挖掘演算法高分
1. 數據挖掘演算法
韓嘉煒的書 數據挖掘技術 是數據挖掘的經典教材,聚類,分類,頻繁項挖掘等都是數據挖掘的演算法。
2. 大數據挖掘方法有哪些
數據挖掘是指人們從事先不知道的大量不完整、雜亂、模糊和隨機數據中提取潛在隱藏的有用信息和知識的過程。下面說下我們在挖掘大數據的時候,都會用到的幾種方法:
方法1.(可視化分析)無論是日誌數據分析專家還是普通用戶,數據可視化都是數據分析工具的最基本要求。可視化可以直觀地顯示數據,讓數據自己說話,讓聽眾看到結果。
方法2.(數據挖掘演算法)如果說可視化用於人們觀看,那麼數據挖掘就是給機器看的。集群、分割、孤立點分析和其他演算法使我們能夠深入挖掘數據並挖掘價值。這些演算法不僅要處理大量數據,還必須盡量縮減處理大數據的速度。
方法3.(預測分析能力)數據挖掘使分析師可以更好地理解數據,而預測分析則使分析師可以根據可視化分析和數據挖掘的結果做出一些預測性判斷。
方法4.(語義引擎)由於非結構化數據的多樣性給數據分析帶來了新挑戰,因此需要一系列工具來解析,提取和分析數據。需要將語義引擎設計成從「文檔」中智能地提取信息。
方法5.(數據質量和主數據管理)數據質量和數據管理是一些管理方面的最佳實踐。通過標准化流程和工具處理數據可確保獲得預定義的高質量分析結果。
想要了解更多有關大數據挖掘的信息,可以了解一下CDA數據分析師的課程。課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生在使用演算法解決微觀根因分析、預測分析的問題上,根據業務場景來綜合判斷,洞察數據規律,使用正確的數據清洗與特徵工程方法,綜合使用統計分析方法、統計模型、運籌學、機器學習、文本挖掘演算法,而非單一的機器學習演算法。真正給企業提出可行性的價值方案和價值業務結果。點擊預約免費試聽課。
3. 數據挖掘的十大經典演算法,總算是講清楚了,想提升自己的趕快收藏
一個優秀的數據分析師,除了要掌握基本的統計學、數據分析思維、數據分析工具之外,還需要掌握基本的數據挖掘思想,幫助我們挖掘出有價值的數據,這也是數據分析專家和一般數據分析師的差距所在。
國際權威的學術組織the IEEE International Conference on Data Mining (ICDM) 評選出了數據挖掘領域的十大經典演算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。今天主要分享其中10種經典演算法,內容較干,建議收藏備用學習。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效(相對的CART演算法只需要掃描兩次數據集,以下僅為決策樹優缺點)。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。
同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。
10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法(二元切分法);第二個想法是用驗證數據進行剪枝(預剪枝、後剪枝)。在回歸樹的基礎上的模型樹構建難度可能增加了,但同時其分類效果也有提升。
參考書籍:《機器學習實戰》
4. 數據挖掘的方法及實施
數據挖掘的方法及實施
作為一門處理數據的新興技術,數據挖掘有許多的新特徵。首先,數據挖掘面對的是海量的數據,這也是數據挖掘產生的原因。其次,數據可能是不完全的、有雜訊的、隨機的,有復雜的數據結構,維數大。最後,數據挖掘是許多學科的交叉,運用了統計學,計算機,數學等學科的技術。以下是常見和應用最廣泛的演算法和模型:
傳統統計方法:①抽樣技術:我們面對的是大量的數據,對所有的數據進行分析是不可能的也是沒有必要的,就要在理論的指導下進行合理的抽樣。②多元統計分析:因子分析,聚類分析等。③統計預測方法,如回歸分析,時間序列分析等。
可視化技術:用圖表等方式把數據特徵用直觀地表述出來,如直方圖等,這其中運用的許多描述統計的方法。可視化技術面對的一個難題是高維數據的可視化。
決策樹:利用一系列規則劃分,建立樹狀圖,可用於分類和預測。常用的演算法有CART、CHAID、ID3、C4.5、C5.0等。
神經網路:模擬人的神經元功能,經過輸入層,隱藏層,輸出層等,對數據進行調整,計算,最後得到結果,用於分類和回歸。
遺傳演算法:基於自然進化理論,模擬基因聯合、突變、選擇等過程的一種優化技術。
關聯規則挖掘演算法:關聯規則是描述數據之間存在關系的規則,形式為「A1∧A2∧…An→B1∧B2∧…Bn」。一般分為兩個步驟:①求出大數據項集。②用大數據項集產生關聯規則。
除了上述的常用方法外,還有粗集方法,模糊集合方法,Bayesian Belief Netords,最鄰近演算法(k-nearest neighbors method(KNN))等。
數據挖掘的實施流程
前面我們討論了數據挖掘的定義,功能和方法,現在關鍵的問題是如何實施,其一般的數據挖掘流程如下:
問題理解和提出→數據准備→數據整理→建立模型→評價和解釋
問題理解和提出:在開始數據挖掘之前最基礎的就是理解數據和實際的業務問題,在這個基礎之上提出問題,對目標有明確的定義。
數據准備:獲取原始的數據,並從中抽取一定數量的子集,建立數據挖掘庫,其中一個問題是如果企業原來的數據倉庫滿足數據挖掘的要求,就可以將數據倉庫作為數據挖掘庫。
數據整理:由於數據可能是不完全的、有雜訊的、隨機的,有復雜的數掘結構,就要對數據進行初步的整理,清洗不完全的數據,做初步的描述分析,選擇與數據挖掘有關的變數,或者轉變變數。
建立模型:根據數據挖掘的目標和數據的特徵,選擇合適的模型。
評價和解釋:對數據挖掘的結果進行評價,選擇最優的模型,作出評價,運用於實際問題,並且要和專業知識結合對結果進行解釋。
以上的流程不是一次完成的,可能其中某些步驟或者全部要反復進行。
5. 數據挖掘十大演算法 pdf
http://www.cs.uvm.e/~icdm/algorithms/10Algorithms-08.pdf
到這個網站下載就OK