當前位置:首頁 » 操作系統 » 智能演算法的書

智能演算法的書

發布時間: 2022-12-10 16:31:35

1. 有哪些關於智能演算法的好書籍

個人覺得《MATLAB智能演算法30個案例分析》這本書是最好的,而且很詳細,只要有點基礎,都能看得懂。等你學完這本書的內容,操作上也差不多了。再去深入學習其他更深的內容就顯得方便很多。

2. 人工智慧入門書籍

人工智慧是計算機科學的一個分支,並不是一個單一學科,圖像識別、自然語言處理、機器人、語言識別、專家系統等等,每一個研究都富有挑戰。對人工智慧感興趣,但無法確定具體方向,如何了解人工智慧現狀和研究領域?

筆者推薦4本科普書,對於大多數人來說,閱讀難度不高,公式和理論少,內容有趣,能讀得下去;信息較新鮮且全,要有一定閱讀價值,能夠有深入的思考當然更好。書單不長,只用做科普入門。

1、《超級智能》

2、《我們最後的發明:人工智慧與人類時代的終結》

3、《智能時代》

4、《人工智慧:國家人工智慧戰略行動抓手》

3. 推薦一些演算法比較好的書

劉汝佳的《演算法藝術與信息學競賽》,這本書很適合搞演算法競賽的看。
《演算法導論》這本書就不用多說了,經典
Udi Manber 的《Introction to Algorithms: A Creative Approach》中文名《演算法引論:一種創造性方法》
當然還有很多書,上面三本我有幸看過

4. 群智能演算法及其應用的圖書目錄

前言 1.1 引言
1.2 蟻群演算法的基本原理
1.3 粒子群優化演算法基本原理
1.4 蟻群演算法理論研究現狀
1.5 蟻群演算法應用研究現狀
1.6 粒子群優化演算法研究現狀
1.7 粒子群演算法應用研究現狀 2.1 求解一般非線性整數規劃的蟻群演算法
2.1.1 引言
2.1.2 求解非線性整數規劃的蟻群演算法
2.1.3 算例分析
2.2 武器—目標分配問題的蟻群演算法
2.2.1 引言
2.2.2 WTA問題
2.2.3 武器—目標分配問題的蟻群演算法
2.2.4 模擬結果j
2.3 多處理機調度問題的蟻群演算法
2.3.1 引言
2.3.2 多處理機調度問題數學模型
2.3.3 解多處理機調度問題模擬退火演算法
2.3.4 解多處理機調度問題蟻群演算法
2.3.5 演算法比較
2.4 可靠性優化的蟻群演算法
2.4.1 引言
2.4.2 最優冗餘優化模型及解法
2.4.3 可靠性優化的模擬退火演算法
2.4.4 可靠性優化的遺傳演算法
2.4.5 可靠性優化的蟻群演算法
2.4.6 算例分析
2.5 求解旅行商問題的多樣信息素的蟻群演算法
2.5.1 信息素更新的3個模型
2.5.2 多樣信息素更新規則
2.5.3 演算法測試
2.6 本章小結 3.1 無約束非線性最優化問題
3.2 連續優化問題的信息量分布函數方法
3.3 一種簡單的連續優化問題的蟻群演算法
3.4 數值分析
3.5 本章小結 4.1 引言
4.2 聚類問題的數學模型
4.3 K均值演算法
4.4 解聚類問題的模擬退火演算法
4.5 基於巡食思想的蟻群聚類演算法
4.6 解聚類問題的新的蟻群演算法及數值分析
4.6.1 解聚類問題的蟻群演算法
4.6.2 數值分析
4.7 解聚類問題的與K-均值演算法混合的蟻群演算法及數值分析
4.7.1 解聚類問題的K-均值演算法混合的蟻群演算法
4.7.2 數值分析
4.8 本章小結 5.1 引言
5.2 解圓排列問題的蟻群模擬退火演算法
5.2.1 圓排列問題及與旅行商問題等價
5.2.2 解旅行商問題的模擬退火演算法
5.2.3 幾種演算法的比較
5.2.4 算例分析
5.3 解旅行商問題的模擬退火蟻群演算法
5.3.1 混合的基本思想
5.3.2 找鄰域解策略
5.3.3 模擬退火蟻群演算法
5.3.4 演算法測試
5.4 本章小結 6.1 引言
6.2 基本遺傳演算法
6.3 蟻群演算法與遺傳演算法的混合
6.3.1 混合的基本思想
6.3.2 變異操作
6.3.3 交叉操作
6.3.4 遺傳蟻群演算法
6.4 演算法測試
6.5本章小結 7.1 引言
7.2 混沌及運動特性
7.3 基本蟻群演算法改進
7.3.1 混沌初始化
7.3.2 選擇較優解
7.3.3 混沌擾動
7.4 混沌蟻群演算法
7.5 演算法測試
7.6 本章小結 8.1 引言
8.2 最短路的蟻群演算法收斂性分析
8.3 模擬算例
8.4 本章小結 9.1 模擬退火思想的粒子群演算法
9.1.1 幾種模擬退火思想的粒子群演算法
9.1.2 演算法測試
9.2 混沌粒子群優化演算法研究
9.2.1 基本粒子群演算法不足
9.2.2 混沌粒子群優化演算法
9.2.3 演算法測試
9.3 其他改進的粒子群優化演算法
9.3.1 雜交PSO演算法
9.3.2 協同PSO演算法
9.3.3 離散PSO演算法
9.4.本章小結 10.1 背包問題的混合粒子群優化演算法
10.1.1 背包問題數學模型
10.1.2 解0-1背包問題的混合粒子群演算法
10.1.3 數值模擬與分析
10.2 指派問題的交叉粒子群優化演算法
10.2.1 求解指派問題的交叉粒子群優化演算法
10.2.2 演算法測試
10.3 武器—目標分配問題的粒子群優化演算法
10.3.1 解武器—目標分配問題的粒子群優化演算法
10.3.2 算例分析
10.4 流水作業調度問題的粒子群演算法
10.4.1 流水作業調度問題
10.4.2 求解流水作業調度問題混合粒子群演算法
10.4.3 演算法測試
10.5 非線性整數規劃的粒子群優化演算法
10.5.1 引言
10.5.2 求解非線性整數規劃的粒子群優化演算法
10.5.3 算例分析
10.6 本章小結 l1.1 引言
11.2 整數規劃形式
1l.3 連續性優化形式
11.4 本章小結 12.1 引言
12.2 求解旅行商問題的混合粒子群優化演算法
12.2.1 混合粒子群演算法思路
12.2.2 變異操作和交叉操作
12.2.3 混合粒子群演算法步驟
12.2.4 演算法測試
12.3 求解旅行商問題的粒子群—蟻群演算法
12.3.1 粒子群—蟻群演算法思想
12.3.2 粒子群—蟻群演算法步驟
12.3.3 演算法測試
12.4 本章小結 13.1 引言
13.2 PSO演算法收斂性分析
13.3 數值模擬
13.4 參數選取
13.5 本章小結 14.1 引言
14.2 魚群演算法基本原理
14.3 人工魚的行為描述
14.4 魚群演算法的應用
14.5 本章小結 附錄A 求解旅行商問題的蟻群基本演算法源程序
附錄B 計算連續性函數的優化的粒子群程序
附錄C 求解旅行商問題的粒子群—蟻群演算法的源程序
參考文獻
……

5. 有哪些關於智能演算法的好書籍

這是從專業角度研究程序設計的方法,計算機領域的許多經典演算法的或其雛形就來源於此.具體內容設計除了演算法外,還有數據結構.用一句話來解釋,那就是:程序=演算法+數據結構.你可以由此體會這個系列的書的價值.KNUTH是最早研究演算法和數據結構問題的專業人士.典型問題,比如數據的排序過程,比如信息的檢索動作,如何速度更快,耗費的空間更少,相信冒泡排序等演算法你是聽過的.你自己可以嘗試了看能否比這些演算法更好,更有效率。
據我所知作者因為這么本書而得了圖靈獎;還有就是比爾蓋茨曾說過:要是你能看懂這書的三卷,就給我發一份你的簡歷。

6. 有哪些關於智能演算法的好書籍

《人工智慧--一種現代方法》 英國,羅素Artificial Intelligence A Modern Approach, Stuart Russell`Perter Norvig

7. 有哪些關於智能演算法的好書籍

專業需要,接觸到一些matlab智能演算法。學習階段發現《MATLAB智能演算法30個案例分析》這本書,以案例來操作演算法,還算比較實用。演算法相對來說也比較簡單,不過都體現了智能演算法的原理。並且全部附有演算法代碼。

8. 有哪些關於智能演算法的好書籍

代碼好像在《精通matlab最優化計算》,有遺傳和粒子群的代碼。
如果想掌握理論,可以看看雷秀娟的群智能優化演算法及其應用。

9. 有哪些關於人工智慧的書籍可供推薦

看到這個問題有點小興奮,我來推薦一份人工智慧書單。

1、機器學習精講

機器學習原理演算法與應用教程,精簡機器學習入門手冊,美亞機器學習深度學習暢銷書,全彩印刷,掃描書中二維碼可閱讀補充內容,人工智慧和機器學習領域眾多知名專家推薦。

2、動手學深度學習

目前市面上有關深度學習介紹的書籍大多可分兩類,一類側重方法介紹,另一類側重實踐和深度學習工具的介紹。本書同時覆蓋方法和實踐。本書不僅從數學的角度闡述深度學習的技術與應用,還包含可運行的代碼,為讀者展示如何在實際中解決問題。

為了給讀者提供一種互動式的學習體驗,本書不但提供免費的教學視頻和討論區,而且提供可運行的Jupyter記事本文件,充分利用Jupyter記事本能將文字、代碼、公式和圖像統一起來的優勢。這樣不僅直接將數學公式對應成實際代碼,而且可以修改代碼、觀察結果並及時獲取經驗,從而帶給讀者全新的、互動式的深度學習的學習體驗。

3、深度學習

本書囊括了數學及相關概念的背景知識,包括線性代數、概率論、資訊理論、數值優化以及機器學習中的相關內容。同時,它還介紹了工業界中實踐者用到的深度學習技術,包括深度前饋網路、正則化、優化演算法、卷積網路、序列建模和實踐方法等。

並且調研了諸如自然語言處理、語音識別、計算機視覺、在線推薦系統、生物信息學以及視頻游戲方面的應用。最後,本書還提供了一些研究方向,涵蓋的理論主題包括線性因子模型、自編碼器、表示學習、結構化概率模型、蒙特卡羅方法、配分函數、近似推斷以及深度生成模型。

4、人工智慧(第2版)

本書是作者結合多年教學經驗、精心撰寫的一本人工智慧教科書,堪稱「人工智慧的網路全書」。全書涵蓋了人工智慧簡史、搜索方法、知情搜索、博弈中的搜索、人工智慧中的邏輯、知識表示、產生式系統、專家系統、機器學習和神經網路、遺傳演算法、自然語言處理、自動規劃、機器人技術、高級計算機博弈、人工智慧的歷史和未來等主題。

5、Python 神經網路編程

本書將帶領您進行一場妙趣橫生卻又有條不紊的旅行——從一個非常簡單的想法開始,逐步理解神經網路的工作機制。您無需任何超出中學范圍的數學知識,並且本書還給出易於理解的微積分簡介。本書的目標是讓盡可能多的普通讀者理解神經網路。讀者將學習使用Python開發自己的神經網路,訓練它識別手寫數字,甚至可以與專業的神經網路相媲美。

10. 智能演算法30個案例分析這本書關於遺傳演算法的程序解釋

《matlab智能演算法30個案例分析》(作者史峰、王輝、郁磊、胡斐)是作者多年從事演算法研究的經驗總結。書中所有案例均因國內各大matlab技術論壇網友的切身需求而精心設計,其中不少案例所涉及的內容和求解方法在國內現已出版的matlab書籍中鮮有介紹。

熱點內容
超凡先鋒配置不行怎麼辦 發布:2025-05-15 23:27:54 瀏覽:530
win7取消加密 發布:2025-05-15 23:26:37 瀏覽:470
不用internet打開ftp 發布:2025-05-15 23:06:00 瀏覽:153
sql字元串取數字 發布:2025-05-15 22:57:45 瀏覽:124
推薦編程課 發布:2025-05-15 22:34:12 瀏覽:618
表拒絕訪問 發布:2025-05-15 22:29:37 瀏覽:978
電腦怎樣解壓文件 發布:2025-05-15 22:25:32 瀏覽:439
dns伺服器怎麼看 發布:2025-05-15 22:17:27 瀏覽:151
3dm的壓縮包 發布:2025-05-15 22:09:23 瀏覽:662
和存儲字長 發布:2025-05-15 21:54:09 瀏覽:515