當前位置:首頁 » 操作系統 » 寫linux驅動

寫linux驅動

發布時間: 2023-01-27 14:40:48

1. 如何在linux下寫無線網卡的驅動

建議通過以下步驟在Linux下載無線網卡的驅動:

一、所需材料准備如下:

准備一台可以聯網的電腦;

二、具體操作步驟如下:

因無線網卡的驅動安裝和型號相關,不同型號的無線網卡安裝、驅動下載有所差異。具體可聯系網卡官網或售後。

先確認Linux使用的是何種版本,如:Redhat9.0、 Freda core5等。同時確認Linux使用的內核。

在確認無線網卡的具體型號後在進一步操作,以下以騰達w31系列無線網卡為例:

1、通過瀏覽器搜索Linux官方網站,按照提示選擇linux系統驅動下載(型號5370);

2. 如何編寫Linux 驅動程序

以裝載和卸載模塊為例:

1、首先輸入代碼

#include <linux/init.h>

#include <linux/mole.h>

3. linux驅動程序結構框架及工作原理分別是什麼

一、Linux device driver 的概念x0dx0ax0dx0a系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:x0dx0ax0dx0a1、對設備初始化和釋放;x0dx0ax0dx0a2、把數據從內核傳送到硬體和從硬體讀取數據;x0dx0ax0dx0a3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據;x0dx0ax0dx0a4、檢測和處理設備出現的錯誤。x0dx0ax0dx0a在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。x0dx0ax0dx0a已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。x0dx0ax0dx0a最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。x0dx0ax0dx0a二、實例剖析x0dx0ax0dx0a我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。x0dx0ax0dx0a由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close?, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:x0dx0ax0dx0aSTruct file_operatiONs {x0dx0ax0dx0aint (*seek) (struct inode * ,struct file *, off_t ,int);x0dx0ax0dx0aint (*read) (struct inode * ,struct file *, char ,int);x0dx0ax0dx0aint (*write) (struct inode * ,struct file *, off_t ,int);x0dx0ax0dx0aint (*readdir) (struct inode * ,struct file *, struct dirent * ,int);x0dx0ax0dx0aint (*select) (struct inode * ,struct file *, int ,select_table *);x0dx0ax0dx0aint (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);x0dx0ax0dx0aint (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);x0dx0ax0dx0aint (*open) (struct inode * ,struct file *);x0dx0ax0dx0aint (*release) (struct inode * ,struct file *);x0dx0ax0dx0aint (*fsync) (struct inode * ,struct file *);x0dx0ax0dx0aint (*fasync) (struct inode * ,struct file *,int);x0dx0ax0dx0aint (*check_media_change) (struct inode * ,struct file *);x0dx0ax0dx0aint (*revalidate) (dev_t dev);x0dx0ax0dx0a}x0dx0ax0dx0a這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。x0dx0ax0dx0a下面就開始寫子程序。x0dx0ax0dx0a#include 基本的類型定義x0dx0ax0dx0a#include 文件系統使用相關的頭文件x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0aunsigned int test_major = 0;x0dx0ax0dx0astatic int read_test(struct inode *inode,struct file *file,char *buf,int count)x0dx0ax0dx0a{x0dx0ax0dx0aint left; 用戶空間和內核空間x0dx0ax0dx0aif (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )x0dx0ax0dx0areturn -EFAULT;x0dx0ax0dx0afor(left = count ; left > 0 ; left--)x0dx0ax0dx0a{x0dx0ax0dx0a__put_user(1,buf,1);x0dx0ax0dx0abuf++;x0dx0ax0dx0a}x0dx0ax0dx0areturn count;x0dx0ax0dx0a}x0dx0ax0dx0a這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。為了驗證BUF是否可以用。x0dx0ax0dx0astatic int write_test(struct inode *inode,struct file *file,const char *buf,int count)x0dx0ax0dx0a{x0dx0ax0dx0areturn count;x0dx0ax0dx0a}x0dx0ax0dx0astatic int open_test(struct inode *inode,struct file *file )x0dx0ax0dx0a{x0dx0ax0dx0aMOD_INC_USE_COUNT; 模塊計數加以,表示當前內核有個設備載入內核當中去x0dx0ax0dx0areturn 0;x0dx0ax0dx0a}x0dx0ax0dx0astatic void release_test(struct inode *inode,struct file *file )x0dx0ax0dx0a{x0dx0ax0dx0aMOD_DEC_USE_COUNT;x0dx0ax0dx0a}x0dx0ax0dx0a這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。x0dx0ax0dx0astruct file_operations test_fops = {?x0dx0ax0dx0aread_test,x0dx0ax0dx0awrite_test,x0dx0ax0dx0aopen_test,x0dx0ax0dx0arelease_test,x0dx0ax0dx0a};x0dx0ax0dx0a設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。x0dx0ax0dx0aint init_mole(void)x0dx0ax0dx0a{x0dx0ax0dx0aint result;x0dx0ax0dx0aresult = register_chrdev(0, "test", &test_fops); 對設備操作的整個介面x0dx0ax0dx0aif (result < 0) {x0dx0ax0dx0aprintk(KERN_INFO "test: can't get major number\n");x0dx0ax0dx0areturn result;x0dx0ax0dx0a}x0dx0ax0dx0aif (test_major == 0) test_major = result; /* dynamic */x0dx0ax0dx0areturn 0;x0dx0ax0dx0a}x0dx0ax0dx0a在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。x0dx0ax0dx0a如果登記成功,返回設備的主設備號,不成功,返回一個負值。x0dx0ax0dx0avoid cleanup_mole(void)x0dx0ax0dx0a{x0dx0ax0dx0aunregister_chrdev(test_major,"test");x0dx0ax0dx0a}x0dx0ax0dx0a在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。x0dx0ax0dx0a一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。x0dx0ax0dx0a下面編譯 :x0dx0ax0dx0a$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c _c表示輸出制定名,自動生成.o文件x0dx0ax0dx0a得到文件test.o就是一個設備驅動程序。x0dx0ax0dx0a如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後x0dx0ax0dx0ald ?-r ?file1.o ?file2.o ?-o ?molename。x0dx0ax0dx0a驅動程序已經編譯好了,現在把它安裝到系統中去。x0dx0ax0dx0a$ insmod ?_f ?test.ox0dx0ax0dx0a如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :x0dx0ax0dx0a$ rmmod testx0dx0ax0dx0a下一步要創建設備文件。x0dx0ax0dx0amknod /dev/test c major minorx0dx0ax0dx0ac 是指字元設備,major是主設備號,就是在/proc/devices里看到的。x0dx0ax0dx0a用shell命令x0dx0ax0dx0a$ cat /proc/devicesx0dx0ax0dx0a就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。x0dx0ax0dx0aminor是從設備號,設置成0就可以了。x0dx0ax0dx0a我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0amain()x0dx0ax0dx0a{x0dx0ax0dx0aint testdev;x0dx0ax0dx0aint i;x0dx0ax0dx0achar buf[10];x0dx0ax0dx0atestdev = open("/dev/test",O_RDWR);x0dx0ax0dx0aif ( testdev == -1 )x0dx0ax0dx0a{x0dx0ax0dx0aprintf("Cann't open file \n");x0dx0ax0dx0aexit(0);x0dx0ax0dx0a}x0dx0ax0dx0aread(testdev,buf,10);x0dx0ax0dx0afor (i = 0; i < 10;i++)x0dx0ax0dx0aprintf("%d\n",buf[i]);x0dx0ax0dx0aclose(testdev);x0dx0ax0dx0a}x0dx0ax0dx0a編譯運行,看看是不是列印出全1 x0dx0ax0dx0a以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,DMA,I/O port等問題。這些才是真正的難點。上述給出了一個簡單的字元設備驅動編寫的框架和原理,更為復雜的編寫需要去認真研究LINUX內核的運行機制和具體的設備運行的機制等等。希望大家好好掌握LINUX設備驅動程序編寫的方法。

4. 如何在Linux下寫無線網卡的驅動

在Linux下載無線網卡的驅動,具體操作步驟如下

1、首先確定無線網卡型號,因驅動安裝和型號是密切相關的,不同的型號,安裝和下載驅動有所不同,但原理是一樣的。以無線網卡型號:騰達w31系列,晶元為relteck 5370 為例;

5. 如何 編寫 linux 驅動 程序

Linux是Unix操作系統的一種變種,在Linux下編寫驅動程序的原理和思想完全類似於其他的Unix系統,但它dos或window環境下的驅動程序有很大的區別。在Linux環境下設計驅動程序,思想簡潔,操作方便,功能也很強大,但是支持函數少,只能依賴kernel中的函數,有些常用的操作要自己來編寫,而且調試也不方便。本人這幾周來為實驗室自行研製的一塊多媒體卡編制了驅動程序,獲得了一些經驗,願與Linux fans共享 一、Linux device driver 的概念系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件, 應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能: 1.對設備初始化和釋放。 2.把數據從內核傳送到硬體和從硬體讀取數據。 3.讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據。 4.檢測和處理設備出現的錯誤。 二、實例剖析我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。

6. 怎麼寫linux網卡驅動程序

1
方法一:
1:ethtool -i ethx
如:
linux:/mnt # ethtool -i eth1
driver: e1000e
version: 1.0.2-k2
firmware-version: 1.9-0
bus-info: 0000:0b:00.0
linux:/mnt # ethtool -i eth16
driver: igb
version: 2.1.0-k2
firmware-version: 1.4-1
bus-info: 0000:0a:00.0
linux:/mnt #
2:使用 modinfo igb 查看驅動信息
linux:~ # modinfo igb
filename: /lib/moles/2.6.32.12-0.7-default/kernel/drivers/net/igb/igb.ko
version: 5.2.5
license: GPL
description: Intel(R) Gigabit Ethernet Network Driver
author: Intel Corporation, <[email protected]>
srcversion: 0E80ABCD0117D822FE8B271
alias: pci:v00008086d000010D6sv*sd*bc*sc*i*
alias: pci:v00008086d000010A9sv*sd*bc*sc*i*
alias: pci:v00008086d000010A7sv*sd*bc*sc*i*
alias: pci:v00008086d000010E8sv*sd*bc*sc*i*
alias: pci:v00008086d00001526sv*sd*bc*sc*i*
alias: pci:v00008086d0000150Dsv*sd*bc*sc*i*
alias: pci:v00008086d000010E7sv*sd*bc*sc*i*
alias: pci:v00008086d000010E6sv*sd*bc*sc*i*
alias: pci:v00008086d00001518sv*sd*bc*sc*i*
alias: pci:v00008086d0000150Asv*sd*bc*sc*i*
alias: pci:v00008086d000010C9sv*sd*bc*sc*i*
alias: pci:v00008086d00000440sv*sd*bc*sc*i*
alias: pci:v00008086d0000043Csv*sd*bc*sc*i*
alias: pci:v00008086d0000043Asv*sd*bc*sc*i*
alias: pci:v00008086d00000438sv*sd*bc*sc*i*
alias: pci:v00008086d00001516sv*sd*bc*sc*i*
alias: pci:v00008086d00001511sv*sd*bc*sc*i*
alias: pci:v00008086d00001510sv*sd*bc*sc*i*
alias: pci:v00008086d00001527sv*sd*bc*sc*i*
alias: pci:v00008086d0000150Fsv*sd*bc*sc*i*
alias: pci:v00008086d0000150Esv*sd*bc*sc*i*
alias: pci:v00008086d00001524sv*sd*bc*sc*i*
alias: pci:v00008086d00001523sv*sd*bc*sc*i*
alias: pci:v00008086d00001522sv*sd*bc*sc*i*
alias: pci:v00008086d00001521sv*sd*bc*sc*i*
alias: pci:v00008086d00001539sv*sd*bc*sc*i*
alias: pci:v00008086d0000157Csv*sd*bc*sc*i*
alias: pci:v00008086d0000157Bsv*sd*bc*sc*i*
alias: pci:v00008086d00001538sv*sd*bc*sc*i*
alias: pci:v00008086d00001537sv*sd*bc*sc*i*
alias: pci:v00008086d00001536sv*sd*bc*sc*i*
alias: pci:v00008086d00001533sv*sd*bc*sc*i*
alias: pci:v00008086d00001F45sv*sd*bc*sc*i*
alias: pci:v00008086d00001F41sv*sd*bc*sc*i*
alias: pci:v00008086d00001F40sv*sd*bc*sc*i*
depends: hwmon,dca
supported: external
vermagic: 2.6.32.12-0.7-default SMP mod_unload modversions
parm: InterruptThrottleRate:Maximum interrupts per second, per vector, (max 100000), default 3=adaptive (array of int)
parm: IntMode:Change Interrupt Mode (0=Legacy, 1=MSI, 2=MSI-X), default 2 (array of int)
parm: Node:set the starting node to allocate memory on, default -1 (array of int)
parm: LLIPort:Low Latency Interrupt TCP Port (0-65535), default 0=off (array of int)
parm: LLIPush:Low Latency Interrupt on TCP Push flag (0,1), default 0=off (array of int)
parm: LLISize:Low Latency Interrupt on Packet Size (0-1500), default 0=off (array of int)
parm: RSS:Number of Receive-Side Scaling Descriptor Queues (0-8), default 1, 0=number of cpus (array of int)
parm: VMDQ:Number of Virtual Machine Device Queues: 0-1 = disable, 2-8 enable, default 0 (array of int)
parm: max_vfs:Number of Virtual Functions: 0 = disable, 1-7 enable, default 0 (array of int)
parm: MDD:Malicious Driver Detection (0/1), default 1 = enabled. Only available when max_vfs is greater than 0 (array of int)
parm: QueuePairs:Enable Tx/Rx queue pairs for interrupt handling (0,1), default 1=on (array of int)
parm: EEE:Enable/disable on parts that support the feature (array of int)
parm: DMAC:Disable or set latency for DMA Coalescing ((0=off, 1000-10000(msec), 250, 500 (usec)) (array of int)
parm: LRO:Large Receive Offload (0,1), default 0=off (array of int)
parm: enable_debug:Set to 1 to enable debug tracing into the syslog (uint)
parm: debug:Debug level (0=none, ..., 16=all) (int)
linux:~ #
2
方法二:
1:dmesg | grep ethx
如:
linux:~ # dmesg | grep eth17
[ 30.351872] igb 0000:0a:00.1: eth17: (PCIe:2.5Gb/s:Width x4) 00:0b:ab:52:fb:b3
[ 30.351952] igb 0000:0a:00.1: eth17: PBA No: ffffff-0ff
[429171.548763] device eth17 entered promiscuous mode
[429173.10] igb: eth17 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: RX
[429173.118867] ADDRCONF(NETDEV_UP): eth17: link is not ready
[429173.121176] ADDRCONF(NETDEV_CHANGE): eth17: link becomes ready
[429183.236266] eth17: no IPv6 routers present
[1641503.272376] igb 0000:0a:00.1: eth17: (PCIe:2.5Gb/s:Width x4) 00:0b:ab:52:fb:b3
[1641503.272460] igb 0000:0a:00.1: eth17: PBA No: ffffff-0ff
[1641598.356110] device eth17 entered promiscuous mode
[1641598.369229] igb: eth17 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: RX
[1641598.372636] ADDRCONF(NETDEV_UP): eth17: link is not ready
[1641598.374978] ADDRCONF(NETDEV_CHANGE): eth17: link becomes ready
[1641608.564181] eth17: no IPv6 routers present
[1701779.787471] igb 0000:0a:00.1: eth17: (PCIe:2.5GT/s:Width x4)
[1701779.787473] igb 0000:0a:00.1: eth17: MAC: 00:0b:ab:52:fb:b3
[1701779.787555] igb 0000:0a:00.1: eth17: PBA No: FFFFFF-0FF
[1702124.805650] device eth17 entered promiscuous mode
[1702141.839131] ADDRCONF(NETDEV_UP): eth17: link is not ready
[1702144.057474] igb: eth17 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None
[1702144.059425] ADDRCONF(NETDEV_CHANGE): eth17: link becomes ready
[1702154.705520] eth17: no IPv6 routers present
[1712008.630151] igb 0000:0a:00.1: eth17: (PCIe:2.5GT/s:Width x4)
[1712008.630153] igb 0000:0a:00.1: eth17: MAC: 00:0b:ab:52:fb:b3
[1712008.630235] igb 0000:0a:00.1: eth17: PBA No: FFFFFF-0FF
[1712100.136186] device eth17 entered promiscuous mode
[1712101.873823] ADDRCONF(NETDEV_UP): eth17: link is not ready
[1712104.159209] igb: eth17 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None
[1712104.161548] ADDRCONF(NETDEV_CHANGE): eth17: link becomes ready
[1712114.854722] eth17: no IPv6 routers present
linux:~ #
2:使用 modinfo igb 查看驅動信息
(結果同方法一中的)

7. 如何搭建一個Linux驅動編寫環境

總結下之前嘗試過的搭建的編寫Linux驅動程序的環境。由於之前的環境是centos,其他平台的差異,就自己注意下吧。
步驟如下:
Step1:下載kernel源碼包,解壓到/usr/src目錄下
命令如下:tar Jxvf /home/yourAccount/linux-2.6.32.67.tar.xz
Step2:為系統的include創建鏈接文件
命令如下:
cd /usr/include
rm -rf asm linux scsi
ln -s /usr/src/linux-2.6.32.22/include/asm-generic asm
ln -s /usr/src/linux-2.6.32.22/include/linux linux
ln -s /usr/src/linux-2.6.32.22/include/scsi scsi

Step3:下載安裝內核開發包
命令如下: yum install kernel-devel-2.6.32-504.el6.x86_64.rpm
如果是其他linux系統,這個命令肯定不同!注意
Step4:建立構建的軟連接
命令: ln -s ../../../usr/src/kernels/2.6.32-504.el6.x86_64/ build

在用make編譯過程中之前出現過如下問題:
make:*** /lib/moles/.6.32-504.el6.x86_64/build/:No such file ore directory.Stop
出現這個問題的原因是系統沒有安裝內核開發包,可以查看/usr/src/kernals.
若該目錄是空,則說明沒安裝。若非空,則可能鏈接有問題,安裝上面Step4中到/lib/moles/2.6.32-504.el6.x86_64 去建立軟鏈接

註:內核版本通過uname -r自行查看,查找匹配源碼包和開發包

8. 怎樣寫linux下的USB設備驅動程序

USB驅動程序基礎
在動手寫USB驅動程序這前,讓我們先看看寫的USB驅動程序在內核中的結構,如下圖:



USB通信最基本的形式是通過端點(USB端點分中斷、批量、等時、控制四種,每種用途不同),USB端點只能往一個方向傳送數據,從主機到設備或者從設備到主機,端點可以看作是單向的管道(pipe)。所以我們可以這樣認為:設備通常具有一個或者更多的配置,配置經常具有一個或者更多的介面,介面通常具有一個或者更多的設置,介面沒有或具有一個以上的端點。驅動程序把驅動程序對象注冊到USB子系統中,稍後再使用製造商和設備標識來判斷是否已經安裝了硬體。USB核心使用一個列表(是一個包含製造商ID和設備號ID的一個結構體)來判斷對於一個設備該使用哪一個驅動程序,熱插撥腳本使用它來確定當一個特定的設備插入到系統時該自動裝載哪一個驅動程序。
上面我們簡要說明了驅動程序的基本理論,在寫一個設備驅動程序之前,我們還要了解以下兩個概念:模塊和設備文件。
模塊:是在內核空間運行的程序,實際上是一種目標對象文件,沒有鏈接,不能獨立運行,但是可以裝載到系統中作為內核的一部分運行,從而可以動態擴充內核的功能。模塊最主要的用處就是用來實現設備驅動程序。Linux下對於一個硬體的驅動,可以有兩種方式:直接載入到內核代碼中,啟動內核時就會驅動此硬體設備。另一種就是以模塊方式,編譯生成一個.ko文件(在2.4以下內核中是用.o作模塊文件,我們以2.6的內核為准,以下同)。當應用程序需要時再載入到內核空間運行。所以我們所說的一個硬體的驅動程序,通常指的就是一個驅動模塊。
設備文件:對於一個設備,它可以在/dev下面存在一個對應的邏輯設備節點,這個節點以文件的形式存在,但它不是普通意義上的文件,它是設備文件,更確切的說,它是設備節點。這個節點是通過mknod命令建立的,其中指定了主設備號和次設備號。主設備號表明了某一類設備,一般對應著確定的驅動程序;次設備號一般是區分不同屬性,例如不同的使用方法,不同的位置,不同的操作。這個設備號是從/proc/devices文件中獲得的,所以一般是先有驅動程序在內核中,才有設備節點在目錄中。這個設備號(特指主設備號)的主要作用,就是聲明設備所使用的驅動程序。驅動程序和設備號是一一對應的,當你打開一個設備文件時,操作系統就已經知道這個設備所對應的驅動程序。對於一個硬體,Linux是這樣來進行驅動的:首先,我們必須提供一個.ko的驅動模塊文件。我們要使用這個驅動程序,首先要載入它,我們可以用insmod
xxx.ko,這樣驅動就會根據自己的類型(字元設備類型或塊設備類型,例如滑鼠就是字元設備而硬碟就是塊設備)向系統注冊,注冊成功系統會反饋一個主設備號,這個主設備號就是系統對它的唯一標識。驅動就是根據此主設備號來創建一個一般放置在/dev目錄下的設備文件。在我們要訪問此硬體時,就可以對設備文件通過open、read、write、close等命令進行。而驅動就會接收到相應的read、write操作而根據自己的模塊中的相應函數進行操作了。

USB驅動程序實踐
了解了上述理論後,我們就可以動手寫驅動程序,如果你基本功好,而且寫過linux下的硬體驅動,USB的硬體驅動和pci_driver很類似,那麼寫USB的驅動就比較簡單了,如果你只是大體了解了linux的硬體驅動,那也不要緊,因為在linux的內核源碼中有一個框架程序可以拿來借用一下,這個框架程序在/usr/src/~(你的內核版本,以下同)/drivers/usb下,文件名為usb-skeleton.c。寫一個USB的驅動程序最基本的要做四件事:驅動程序要支持的設備、注冊USB驅動程序、探測和斷開、提交和控制urb(USB請求塊)(當然也可以不用urb來傳輸數據,下文我們會說到)。
驅動程序支持的設備:有一個結構體struct
usb_device_id,這個結構體提供了一列不同類型的該驅動程序支持的USB設備,對於一個只控制一個特定的USB設備的驅動程序來說,struct
usb_device_id表被定義為:
/* 驅動程序支持的設備列表 */
static struct usb_device_id
skel_table [] = {
{ USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID)
},
{ } /* 終止入口 */
};
MODULE_DEVICE_TABLE (usb,
skel_table);
對於PC驅動程序,MODULE_DEVICE_TABLE是必需的,而且usb必需為該宏的第一個值,而USB_SKEL_VENDOR_ID和USB_SKEL_PRODUCT_ID就是這個特殊設備的製造商和產品的ID了,我們在程序中把定義的值改為我們這款USB的,如:
/*
定義製造商和產品的ID號 */
#define USB_SKEL_VENDOR_ID 0x1234
#define
USB_SKEL_PRODUCT_ID
0x2345
這兩個值可以通過命令lsusb,當然你得先把USB設備先插到主機上了。或者查看廠商的USB設備的手冊也能得到,在我機器上運行lsusb是這樣的結果:
Bus
004 Device 001: ID 0000:0000
Bus 003 Device 002: ID 1234:2345 Abc Corp.

Bus 002 Device 001: ID 0000:0000
Bus 001 Device 001: ID
0000:0000
得到這兩個值後把它定義到程序里就可以了。
注冊USB驅動程序:所有的USB驅動程序都必須創建的結構體是struct
usb_driver。這個結構體必須由USB驅動程序來填寫,包括許多回調函數和變數,它們向USB核心代碼描述USB驅動程序。創建一個有效的struct
usb_driver結構體,只須要初始化五個欄位就可以了,在框架程序中是這樣的:
static struct usb_driver skel_driver
= {
.owner = THIS_MODULE,
.name = "skeleton",

.probe = skel_probe,
.disconnect = skel_disconnect,

.id_table = skel_table,
};

9. linux驅動開發要有哪些基礎

需要一定的努力才可以學好:
Linux設備驅動是linux內核的一部分,是用來屏蔽硬體細節,為上層提供標准介面的一種技術手段。為了能夠編寫出質量比較高的驅動程序,要求工程師必須具備以下幾個方面的知識:
1、 熟悉處理器的性能
如:處理器的體系結構、匯編語言、工作模式、異常處理等。對於初學者來說,在還不熟悉驅動編寫方法的情況下,可以先不把重心放在這一項上,因為可能因為它的枯燥、抽象而影響到你對設備驅動的興趣。隨著你不斷地熟悉驅動的編寫,你會很自然的意識到此項的重要性。
2、掌握驅動目標的硬體工作原理及通訊協議
如:串口控制器、顯卡控制器、硬體編解碼、存儲卡控制器、I2C通訊、SPI通訊、USB通訊、SDIO通訊、I2S通訊、PCI通訊等。編寫設備驅動的前提就是需要了解設備的操作方法,所以這些內容的重要程度不言而喻。但不是說要把所有設備的操作方法都熟悉了以後才可以寫驅動,你只需要了解你要驅動的硬體就可以了。
一、掌握硬體的控制方法
如:中斷、輪詢、DMA 等,通常一個硬體控制器會有多種控制方法,你需要根據系統性能的需要合理的選擇操作方法。初學階段以實現功能為目的,掌握的順序應該是,輪詢->中斷->DMA。隨著學習的深入,需要綜合考慮系統的性能需求,採取合適的方法。
二、良好的GNU C語言編程基礎
如:C語言的指針、結構體、內存操作、鏈表、隊列、棧、C和匯編混合編程等。這些編程語法是編寫設備驅動的基礎,無論對於初學者還是有經驗者都非常重要。
三、 良好的linux操作系統概念
如:多進程、多線程、進程調度、進程搶占、進程上下文、虛擬內存、原子操作、阻塞、睡眠、同步等概念及它們之間的關系。這些概念及方法在設備驅動里的使用是linux設備驅動區別單片機編程的最大特點,只有理解了它們才會編寫出高質量的驅動。
四、掌握linux內核中設備驅動的編寫介面
如:字元設備的cdev、塊設備的gendisk、網路設備的net_device,以及基於這些基本介面的framebuffer設備的fb_info、mtd設備的mtd_info、tty設備的tty_driver、usb設備的usb_driver、mmc設備的mmc_host等。

熱點內容
您的個人文件夾 發布:2024-04-26 00:03:12 瀏覽:67
睿雲伺服器功能介紹 發布:2024-04-25 23:59:51 瀏覽:570
標致5008怎麼連接安卓 發布:2024-04-25 23:25:08 瀏覽:793
安卓下載管理器哪個好 發布:2024-04-25 23:22:48 瀏覽:442
考試系統源碼php 發布:2024-04-25 23:09:46 瀏覽:136
磁碟禁止訪問 發布:2024-04-25 22:53:48 瀏覽:287
多線程ftp上傳 發布:2024-04-25 22:41:36 瀏覽:115
phpqrcode 發布:2024-04-25 22:41:36 瀏覽:33
桂平上網密碼是多少 發布:2024-04-25 22:32:10 瀏覽:575
open函數c語言 發布:2024-04-25 21:47:42 瀏覽:406