有時間和位置信息的無線電信號,供接收機接收。由於傳輸的距離因素,接收機接收到信號的時刻要比衛星發送信號的時刻延遲,通常稱之為時延,因此,也可以通過時延來確定距離。衛星和接收機同時產生同樣的偽隨機碼,一旦兩個碼實現時間同步,接收機便能測定時延;將時延乘上光速,便能得到距離。
每顆衛星上的計算機和導航信息發生器非常精確地了解其軌道位置和系統時間,而全球監測站網保持連續跟蹤。
『貳』 求[鍾表問題計算方法]
一個表盤是360°,有12個小時,因此小時間的刻度是30°;
而每過一分鍾,小時針前進30/60=0.5°,而分針前進30/5=6°
因此,算該類題目的思路是:(例如,我們要計算3點10分是的夾角)
首先,算出整點的夾角,對於例子我們計算三點整的夾角=90°
其次,算計經過10分鍾後時針,分針導致的角度改變的大小;注意時針取整,分針取負;(原因:我們可以這樣理解,如果分針不動,只有時針動,我們的角是變大的,因此取正;如果時針不動,只有分針動,我們的角是變小的,因此取負;)在此例中,角度的該變數是(0.5°-6°)*10=-55°
最後,算出最後的角度;|原始角度+改變的角度|,取絕對值的原因是:改變的角度是負值,可能會大於原始角度。例子中的角度是35°
『叄』 小芳家的鍾1時敲1下,2時敲2下……12時敲12下,每到半時,敲1下,一晝夜24時要敲
(1+12)x12÷2x2+1x12x2
=156+24
=180(下)
答:一晝夜24時要敲180下。
解題思路:每天有兩個12小時。也有12x2個半小時。
1時敲1下,2時敲2下……12時敲12下,其實是(等差數列),運用高斯演算法:和=(首項+末項)x項數÷2,2個12小時就乘於2.
希望能幫到你!
『肆』 時差的計算方法是什麼
時差的計算方法:兩個時區標准時間(即時區數)相減就是時差,時區的數值大的時間早。比如中國是東八區(+8),美國東部是西五區(-5),兩地的時差是13小時,北京比紐約要早13個小時;如果是美國實行夏令時的時期,相差12小時。
各國與中國的時差:
荷蘭-7
阿根廷-11
紐西蘭+4
澳大利亞+2
巴基斯坦-3
奧地利-7
挪威-7
巴西-11
巴拉圭-12
汶萊0
秘魯-13
智利-12
菲律賓0
哥倫比亞-13
波蘭-6
哥斯大黎加-14
葡萄牙-8
加拿大-16
波多黎各-12
丹麥-7
羅馬尼亞-5
埃及-6
盧安達-6
芬蘭-6
沙烏地阿拉伯-5
法國-7
新加坡0
希臘-6
南非共和國-6
關島 +2
西班牙-7
夏威夷-18
斯里蘭卡-2.5
史瓦濟蘭-6
印度 -2.5
瑞典 -7
印尼 +1
瑞士 -7
伊朗 -4.5
泰國 -1
以色列-6
土耳其-5
義大利-7
英國 -7
日本 +1
烏拉圭-11
韓國 +1
美國 -16
科威特-4.5
梵蒂岡-7
德國 -7
馬來西亞0
墨西哥-15
(4)鍾差預測演算法擴展閱讀
時差的由來:各國的時間使用地方時,沒有統一換算方法,給交通和通訊帶來不便。(時差的意識在此前就有,只是沒有形成完善制度)為了統一,世界採取了時差制度並且遵循此制度,各國時間歷法都以此制度為基礎。
我們在乘坐飛機到國外旅行時,由於時差的變化,會引起人體內生物鍾混亂,使人感到眩暈。醫學上叫做「時差綜合症」,嚴重的病人可能出現頭痛,耳鳴,心悸,惡心,腹痛,腹瀉,以及判斷力和注意力下降等。那麼在乘作飛機出國旅行時,減輕這種時差對人體造成影響的方法:
1,在飛機上應當大量喝水,不要喝含酒精的飲料,以避免體內脫水,脫水會加劇時差的影響。
2,宜穿寬松的衣服,以便體內的血液流動。
3,飛行過程中盡量在機艙內多走動,舒展筋骨。
『伍』 GPS定位原理
GPS(Global Positioning System)即全球定位系統,是由美國建立的一個衛星導航定位系統,利用該系統,用戶可以在全球范圍內實現全天候、連續、實時的三維導航定位和測速;另外,利用該系統,用戶還能夠進行高精度的時間傳遞和高精度的精密定位。
現實生活中,GPS定位主要用於對移動的人、寵物、車及設備進行遠程實時定位監控的一門技術。GPS定位是結合了GPS技術、無線通信技術(GSM/GPRS/CDMA)、圖像處理技術及GIS技術的定位技術,主要可實現如下功能:
1.跟蹤定位
監控中心能全天侯24小時監控所有被控車輛的實時位置、行駛方向、行駛速度,以便最及時的掌握車輛的狀況。
2.軌跡回放
監控中心能隨時回放近60天內的自定義時段車輛歷史行程、軌跡記錄。(根據情況,可選配軌跡DVD刻錄服務)
3.報警(報告)
3.1,超速報警:車輛行駛速度超出監控中心預設的速度時,及時上報監控中心
3.2,區域報警(電子圍欄):監控中心設定區域范圍,車輛超出或駛入預設的區域會向監控調度中心給出相應的報警
3.3,停車報告:調度中心可對車輛的歷史停車記錄以文字形式生成報表,其中描述車輛的停車地點、時間和開車時間等信息,並可對其進行列印。
3.4,應急報警: 一旦遇有緊急險情(如遭劫等),請馬上按動應急報警按鈕,向監管中心報警,監管中心即刻會知道您處於緊急狀態以及您所在的位置。經核實後,進入警情處置程序,助您脫險。(註:一旦應急報警按鈕啟動,此設備會立即關閉通話功能,但簡訊功能正常)
3.5,欠壓報警,當汽車電瓶電壓過低時,車載主機會自動向監控中心報警,由監控中心值班員提醒用戶及時給車輛充電。
3.6,剪線報警,車輛主電瓶被破壞後或不能供電時,內置備用電池可維持產品繼續工作,並向監控中心發送剪線報警。
4.地圖製作功能
根據查看需要,客戶可以添加修改自定義地圖線路,以更好服務企業運行
5.里程統計
系統利用GPS車載終端的行駛記錄功能和GIS地理系統原理對車輛進行行駛里程統計,並可生成報表且可列印。
6.車輛信息管理
方便易用的管理平台,提供了車輛、駕駛人員、車輛圖片等信息的設定,以方便調度人員的工作。
7.簡訊通知功能
將被控車輛的各種報警或狀態信息在必要時發送到管理者手機上,以便隨時隨地掌握車輛重要狀態信息。
8.車輛遠程式控制制
監控中心可隨時對車輛進行遠程斷油斷電,鎖車功能。
9.車載電話
車載電話可以象普通手機一樣拔打電話,調度中心可對此電話進行遠程許可權設置,即呼入限制、呼出限制、只能呼叫指定的若干電話號碼。
10.油耗檢測
實時監控車輛的油耗變化,並生成歷史時段油量變化報表或油量曲線圖,進而直觀反映出油量的正常消耗與非正常消耗及加油數量不足等現象,達到油耗高水平管理,杜絕不良事件的發生。(需搭配油量感測器)
11.車輛調度
調度人員確定調度車輛或者在地圖上畫定調度范圍,GPS系統自動向車輛或者畫定范圍內的所有車輛發出調度命令,被調度車輛及時回應調度中心,以確定調度命令的執行情況。GPS系統還可對每輛車成功調度次數進行月統計。 智能自檢 車載終端可以進行自我診斷,一旦發生故障,就會向中心發出故障通知,方便工作人員維修,確保設備正常工作。
GPS計劃始於1973年 ,已於1994年進入完全運行狀態。GPS的整個系統由空間部分、地面控制部分和用戶部分所組成:
空間部分(太空部分)
GPS的空間部分是由24顆GPS工作衛星所組成,這些GPS工作衛星共同組成了GPS衛星星座,其中21顆為可用於導航的衛星,3顆為活動的備用衛星。這24顆衛星分布在6個傾角為55°的軌道上繞地球運行。衛星的運行周期約為12恆星時。每顆GPS工作衛星都發出用於導航定位的信號。GPS用戶正是利用這些信號來進行工作的。
控制部分
GPS的控制部分由分布在全球的由若干個跟蹤站所組成的監控系統所構成,根據其作用的不同,這些跟蹤站又被分為主控站、監控站和注入站。主控站有一個,位於美國克羅拉多(Colorado)的法爾孔(Falcon)空軍基地,它的作用是根據各監控站對GPS的觀測數據,計算出衛星的星歷和衛星鍾的改正參數等,並將這些數據通過注入站注入到衛星中去;同時,它還對衛星進行控制,向衛星發布指令,當工作衛星出現故障時,調度備用衛星,替代失效的工作衛星工作;另外,主控站也具有監控站的功能。監控站有五個,除了主控站外,其它四個分別位於夏威夷(Hawaii)、阿松森群島(Ascencion)、迭哥伽西亞(Diego Garcia)、卡瓦加蘭(Kwajalein),監控站的作用是接收衛星信號,監測衛星的工作狀態;注入站有三個,它們分別位於阿松森群島(Ascencion)、迭哥伽西亞(Diego Garcia)、卡瓦加蘭(Kwajalein),注入站的作用是將主控站計算出的衛星星歷和衛星鍾的改正數等注入到衛星中去。
用戶部分(地面接收)
GPS的用戶部分由GPS接收機、數據處理軟體及相應的用戶設備如計算機氣象儀器等所組成。它的作用是接收GPS衛星所發出的信號,利用這些信號進行導航定位等工作。 以上這三個部分共同組成了一個完整的GPS系統。 GPS的信號
GPS衛星發射兩種頻率的載波信號,即頻率為1575.42MHz的L1載波和頻率為1227.60MHz的L2載波,它們的頻率分別是基本頻率10.23MHz的154倍和120倍,它們的波長分別為19.03cm和24.42cm。在L1和L2上又分別調制著多種信號,這些信號主要有:
C/A碼
C/A碼又被稱為粗捕獲碼,它被調制在L1載波上,是1MHz的偽隨機雜訊碼(PRN碼),其碼長為1023位(周期為1ms)。由於每顆衛星的C/A碼都不一樣,因此,我們經常用它們的PRN號來區分它們。C/A碼是普通用戶用以測定測站到衛星間的距離的一種主要的信號。
P碼
P碼又被稱為精碼,它被調制在L1和L2載波上,是10MHz的偽隨機雜訊碼,其周期為七天。在實施AS時,P碼與W碼進行模二相加生成保密的Y碼,此時,一般用戶無法利用P碼來進行導航定位。
Y碼
見P碼。
導航信息
導航信息被調制在L1載波上,其信號頻率為50Hz,包含有GPS衛星的軌道參數、衛星鍾改正數和其它一些系統參數。用戶一般需要利用此導航信息來計算某一時刻GPS衛星在地球軌道上的位置,導航信息也被稱為廣播星歷。
SPS和PPS是GPS系統針對不同用戶提供兩種不同類型的服務。一種是標準定位服務(SPSStandard Positioning Service),另一種是精密定位服務(PPSPrecision Positioning Service)。這兩種不同類型的服務分別由兩種不同的子系統提供,標準定位服務由標準定位子系統(SPSStandard Positioning System)提供,精密定位服務則由精密定位子系統(PPSPrecision Positioning System)提供。
SPS主要面向全世界的民用用戶。
PPS主要面向美國及其盟國的軍事部門以及民用的特許用戶。
在GPS定位中,經常採用下列觀測值中的一種或幾種進行數據處理,以確定出待定點的坐標或待定點之間的基線向量:
L1載波相位觀測值
L2載波相位觀測值(半波或全波)
調制在L1上的C/A碼偽距
調制在L1上的P碼偽距
調制在L2上的P碼偽距
L1上的多普勒頻移
L2上的多普勒頻移
實際上,在進行GPS定位時,除了大量地使用上面的觀測值進行數據處理以外,還經常使用由上面的觀測值通過某些組合而形成的一些特殊觀測值,如寬巷觀測值(Wide-Lane)、窄巷觀測值(Narrow-Lane)、消除電離層延遲的觀測值(Ion-Free)來進行數據處理。 GPS的誤差
我們在利用GPS進行定位時,會受到各種各樣因素的影響。影響GPS定位精度的因素可分為以下四大類:
人為
美國政府從其國家利益出發,通過降低廣播星歷精度( 技術)、在GPS基準信號中加入高頻抖動( 技術)等方法,人為降低普通用戶利用GPS進行導航定位時的精度。
衛星星歷誤差
在進行GPS定位時,計算在某時刻GPS衛星位置所需的衛星軌道參數是通過各種類型的星歷[7]提供的,但不論採用哪種類型的星歷,所計算出的衛星位置都會與其真實位置有所差異,這就是所謂的星歷誤差。
衛星鍾差
衛星鍾差是GPS衛星上所安裝的原子鍾的鍾面時與GPS標准時間之間的誤差。
衛星信號發射天線相位中心偏差
衛星信號發射天線相位中心偏差是GPS衛星上信號發射天線的標稱相位中心與其真實相位中心之間的差異。 GPS定位的基本原理是根據高速運動的衛星瞬間位置作為已知的起算數據,採用空間距離後方交會的方法,確定待測點的位置。如圖所示,假設t時刻在地面待測點上安置GPS接收機,可以測定GPS信號到達接收機的時間△t,再加上接收機所接收到的衛星星歷等其它數據可以確定以下四個方程式:上述四個方程式中待測點坐標x、 y、 z 和Vto為未知參數,其中di=c△ti (i=1、2、3、4)。
di (i=1、2、3、4) 分別為衛星1、衛星2、衛星3、衛星4到接收機之間的距離。
△ti (i=1、2、3、4) 分別為衛星1、衛星2、衛星3、衛星4的信號到達接收機所經歷的時間。
c為GPS信號的傳播速度(即光速)。
四個方程式中各個參數意義如下:
x、y、z 為待測點坐標的空間直角坐標。
xi 、yi 、zi (i=1、2、3、4) 分別為衛星1、衛星2、衛星3、衛星4在t時刻的空間直角坐標,
可由衛星導航電文求得。
Vt i (i=1、2、3、4) 分別為衛星1、衛星2、衛星3、衛星4的衛星鍾的鍾差,由衛星星歷提供。
Vto為接收機的鍾差。
由以上四個方程即可解算出待測點的坐標x、y、z 和接收機的鍾差Vto 。
事實上,接收機往往可以鎖住4顆以上的衛星,這時,接收機可按衛星的星座分布分成若干組,每組4顆,然後通過演算法挑選出誤差最小的一組用作定位,從而提高精度。
由於衛星運行軌道、衛星時鍾存在誤差,大氣對流層、電離層對信號的影響,以及人為的SA保護政策,使得民用GPS的定位精度只有100米。為提高定位精度,普遍採用差分GPS(DGPS)技術,建立基準站(差分台)進行GPS觀測,利用已知的基準站精確坐標,與觀測值進行比較,從而得出一修正數,並對外發布。接收機收到該修正數後,與自身的觀測值進行比較,消去大部分誤差,得到一個比較准確的位置。實驗表明,利用差分GPS,定位精度可提高到5米。
車用導航系統主要由導航主機和導航顯示終端兩部分構成。內置的GPS天線會接收到來自環繞地球的24顆GPS衛星中的至少3顆所傳遞的數據信息,由此測定汽車當前所處的位置。導航主機通過GPS衛星信號確定的位置坐標與電子地圖數據相匹配,便可確定汽車在電子地圖中的准確位置。
在此基礎上,將會實現行車導航、路線推薦、信息查詢、播放AV/TV等多種功能。駕駛者只須通過觀看顯示器上的畫面、收聽語音提示,操縱手中的遙控器即可實現上述功能,從而輕松自如地駕車。
『陸』 以四分位距和以平均值的標准差檢測離散值和極值之間有什麼區別
變異程度一般用間距或者方差來描述.
boxplot 箱線圖就是顯示全距(最大值-最小值)和
四分位間距(把數組分為最小值點,上四分位點,中位數,下四分位點和最大值點) 每兩個之間就是四分位間距 .
優點:直觀,各組線段是各包括了25%的數據,因此,線段長度實際反映了數據的密度.
你隨機輸入任意的一組超過30個的數據,做一個箱線圖,就會發現,那個箱體不會是總是均勻的.
缺點:沒有把樣本容量考慮進去
方差標准差是一回事兒,只不過標准差和均值的單位是一樣的,所以大家偏向於用標准差.
標准差把樣本容量和離散程度結合考慮,給出變異程度.
優點:類似一個綜合指標,大體上結合樣本容量告訴你的變異程度.適合初步篩選用
缺點:方差相同的兩組數,可以相差十萬八千里,所以要了解細致的東西必須得畫boxplot
『柒』 差分GPS的演算法
GPS定位是利用一組衛星的偽距、星歷、衛星發射時間等觀測量和用戶鍾差來實現的。要獲得地面的三維坐標,必須對至少4顆衛星進行測量。在這一定位過程中,存在3部分誤差:
第一部分誤差是由衛星鍾誤差、星歷誤差、電離層誤差、對流層誤差等引起的;
第二部分是由傳播延遲導致的誤差;
第三部分為各用戶接收機固有的誤差,由內部雜訊、通道延遲、多路徑效應等原因造成。
利用差分技術,第一部分誤差可以完全消除;第二部分誤差大部分可以消除,消除程度主要取決於基準接收機和用戶接收機的距離;第三部分誤差則無法消除。
下面,我們主要介紹消除由於電離層延遲和對流層延遲引起的誤差的演算法。在演算法中使用的時間系統為GPS時,坐標系統為WGS-84坐標系。
1.消除電離層誤差的演算法
我們主要通過電離層網格延遲演算法來獲得實際的電離層延遲值,以消除電離層誤差。具體過程如下:解算星歷,得出衛星位置→求電離層穿透點位置→求對應網格點→求網格4個頂點的電離層延遲改正數→內插獲得穿透點垂直延遲改正數→求穿透點的實際延遲值。
2.衛星位置的計算
解算出星歷數據後,加入星歷修正和差分信息,便可計算出衛星位置。
從GPS OEM板接收到的是二進制編碼的星歷數據流,必須按照本文前面部分列出的數據結構解算星歷數據,再依據IEEE-754標准將其轉換為十進制編碼的數據。在這里,需要解算的參數有:軌道長半軸的平方根(sqrta)、平近點角改正(dn)、星歷表基準時間(toe)、toe時的平近點角(m0)、偏心率(e)、近地點角距(w)、衛星軌道攝動修正參數(cus cuc cis cic crs crc)、軌道傾角(i0)、升交點赤經(omg0)、升交點赤經變化率(odot)。