蟻群演算法的改進
⑴ 如何提高蟻群路由演算法收斂速度
螞蟻演算法是一種新型隨機優化演算法,能有效解決Ad Hoc網路多約束的QoS路由問題,但存在收斂速度慢和易陷入局部最優等缺點.針對於此,在借鑒精英策略的基礎上提出了一種基於雙向收斂蟻群演算法,並將該演算法應用於Ad Hoc網路的QoS路由問題中.模擬結果表明,演算法可明顯提高數據包的投遞率,降低端到端的傳輸時延.
可以
針對蟻群演算法(ACA)尋優性質優良,但搜索時間長、收斂速度慢、易限於局部最優解,從而使其進一步推廣應用受到局限的問題,對演算法的全局收斂性進行了深入的理論研究,並從改善全局收斂性的角度對演算法作了一系列改進,最後對Bayes29這一典型的TSP問題進行了模擬實驗。實驗結果證明,改進後的蟻群演算法具有很好的全局收斂性能。這為蟻群演算法的進一步理論研究打下了很好的基礎,對其在各優化領域中的推廣應用具有重要意義。
⑵ 蟻群演算法與遺傳演算法的區別
都屬於智能優化演算法
但是蟻群演算法具有一定的記憶性,遺傳演算法沒有
蟻群演算法有幾種原則,比如覓食原則,避障原則等,遺傳演算法沒有
蟻群演算法屬於群智能優化演算法,具有並行性,每個粒子都可以主動尋優,遺傳演算法不行
蟻群演算法基於信息素在環境中的指示,遺傳演算法是基於優勝劣汰的生物進化思想
遺傳演算法有選擇,交叉,變異三種運算元,每種運算元又有各自的不同方法,通過對運算元方法的修改和搭配,可以得到不同的改進遺傳演算法
蟻群演算法則多和其他智能演算法相結合,得到改進的蟻群演算法
⑶ 蟻群演算法原理及其應用的圖書目錄
第1章 緒論
1.1 引言
1.2 螞蟻的生物學特徵
1.3 蟻群演算法的思想起源
1.4 蟻群演算法的研究進展
1.5 本書的體系結構
1.6 本章 小結
參考文獻
第2章 基本蟻群演算法原理及其復雜度分析
2.1 引言
2.2 基本蟻群演算法的原理
2.3 基本蟻群演算法的系統學特徵
2.4 基本蟻群演算法的數學模型
2.5 基本蟻群演算法的具體實現
2.6 基本蟻群演算法的復雜度分析
2.7 基本蟻群演算法的性能評價指標
2.8 本章 小結
參考文獻
第3章 蟻群演算法的收斂性研究
3.1 引言
3.2 圖搜索螞蟻系統(GBAS)的收斂性研究
3.3 一類改進蟻群演算法的收斂性證明
3.4 GBAS/tdev和GBAS/tdlb的確定性收斂證明
3.5 基本蟻群演算法的A.S.收斂性研究
3.6 一類分布式螞蟻路由演算法的收斂性研究
3.7 基於分支路由和Wiener過程的蟻群演算法收斂性證明
3.8 一種簡單蟻群演算法及其收斂性分析
3.9 遺傳一蟻群演算法的Markov收斂性分析
3.1 0一類廣義蟻群演算法(GACA)的收斂性分析
3.1 1本章 小結
參考文獻
第4章 蟻群演算法的實驗分析及參數選擇原則
4.1 引言
4.2 蟻群行為和參數對演算法性能影響的實驗分析
4.3 蟻群演算法參數最優組合的「三步走」方法
4.4 本章 小結
參考文獻
第5章 離散域蟻群演算法的改進研究
5.1 引言
5.2 自適應蟻群演算法
5.3 基於去交叉局部優化策略的蟻群演算法
5.4 基於信息素擴散的蟻群演算法
5.5 多態蟻群演算法
5.6 基於模式學習的小窗口蟻群演算法
5.7 基於混合行為的蟻群演算法
5.8 帶聚類處理的蟻群演算法
5.9 基於雲模型理論的蟻群演算法
5.1 0具有感覺和知覺特徵的蟻群演算法
5.1 1具有隨機擾動特性的蟻群演算法
5.1 2基於信息熵的改進蟻群演算法
5.1 3本章 小結
參考文獻
第6章 連續域蟻群演算法的改進研究
6.1 引言
6.2 基於網格劃分策略的連續域蟻群演算法
6.3 基於信息量分布函數的連續域蟻群演算法
6.4 連續域優化問題的自適應蟻群演算法
6.5 基於交叉變異操作的連續域蟻群演算法
6.6 嵌入確定性搜索的連續域蟻群演算法
6.7 基於密集非遞階的連續互動式蟻群演算法(cIACA)
6.8 多目標優化問題的連續域蟻群演算法
6.9 復雜多階段連續決策問題的動態窗口蟻群演算法
6.1 0本章 小結
參考文獻
第7章 蟻群演算法的典型應用
7.1 引言
7.2 車間作業調度問題
7.3 網路路由問題
7.4 車輛路徑問題
7.5 機器人領域
7.6 電力系統
7.7 故障診斷
7.8 控制參數優化
7.9 系統辨識
7.1 0聚類分析
7.1 1數據挖掘
7.1 2圖像處理
7.1 3航跡規劃
7.1 4空戰決策
7.1 5岩土工程
7.1 6化學工業
7.1 7生命科學
7.1 8布局優化
7.1 9本章 小結
參考文獻
第8章 蟻群演算法的硬體實現
8.1 引言
8.2 仿生硬體概述
8.3 基於FPGA的蟻群演算法硬體實現
8.4 基於蟻群演算法和遺傳演算法動態融合的軟硬體劃分
8.5 本章 小結
參考文獻
第9章 蟻群演算法同其他仿生優化演算法的比較與融合
9.1 引言
9.2 其他幾種仿生優化演算法的基本原理
9.3 蟻群演算法與其他仿生優化演算法的異同比較
9.4 蟻群演算法與遺傳演算法的融合
9.5 蟻群演算法與人工神經網路的融合
9.6 蟻群演算法與微粒群演算法的融合
9.7 蟻群演算法與人工免疫演算法的融合
9.8 本章 小結
參考文獻
第10章 展望
10.1 引言
10.2 蟻群演算法的模型改進
10.3 蟻群演算法的理論分析
10.4 蟻群演算法的並行實現
10.5 蟻群演算法的應用領域
10.6 蟻群演算法的硬體實現
10.7 蟻群演算法的智能融合
10.8 本章 小結
參考文獻
附錄A基本蟻群演算法程序
A.1 c語言版
A.2 Matlab語言版
A.3 VisualBasic語言版
附錄B相關網站
附錄C基本術語(中英文對照)及縮略語
附錄D(詞一首)鷓鴣天蟻群演算法
⑷ 邊緣計算環境下改進蟻群演算法的任務調度演算法
本文通過對蟻群演算法改進,來優化邊緣計算中任務的調度。
蟻群演算法思想來自於螞蟻尋找食物時會在走過的路徑上釋放信息素,當螞蟻隊伍突然受阻時,螞蟻們會等概率地分開出發,因為信息素會以一定的速率散發,後面的螞蟻會根據不同路徑的信息素濃度來選擇某一條路徑,並且再釋放信息素從而增加其濃度。這樣就形成正反饋最終得到最短路徑。
如何提高邊緣計算中邊緣節點的負載均衡度。
本文中數據集是根據引用的一篇論文的流量模型進行設置,即假設了15%的大型任務,85%小型任務。前者CPU、GPU需求在30~70之間隨機取,內存需求在50~200間隨機取;後者CPU、GPU需求在1~30之間隨機取,內存需求在3~50間隨機取。
本文所提出演算法(IAC)與輪詢演算法(RR)、傳統蟻群演算法(ACO)進行對比,比較在不同邊緣節點數的情況下的最大可承載任務數和負載均衡度。最後結果顯示IAC演算法優於另外兩種演算法。
這篇文章其實沒看太懂,個人還存在有很多不懂的地方,大概有以下幾點:
這些問題之後會去研究。
⑸ 蟻群演算法,退火演算法這些東西究竟屬於什麼,這些東西要從哪裡才能系統學習
第1章緒論
1.1螞蟻的基本習性
1.1.1螞蟻的信息系統
1.1.2蟻群社會的遺傳與進化
1.2蟻群覓食行為與覓食策略
1.2.1螞蟻的覓食行為
1.2.2螞蟻的覓食策略
1.3人工蟻群演算法的基本思想
1.3.1人工蟻與真實螞蟻的異同
1.3.2人工蟻群演算法的實現過程
1.4蟻群優化演算法的意義及應用
1.4.1蟻群優化演算法的意義
l.4.2蟻群演算法的應用
1.5蟻群演算法的展望
第2章螞蟻系統——蟻群演算法的原型
2.1螞蟻系統模型的建立
2.2蟻量系統和蟻密系統的模型
2.3蟻周系統模型
第3章改進的蟻群優化演算法
3.1帶精英策略的螞蟻系統
3.2基於優化排序的螞蟻系統
3.3蟻群系統
3.3.1蟻群系統狀態轉移規則
3.3.2蟻群系統全局更新規則
3.3.3蟻群系統局部更新規則
3.3.4候選集合策略
3.4最大一最小螞蟻系統
3.4.1信息素軌跡更新
3.4.2信息素軌跡的限制
3.4.3信息素軌跡的初始化
3.4.4信息素軌跡的平滑化
3.5最優一最差螞蟻系統
3.5.1最優一最差螞蟻系統的基本思想
3.5.2最優一最差螞蟻系統的工作過程
第4章蟻群優化演算法的模擬研究
4.1螞蟻系統三類模型的模擬研究
4.1.1三類模型性能的比較
4.2.2基於統計的參數優化
4.2基於蟻群系統模型的模擬研究
4.2.1局部優化演算法的有效性
4.2.2蟻群系統與其他啟發演算法的比較
4.3最大一最小螞蟻系統的模擬研究
4.3.1信息素軌跡初始化研究
4.3.2信息素軌跡量下限的作用
4.3.3蟻群演算法的對比
4.4最優一最差螞蟻系統的模擬研究
4.4.1參數ε的設置
4.4.2幾種改進的蟻群演算法比較
第5章蟻群演算法與遺傳、模擬退火演算法的對比
5.1遺傳演算法
5.1.1遺傳演算法與自然選擇
5.1.2遺傳演算法的基本步驟
5.1.3旅行商問題的遺傳演算法實現
5.2模擬退火演算法
5.2.1物理退火過程和Metroplis准則
5.2.2模擬退火法的基本原理
5.3蟻群演算法與遺傳演算法、模擬退火演算法的比較
5.3.1三種演算法的優化質量比較
5.3.2三種演算法收斂速度比較
5.3.3三種演算法的特點與比較分析
第6章蟻群演算法與遺傳、免疫演算法的融合
6.1遺傳演算法與螞蟻演算法融合的GAAA演算法
6.1.1遺傳演算法與螞蟻演算法融合的基本思想
……
第7章自適應蟻群演算法
第8章並行蟻群演算法
第9章蟻群演算法的收斂性與蟻群行為模型
第10章蟻群演算法在優化問題中的應用
附錄
參考文獻
⑹ TSP中用蟻群演算法和遺傳演算法有區別么
TSP,只是一個普通但很經典的NP-C問題。具有大的難以想像的解空間。一般的branch-and-bound演算法是很難搞定的。於是,人們嘗試智能演算法,包括遺傳演算法,蟻群演算法,粒子群演算法等。遺傳演算法和蟻群演算法都是基於種群的。但是這兩個演算法有著本質區別。遺傳演算法的進化機制是基於個體競爭,而蟻群演算法的搜索機制則是螞蟻之間的信息素傳導機制下的群體合作。因此,蟻群演算法,粒子群演算法,人工魚群演算法等,被歸納為群智能演算法,成為了一個有別於遺傳演算法的另一個進化計算領域的分支。由於搜索機制的不同,這兩種演算法對於不同的問題,具有不同的效率。就拿標准遺傳演算法和標准蟻群演算法來說,應該是蟻群演算法更適合求解TSP。然而,無論是遺傳演算法還是蟻群演算法,都有大量的變種演算法或者稱為改進演算法,所以很難簡單的說誰更適合TSP。
記得採納啊
⑺ 蟻群優化演算法的使用-編碼的問題!
「蟻群演算法」學習包下載
下載地址: http://board.verycd.com/t196436.html (請使用 eMule 下載)
近一百多篇文章,打包壓縮後有 24.99MB ,基本上是從維普資料庫中下載來的,僅供學習和研究之用,請務用於商業活動或其他非法活動中,各文章版權歸原作者所有。
如果您覺得本人這樣做侵犯了您的版權,請在本帖後回復,本人會馬上刪除相應的文章。
以下是文件列表,全是 PDF 格式的:
基於蟻群優化演算法遞歸神經網路的短期負荷預測
蟻群演算法的小改進
基於蟻群演算法的無人機任務規劃
多態蟻群演算法
MCM基板互連測試的單探針路徑優化研究
改進的增強型蟻群演算法
基於雲模型理論的蟻群演算法改進研究
基於禁忌搜索與蟻群最優結合演算法的配電網規劃
自適應蟻群演算法在序列比對中的應用
基於蟻群演算法的QoS多播路由優化演算法
多目標優化問題的蟻群演算法研究
多線程蟻群演算法及其在最短路問題上的應用研究
改進的蟻群演算法在2D HP模型中的應用
製造系統通用作業計劃與蟻群演算法優化
基於混合行為蟻群演算法的研究
火力優化分配問題的小生境遺傳螞蟻演算法
基於蟻群演算法的對等網模擬器的設計與實現
基於粗粒度模型的蟻群優化並行演算法
動態躍遷轉移蟻群演算法
基於人工免疫演算法和蟻群演算法求解旅行商問題
基於信息素非同步更新的蟻群演算法
用於連續函數優化的蟻群演算法
求解復雜多階段決策問題的動態窗口蟻群優化演算法
蟻群演算法在鑄造生產配料優化中的應用
多階段輸電網路最優規劃的並行蟻群演算法
求解旅行商問題的混合粒子群優化演算法
微粒群優化演算法研究現狀及其進展
隨機攝動蟻群演算法的收斂性及其數值特性分析
廣義蟻群與粒子群結合演算法在電力系統經濟負荷分配中的應用
改進的蟻群演算法及其在TSP中的應用研究
蟻群演算法的全局收斂性研究及改進
房地產開發項目投資組合優化的改進蟻群演算法
一種改進的蟻群演算法用於灰色約束非線性規劃問題求解
一種自適應蟻群演算法及其模擬研究
一種動態自適應蟻群演算法
螞蟻群落優化演算法在蛋白質折疊二維親-疏水格點模型中的應用
用改進蟻群演算法求解函數優化問題
連續優化問題的蟻群演算法研究進展
蟻群演算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蟻群演算法在K—TSP問題中的應用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基於遺傳蟻群演算法的機器人全局路徑規劃研究
改進的蟻群演算法在礦山物流配送路徑優化中的研究
基於蟻群演算法的配電網路綜合優化方法
基於蟻群演算法的分類規則挖掘演算法
蟻群演算法在連續性空間優化問題中的應用
蟻群演算法在礦井通風系統優化設計中的應用
基於蟻群演算法的液壓土錨鑽機動力頭優化設計
改進蟻群演算法設計拉式膜片彈簧
計算機科學技術
基本蟻群演算法及其改進
TSP改進演算法及在PCB數控加工刀具軌跡中的應用
可靠性優化的蟻群演算法
對一類帶聚類特徵TSP問題的蟻群演算法求解
蟻群演算法理論及應用研究的進展
基於二進制編碼的蟻群優化演算法及其收斂性分析
蟻群演算法的理論及其應用
基於蟻群行為模擬的影像紋理分類
啟發式蟻群演算法及其在高填石路堤穩定性分析中的應用
蟻群演算法的研究現狀
一種快速全局優化的改進蟻群演算法及模擬
聚類問題的蟻群演算法
蟻群最優化——模型、演算法及應用綜述
基於信息熵的改進蟻群演算法及其應用
機載公共設備綜合管理系統任務分配演算法研究
基於改進蟻群演算法的飛機低空突防航路規劃
利用信息量留存的蟻群遺傳演算法
An Improved Heuristic Ant-Clustering Algorithm
改進型蟻群演算法在內燃機徑向滑動軸承優化設計中的應用
基於蟻群演算法的PID參數優化
基於蟻群演算法的復雜系統多故障狀態的決策
蟻群演算法在數據挖掘中的應用研究
基於蟻群演算法的基因聯接學習遺傳演算法
基於細粒度模型的並行蟻群優化演算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
運載火箭控制系統漏電故障診斷研究
混沌擾動啟發式蟻群演算法及其在邊坡非圓弧臨界滑動面搜索中的應用
蟻群演算法原理的模擬研究
Hopfield neural network based on ant system
蟻群演算法及其實現方法研究
分層實體製造激光頭切割路徑的建模與優化
配送網路規劃蟻群演算法
基於蟻群演算法的城域交通控制實時滾動優化
基於蟻群演算法的復合形法及其在邊坡穩定分析中的應用
Ant Colony Algorithm for Solving QoS Routing Problem
多產品間歇過程調度問題的建模與優化
基於蟻群演算法的兩地之間的最佳路徑選擇
蟻群演算法求解問題時易產生的誤區及對策
用雙向收斂蟻群演算法解作業車間調度問題
物流配送路徑安排問題的混合蟻群演算法
求解TSP問題的模式學習並行蟻群演算法
基於蟻群演算法的三維空間機器人路徑規劃
蟻群優化演算法及其應用
蟻群演算法不確定性分析
一種求解TSP問題的相遇蟻群演算法
基於蟻群優化演算法的彩色圖像顏色聚類的研究
鈑金件數控激光切割割嘴路徑的優化
基於蟻群演算法的圖像分割方法
一種基於蟻群演算法的聚類組合方法
圓排列問題的蟻群模擬退火演算法
智能混合優化策略及其在流水作業調度中的應用
蟻群演算法在QoS網路路由中的應用
一種改進的自適應路由演算法
基於蟻群演算法的煤炭運輸優化方法
基於蟻群智能和支持向量機的人臉性別分類方法
蟻群演算法在啤酒發酵控制優化中的應用
一種基於時延信息的多QoS快速自適應路由演算法
蟻群演算法中參數α、β、ρ設置的研究——以TSP問題為例
基於人工蟻群優化的矢量量化碼書設計演算法
具有自適應雜交特徵的蟻群演算法
蟻群演算法在原料礦粉混勻優化中的應用
基於多Agent的蟻群演算法在車間動態調度中的應用研究
用蟻群優化演算法求解中國旅行商問題
蟻群演算法在嬰兒營養米粉配方中的應用
蟻群演算法在機械優化設計中的應用
蟻群優化演算法的研究現狀及研究展望
蟻群優化演算法及其應用研究進展
蟻群演算法的理論與應用
簡單蟻群演算法的模擬分析
一種改進的蟻群演算法求解最短路徑問題
基於模式求解旅行商問題的蟻群演算法
一種求解TSP的混合型蟻群演算法
基於MATLAB的改進型基本蟻群演算法
動態蟻群演算法求解TSP問題
用蟻群演算法求解類TSP問題的研究
蟻群演算法求解連續空間優化問題的一種方法
用混合型螞蟻群演算法求解TSP問題
求解復雜TSP問題的隨機擾動蟻群演算法
基於蟻群演算法的中國旅行商問題滿意解
蟻群演算法的研究現狀和應用及螞蟻智能體的硬體實現
蟻群演算法概述
蟻群演算法的研究現狀及其展望
基於蟻群演算法的配電網網架優化規劃方法
用於一般函數優化的蟻群演算法
協同模型與遺傳演算法的集成
基於蟻群最優的輸電網路擴展規劃
自適應蟻群演算法
凸整數規劃問題的混合蟻群演算法
一種新的進化演算法—蛟群演算法
基於協同工作方式的一種蟻群布線系統
⑻ 加急!'!!軍事運籌學的論文
論文摘要:文章針對偵察無人機航路規劃這一問題,分析了影響航路規劃的因素,構建了航路規劃的模型。結合偵察無人機航路規劃的特點與模型,論證了基於蟻群演算法求解的理由與優點,並對蟻群演算法的初始信息素強度與啟發因子進行了改進。最後以島嶼進攻戰役這一特定作戰任務為例。利用MATLAB實現了偵察多目標時的航路規劃問題。
引言
航路規劃是指在目標點與起始點之間,為運動物體尋找滿足某種性能指標和某些約束的線路、路徑。目前對於航路規劃的研究主要用於導彈、魚雷、飛機等飛行器的飛行線路選擇上,對於無人機的偵察航路的系統研究還不多見。在文獻[3]中雖然也應用蟻群演算法進行了航路規劃,但沒有充分考慮到威脅點存在和目標點價值對航路的影響,且對蟻群演算法沒有進行啟發因子和信息素初始強度方面的創新。在相關外文文獻中,由於美軍無人機航程較大,其航路規劃的約束條件就相對較少,可供借鑒的內容也很有限。而針對島嶼進攻戰役這一特殊作戰樣式的研究更是尚屬空白。本文正是基於這一背景下對該問題進行研究,以實現在充分發揮無人機最大作戰效能的同時,又盡可能地降低無人機被毀傷概率。
1、影響航路規劃的因素分析
影響偵察無人機航路規劃的主要因素有如下四個方面。
1.1 目標價值
目標價值是衡量某一時刻對某一目標實施火力突擊必要程度的綜合指標(用Vm表示)。可採用層次分析法獲得各個目標的價值Vm,也可以再進行歸一化處理,得到各目標的相對價值系數Ku,以此來衡量目標的重要程度。
對不同的目標實施偵察時,對於價值較高的目標可安排更長的有效偵察時間,而對於價值相對較低的目標,則應適當壓縮有效偵察時間。
1.2有效飛行時間(距離)
偵察的主要目的是發現對己方有價值目標並及時描述目標的狀態,因此發現目標的概率是航路是否合理的一個重要指標。距離目標越近,飛機上偵察設備能夠搜索目標區的時間也就越長,發現目標的概率也就越大。
在執行偵察任務時,為了獲得某一目標的有效信息,無人機必需接近目標並使目標處於其機載電子、光學偵察設備的作用距離內。如果為了實時監控某一目標,偵察無人機還必需在此目標的上空盤旋、停留,以使目標長時間地處於機載設備的監控之下。因此對目標的發現概率可以用有效飛行時間來表徵。它表示偵察無人機對目標總的偵察、監控時間,為處理方便,若偵察無人機以等速率飛行,則其有效偵察飛行時間也可轉變為有效飛行距離表徵。
1.3生存能力
偵察無人機要完成偵察任務就必須具備一定的生存能力。而其生存能力主要與偵察無人機的隱形規避性能、敵方雷達、防空武器的性能等相關。即偵察無人機的生存能力既受本身的易感性、易損性、可靠性影響,也受敵方的偵察探測和打擊能力影響。
從偵察無人機完成飛行任務過程來看,包括發射、正常飛行和突破攔截三個過程,若用概率Pf、Pl、Ps表示三個過程的完成情況。
1.4航程(油量)限制
航程是指偵察無人機起飛後,中途不經加油所能飛越的最大水平距離,即飛行距離。是表徵偵察無人機遠航和持久飛行能力的指標。由於其在地面一次所加的油量是有限的,因此它的航路必然受到航程的限制,且由於無線電的作用距離受限,飛機執行任務的位置不能超過其作戰半徑。
2、航路規劃構模
偵察無人機多數情況下執行特定的偵察監視飛行任務,指揮員期望的目標是在有限的飛行時間與航程內發現盡可能多的目標,同時付出的代價最小。
就航路規劃的約束條件而言,首先是威脅量不能超過指揮員的許可范圍,其二,是偵察無人機總的飛行距離不能超過偵察無人機的航程。一旦兩者之一不能成立,表明要求的任務是無法完成的,即
3、蟻群演算法及其改進
蟻群演算法作為一種新的計算模式引入人工智慧領域,被稱為螞蟻系統,該系統基於以下假設:
(1)螞蟻之間通過環境進行通信。每隻螞蟻僅根據其周圍的局部環境做出反應,也僅對其周圍的局部環境產生影響;
(2)螞蟻對環境的反應由其內部模式決定;
(3)在個體水平上,每隻螞蟻僅根據環境做出獨立選擇。在群體水平上,單只螞蟻的行為是隨機的,但蟻群通過自組織過程形成高度有序的群體行為。
3.1 基於蟻群演算法進行航路規劃的特點
基於蟻群演算法的偵察無人機航路規劃方法,能夠保證在航路制訂時得到一條具有較小可被探測概率及可接受航程的飛行航路,這種航路規劃方法還具有以下特點:
(1)在螞蟻不斷散布生物信息激素的加強作用下,新的信息會很快被加入到環境中,而由於生物信息激素的蒸發更新,舊的信息會不斷被丟失,體現出一種動態特性;
(2)最優路線是通過眾多螞蟻的合作被搜索得到的,並成為大多數螞蟻所選擇的路線,這一過程具有協同性;
(3)由於許多螞蟻在環境中感受散布的生物信息激素同時自身也散發生物信息激素,這使得不同的螞蟻會有不同的選擇策略,具有分布性。這些特點與未來戰場的許多要求是相符的,因而採用蟻群演算法對偵察無人機的航路進行規劃具有可行性與前瞻性。
3.2蟻群演算法的改進
(1)ij(t)的初值
為了更好的考慮威脅,在定義在初始條件下定義軌跡強度不同,根據螞蟻選擇路線最優選擇軌跡強度高的路線,而無人機的航路規劃中則應該更優的選擇距離威脅點較遠的航路。那麼可以定義軌跡的初始強度與距離成反比。即與威脅點越近的路線,信息素強度越小。對於兩目標點間的每條路徑,其信息素軌跡初始強度。
4、基於改進蟻群演算法的偵察無人機航路規劃的實現
4.1航路規劃的初始條件
蟻群演算法用於航路規劃主要運用在對多目標實施搜索偵察的航路規劃問題,即航路規劃需要得出的是飛行經過各個目標的數量和次序,以使偵察無人機經過盡可能多的目標點。
在進行初始規劃的過程中,為更方便蟻群演算法的實現,首先確定坐標系,將上述各目標點及威脅點用坐標系來表示,這樣可以便於實際的運算。
假設在島嶼進攻戰役中以某市為坐標點(100,100)的位置,以3公里為1個坐標系單位長度建立平面直角坐標系(這是在充分考慮了將主要有價值點都包括在一個(120×120)的范圍內而合理構建的)。則可以確定上述各點的坐標系位置,得到各點坐標。同時各個目標點的價值系數通過層次分析法可求得到結果(具體過程略)。
4.2蟻群演算法模型的實現
4.2.1蟻周系統的各初始參量的確定
為計算和表示方便,將目標點定義為向量Mi(其中i=1,2,3,…,12),威脅點定義為向量Ti(其中i=1,2,3)。採用蟻群演算法實現目標點的類旅行商(TSP,Traveling Salesman Problem)問題,目前已經開發的蟻群演算法包括蟻密系統、蟻量系統和蟻周系統,而實際應用多數應用後者。為模擬系統中螞蟻行為的方便,定義標記。
4.3蟻群演算法模型分析
通過比較的方法,定性分析各個情況下的目標函數值和航路規劃圖。不難發現在考慮了目標點價值和威脅點威脅的情況下,航路盡可能地避開了威脅並優先選擇通過目標價值較大的點。這樣無人機的被毀傷概率較低,且如果發生被毀傷事件時,已經發現的總體目標價值最大。
針對四種情況進行定量分析,假設指揮員的傾向性為0.6,即略側重於考慮威脅代價。2000表示對每個目標的有效偵察距離均為2000m,計算目標函數的值,可見考慮完備時雖然航路總長最大但總體的目標函數值也最大,航程最優,即偵察無人機應按照依次通過這些目標點。
5、結束語
通過上述分析,在給定偵察無人機的偵察任務情況下經運算可求得最優的初始航路,它可以有效地提高無人機的偵察效能,降低無人機的被毀傷概率,它對於目前軍事斗爭准備中如何使用偵察無人機具有一定的指導意義。隨著我軍偵察無人機性能的提高及型號的不斷豐富,在對未來島嶼進攻戰役中如何對這些機型進行航路規劃尚有待於進一步探討。
⑼ 蟻群演算法的相關研究
跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:
1、多樣性
2、正反饋
多樣性保證了螞蟻在覓食的時候不至走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。
引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。
既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了! 蟻群演算法的由來:螞蟻是地球上最常見、數量最多的昆蟲種類之一,常常成群結隊地出現在人類的日常生活環境中。這些昆蟲的群體生物智能特徵,引起了一些學者的注意。義大利學者M.Dorigo,V.Maniezzo等人在觀察螞蟻的覓食習性時發現,螞蟻總能找到巢穴與食物源之間的最短路徑。經研究發現,螞蟻的這種群體協作功能是通過一種遺留在其來往路徑上的叫做信息素(Pheromone)的揮發性化學物質來進行通信和協調的。化學通信是螞蟻採取的基本信息交流方式之一,在螞蟻的生活習性中起著重要的作用。通過對螞蟻覓食行為的研究,他們發現,整個蟻群就是通過這種信息素進行相互協作,形成正反饋,從而使多個路徑上的螞蟻都逐漸聚集到最短的那條路徑上。
這樣,M.Dorigo等人於1991年首先提出了蟻群演算法。其主要特點就是:通過正反饋、分布式協作來尋找最優路徑。這是一種基於種群尋優的啟發式搜索演算法。它充分利用了生物蟻群能通過個體間簡單的信息傳遞,搜索從蟻巢至食物間最短路徑的集體尋優特徵,以及該過程與旅行商問題求解之間的相似性。得到了具有NP難度的旅行商問題的最優解答。同時,該演算法還被用於求解Job-Shop調度問題、二次指派問題以及多維背包問題等,顯示了其適用於組合優化類問題求解的優越特徵。
多年來世界各地研究工作者對蟻群演算法進行了精心研究和應用開發,該演算法現已被大量應用於數據分析、機器人協作問題求解、電力、通信、水利、采礦、化工、建築、交通等領域。
蟻群演算法之所以能引起相關領域研究者的注意,是因為這種求解模式能將問題求解的快速性、全局優化特徵以及有限時間內答案的合理性結合起來。其中,尋優的快速性是通過正反饋式的信息傳遞和積累來保證的。而演算法的早熟性收斂又可以通過其分布式計算特徵加以避免,同時,具有貪婪啟發式搜索特徵的蟻群系統又能在搜索過程的早期找到可以接受的問題解答。這種優越的問題分布式求解模式經過相關領域研究者的關注和努力,已經在最初的演算法模型基礎上得到了很大的改進和拓展。
經過一定時間,從食物源返回的螞蟻到達D點同樣也碰到障礙物,也需要進行選擇。此時A, B兩側的信息素濃度相同,它們仍然一半向左,一半向右。但是當A側的螞蟻已經完全繞過障礙物到達C點時,B側的螞蟻由於需走的路徑更長,還不能到達C點,圖3表示蟻群在障礙物前經過一段時間後的情形。
此時對於從蟻巢出發來到C點的螞蟻來說,由於A側的信息素濃度高,B側的信息素較低,就傾向於選擇A側的路徑。這樣的結果是A側的螞蟻越來越多,最終所有螞蟻都選擇這條較短的路徑,圖4 表示蟻群最終選擇的路徑
上述過程,很顯然是由螞蟻所留下的信息素的「正反饋」過程而導致的。螞蟻個體就是通過這種信息的交流來達到搜索食物的目的。蟻群演算法的基本思想也是從這個過程轉化而來的。
蟻群演算法的特點:
1)蟻群演算法是一種自組織的演算法。在系統論中,自組織和它組織是組織的兩個基本分類,其區別在於組織力或組織指令是來自於系統的內部還是來自於系統的外部,來自於系統內部的是自組織,來自於系統外部的是他組織。如果系統在獲得空間的、時間的或者功能結構的過程中,沒有外界的特定干預,我們便說系統是自組織的。在抽象意義上講,自組織就是在沒有外界作用下使得系統熵減小的過程(即是系統從無序到有序的變化過程)。蟻群演算法充分體現了這個過程,以螞蟻群體優化為例子說明。當演算法開始的初期,單個的人工螞蟻無序的尋找解,演算法經過一段時間的演化,人工螞蟻間通過信息激素的作用,自發的越來越趨向於尋找到接近最優解的一些解,這就是一個無序到有序的過程。
2)蟻群演算法是一種本質上並行的演算法。每隻螞蟻搜索的過程彼此獨立,僅通過信息激素進行通信。所以蟻群演算法則可以看作是一個分布式的多agent系統,它在問題空間的多點同時開始進行獨立的解搜索,不僅增加了演算法的可靠性,也使得演算法具有較強的全局搜索能力。
3)蟻群演算法是一種正反饋的演算法。從真實螞蟻的覓食過程中我們不難看出,螞蟻能夠最終找到最短路徑,直接依賴於最短路徑上信息激素的堆積,而信息激素的堆積卻是一個正反饋的過程。對蟻群演算法來說,初始時刻在環境中存在完全相同的信息激素,給予系統一個微小擾動,使得各個邊上的軌跡濃度不相同,螞蟻構造的解就存在了優劣,演算法採用的反饋方式是在較優的解經過的路徑留下更多的信息激素,而更多的信息激素又吸引了更多的螞蟻,這個正反饋的過程使得初始的不同得到不斷的擴大,同時又引導整個系統向最優解的方向進化。因此,正反饋是螞蟻演算法的重要特徵,它使得演算法演化過程得以進行。
4)蟻群演算法具有較強的魯棒性。相對於其它演算法,蟻群演算法對初始路線要求不高,即蟻群演算法的求解結果不依賴於初始路線的選擇,而且在搜索過程中不需要進行人工的調整。其次,蟻群演算法的參數數目少,設置簡單,易於蟻群演算法應用到其它組合優化問題的求解。
蟻群演算法的應用進展以蟻群演算法為代表的蟻群智能已成為當今分布式人工智慧研究的一個熱點,許多源於蜂群和蟻群模型設計的演算法己越來越多地被應用於企業的運轉模式的研究。美國五角大樓正在資助關於群智能系統的研究工作-群體戰略(Swarm Strategy),它的一個實戰用途是通過運用成群的空中無人駕駛飛行器和地面車輛來轉移敵人的注意力,讓自己的軍隊在敵人後方不被察覺地安全進行。英國電信公司和美國世界通信公司以電子螞蟻為基礎,對新的電信網路管理方法進行了試驗。群智能還被應用於工廠生產計劃的制定和運輸部門的後勤管理。美國太平洋西南航空公司採用了一種直接源於螞蟻行為研究成果的運輸管理軟體,結果每年至少節約了1000萬美元的費用開支。英國聯合利華公司己率先利用群智能技術改善其一家牙膏廠的運轉情況。美國通用汽車公司、法國液氣公司、荷蘭公路交通部和美國一些移民事務機構也都採用這種技術來改善其運轉的機能。鑒於群智能廣闊的應用前景,美國和歐盟均於近幾年開始出資資助基於群智能模擬的相關研究項目,並在一些院校開設群體智能的相關課程。國內,國家自然科學基金」十五」期間學科交叉類優先資助領域中的認知科學及其信息處理的研究內容中也明確列出了群智能領域的進化、自適應與現場認知主題。
蟻群優化演算法最初用於解決TSP問題,經過多年的發展,已經陸續滲透到其他領域中,比如圖著色問題、大規模集成電路設計、通訊網路中的路由問題以及負載平衡問題、車輛調度問題等。蟻群演算法在若干領域己獲得成功的應用,其中最成功的是在組合優化問題中的應用。
在網路路由處理中,網路的流量分布不斷變化,網路鏈路或結點也會隨機地失效或重新加入。蟻群的自身催化與正向反饋機制正好符合了這類問題的求解特點,因而,蟻群演算法在網路領域得到一定應用。蟻群覓食行為所呈現出的並行與分布特性使得演算法特別適合於並行化處理。因而,實現演算法的並行化執行對於大量復雜的實際應用問題的求解來說是極具潛力的。
在某群體中若存在眾多無智能的個體,它們通過相互之間的簡單合作所表現出來的智能行為即稱為集群智能(Swarm Intelligence)。互聯網上的交流,不過是更多的神經元連接(人腦)通過互聯網相互作用的結果,光纜和路由器不過是軸突和突觸的延伸。從自組織現象的角度上看,人腦的智能和蟻群也沒有本質上的區別,單個神經元沒有智能可言,單個螞蟻也沒有,但是通過連接形成的體系,是一個智能體。(作者: 李精靈 編選:中國電子商務研究中心)