當前位置:首頁 » 操作系統 » 圖資料庫排名

圖資料庫排名

發布時間: 2023-02-14 10:12:58

❶ 知識圖譜有什麼用處

「知識圖譜的應用涉及到眾多行業,尤其是知識密集型行業,目前關注度比較高的領域:醫療、金融、法律、電商、智能家電等。」基於信息、知識和智能形成的閉環,從信息中獲取知識,基於知識開發智能應用,智能應用產生新的信息,從新的信息中再獲取新的知識,不斷迭代,就可以不斷產生更加豐富的知識圖譜,更加智能的應用。

如果說波士頓動力的翻跟頭是在幫機器人鍛煉筋骨,那麼知識圖譜的「繪制」則是在試圖「創造」一個能運轉的機器人大腦。

「目前,還不能做到讓機器理解人的語言。」中國科學院軟體所研究員、中國中文信息學會副理事長孫樂說。無論是能逗你一樂的Siri,還是會做詩的小冰,亦或是會「懸絲診脈」的沃森,它們並不真正明白自己在做什麼、為什麼這么做。

讓機器學會思考,要靠「譜」。這個「譜」被稱為知識圖譜,意在將人類世界中產生的知識,構建在機器世界中,進而形成能夠支撐類腦推理的知識庫。

為了在國內構建一個關於知識圖譜的全新產學合作模式,知識圖譜研討會日前召開,來自高校院所的研究人員與產業團隊共商打造全球化的知識圖譜體系,建立世界領先的人工智慧基礎設施的開拓性工作。

技術原理:把文本轉化成知識

「對於『姚明是上海人』這樣一個句子,存儲在機器里只是一串字元。而這串字元在人腦中卻是『活』起來的。」孫樂舉例說。比如說到「姚明」,人會想到他是前美職籃球員、「小巨人」、中鋒等,而「上海」會讓人想到東方明珠、繁華都市等含義。但對於機器來說,僅僅說「姚明是上海人」,它不能和人類一樣明白其背後的含義。機器理解文本,首先就需要了解背景知識。

那如何將文本轉化成知識呢?

「藉助信息抽取技術,人們可以從文本中抽取知識,這也正是知識圖譜構建的核心技術。」孫樂說,目前比較流行的是使用「三元組」的存儲方式。三元組由兩個點、一條邊構成,點代表實體或者概念,邊代表實體與概念之間的各種語義關系。一個點可以延伸出多個邊,構成很多關系。例如姚明這個點,可以和上海構成出生地的關系,可以和美職籃構成效力關系,還可以和2.26米構成身高關系。

「如果這些關系足夠完善,機器就具備了理解語言的基礎。」孫樂說。那麼如何讓機器擁有這樣的「理解力」呢?

「上世紀六十年代,人工智慧先驅麻省理工學院的馬文·明斯基在一個問答系統項目SIR中,使用了實體間語義關系來表示問句和答案的語義,劍橋語言研究部門的瑪格麗特·瑪斯特曼在1961年使用Semantic Network來建模世界知識,這些都可被看作是知識圖譜的前身。」孫樂說。

隨後的Wordnet、中國的知網(Hownet)也進行了人工構建知識庫的工作。

「這里包括主觀知識,比如社交網站上人們對某個產品的態度是喜歡還是不喜歡;場景知識,比如在某個特定場景中應該怎麼做;語言知識,例如各種語言語法;常識知識,例如水、貓、狗,教人認的時候可以直接指著教,卻很難讓計算機明白。」孫樂解釋,從這些初步的分類中就能感受到知識的海量,更別說那些高層次的科學知識了。

構建方式:從手工勞動到自動抽取

「2010年之後,維基網路開始嘗試『眾包』的方式,每個人都能夠貢獻知識。」孫樂說,這讓知識圖譜的積累速度大大增加,後續網路、互動網路等也採取了類似的知識搜集方式,發動公眾使得「積沙」這個環節的時間大大縮短、效率大大增加,無數的知識從四面八方趕來,迅速集聚,只待「成塔」。

面對如此大量的數據,或者說「文本」,知識圖譜的構建工作自然不能再手工勞動,「讓機器自動抽取結構化的知識,自動生成『三元組』。」孫樂說,學術界和產業界開發出了不同的構架、體系,能夠自動或半自動地從文本中生成機器可識別的知識。

孫樂的演示課件中,有一張生動的圖畫,一大摞文件紙吃進去,電腦馬上轉化為「知識」,但事實遠沒有那麼簡單。自動抽取結構化數據在不同行業還沒有統一的方案。在「網路知識圖譜」的介紹中這樣寫道:對提交至知識圖譜的數據轉換為遵循Schema的實體對象,並進行統一的數據清洗、對齊、融合、關聯等知識計算,完成圖譜的構建。「但是大家發現,基於維基網路,結構化半結構化數據挖掘出來的知識圖譜還是不夠,因此目前所有的工作都集中在研究如何從海量文本中抽取知識。」孫樂說,例如谷歌的Knowledge Vault,以及美國國家標准與技術研究院主辦的TAC-KBP評測,也都在推進從文本中抽取知識的技術。

在權威的「知識庫自動構建國際評測」中,從文本中抽取知識被分解為實體發現、關系抽取、事件抽取、情感抽取等4部分。在美國NIST組織的TAC-KBP中文評測中,中科院軟體所—搜狗聯合團隊獲得綜合性能指標第3名,事件抽取單項指標第1名的好成績。

「我國在這一領域可以和國際水平比肩。」孫樂介紹,中科院軟體所提出了基於Co-Bootstrapping的實體獲取演算法,基於多源知識監督的關系抽取演算法等,大幅度降低了文本知識抽取工具構建模型的成本,並提升了性能。

終極目標:將人類知識全部結構化

《聖經·舊約》記載,人類聯合起來興建希望能通往天堂的高塔——「巴別塔」,而今,創造AI的人類正在建造這樣一座「巴別塔」,幫助人工智慧企及人類智能。

自動的做法讓知識量開始形成規模,達到了能夠支持實際應用的量級。「但是這種轉化,還遠遠未達到人類的知識水平。」孫樂說,何況人類的知識一直在增加、更新,一直在動態變化,理解也應該與時俱進地體現在機器「腦」中。

「因此知識圖譜不會是一個靜止的狀態,而是要形成一個循環,這也是美國卡耐基梅隆大學等地方提出來的Never Ending Learning(學無止境)的概念。」孫樂說。

資料顯示,目前谷歌知識圖譜中記載了超過35億事實;Freebase中記載了4000多萬實體,上萬個屬性關系,24億多個事實;網路記錄詞條數1000萬個,網路搜索中應用了聯想搜索功能。

「在醫學領域、人物關系等特定領域,也有專門的知識圖譜。」孫樂介紹,Kinships描述人物之間的親屬關系,104個實體,26種關系,10800個事實;UMLS在醫學領域描述了醫學概念之間的聯系,135個實體,49種關系,6800個事實。

「這是一幅充滿美好前景的宏偉藍圖。」孫樂說,知識圖譜的最終目標是將人類的知識全部形式化、結構化,並用於構建基於知識的自然語言理解系統。

盡管令業內滿意的「真正理解語言的系統」還遠未出現,目前的「巴別塔」還只是在基礎層面,但相關的應用已經顯示出廣闊的前景。例如,在網路輸入「冷凍電鏡」,右豎條的關聯將出現「施一公」,輸入「撒幣」,將直接在搜索項中出現「王思聰」等相關項。其中蘊含著機器對人類意圖的理解。

資料庫都有哪些

資料庫是一組信息的集合,以便可以方便地訪問、管理和更新,常用資料庫有:1、關系型資料庫;2、分布式資料庫;3、雲資料庫;4、Nosql資料庫;5、面向對象的資料庫;6、圖形資料庫。

計算機資料庫通常包含數據記錄或文件的聚合,例如銷售事務、產品目錄和庫存以及客戶配置文件。

通常,資料庫管理器為用戶提供了控制讀寫訪問、指定報表生成和分析使用情況的能力。有些資料庫提供ACID(原子性、一致性、隔離性和持久性)遵從性,以確保數據的一致性和事務的完整性。

資料庫普遍存在於大型主機系統中,但也存在於較小的分布式工作站和中端系統中,如IBM的as /400和個人計算機。

資料庫的演變

資料庫從1960年代開始發展,從層次資料庫和網路資料庫開始,到1980年代的面向對象資料庫,再到今天的SQL和NoSQL資料庫和雲資料庫。

一種觀點認為,資料庫可以按照內容類型分類:書目、全文、數字和圖像。在計算中,資料庫有時根據其組織方法進行分類。有許多不同類型的資料庫,從最流行的方法關系資料庫到分布式資料庫、雲資料庫或NoSQL資料庫。

常用資料庫:

1、關系型資料庫

關系型資料庫是由IBM的E.F. Codd於1970年發明的,它是一個表格資料庫,其中定義了數據,因此可以以多種不同的方式對其進行重組和訪問。

關系資料庫由一組表組成,其中的數據屬於預定義的類別。每個表在一個列中至少有一個數據類別,並且每一行對於列中定義的類別都有一個特定的數據實例。

結構化查詢語言(SQL)是關系資料庫的標准用戶和應用程序介面。關系資料庫易於擴展,並且可以在原始資料庫創建之後添加新的數據類別,而不需要修改所有現有應用程序。

2、分布式資料庫

分布式資料庫是一種資料庫,其中部分資料庫存儲在多個物理位置,處理在網路中的不同點之間分散或復制。

分布式資料庫可以是同構的,也可以是異構的。同構分布式資料庫系統中的所有物理位置都具有相同的底層硬體,並運行相同的操作系統和資料庫應用程序。異構分布式資料庫中的硬體、操作系統或資料庫應用程序在每個位置上可能是不同的。

3、雲資料庫

雲資料庫是針對虛擬化環境(混合雲、公共雲或私有雲)優化或構建的資料庫。雲資料庫提供了一些好處,比如可以按每次使用支付存儲容量和帶寬的費用,還可以根據需要提供可伸縮性和高可用性。

雲資料庫還為企業提供了在軟體即服務部署中支持業務應用程序的機會。

4、NoSQL資料庫

NoSQL資料庫對於大型分布式數據集非常有用。

NoSQL資料庫對於關系資料庫無法解決的大數據性能問題非常有效。當組織必須分析大量非結構化數據或存儲在雲中多個虛擬伺服器上的數據時,它們是最有效的。

5、面向對象的資料庫

使用面向對象編程語言創建的項通常存儲在關系資料庫中,但是面向對象資料庫非常適合於這些項。

面向對象的資料庫是圍繞對象(而不是操作)和數據(而不是邏輯)組織的。例如,關系資料庫中的多媒體記錄可以是可定義的數據對象,而不是字母數字值。

6、圖形資料庫

面向圖形的資料庫是一種NoSQL資料庫,它使用圖形理論存儲、映射和查詢關系。圖資料庫基本上是節點和邊的集合,其中每個節點表示一個實體,每個邊表示節點之間的連接。

圖形資料庫在分析互連方面越來越受歡迎。例如,公司可以使用圖形資料庫從社交媒體中挖掘關於客戶的數據。

訪問資料庫:DBMS和RDBMS

資料庫管理系統(DBMS)是一種允許您定義、操作、檢索和管理存儲在資料庫中的數據的軟體。

關系資料庫管理系統(RDBMS)是上世紀70年代開發的一種基於關系模型的資料庫管理軟體,目前仍然是最流行的資料庫管理方法。

Microsoft SQL Server、Oracle資料庫、IBM DB2和MySQL是企業用戶最常用的RDBMS產品。DBMS技術始於20世紀60年代,支持分層資料庫,包括IBM的信息管理系統和CA的集成資料庫管理系統。一個關系資料庫管理系統(RDBMS)是一種資料庫管理軟體是在20世紀70年代開發的,基於關系模式,仍然是管理資料庫的最普遍的方式。

希望能幫助你還請及時採納謝謝

❸ 一份難得的資料庫市場分析報告

目錄

- 資料庫分類維度:關系型/非關系型、交易型/分析型

- NoSQL資料庫的進一步分類

- OLTP市場規模:關系型資料庫仍占營收大頭

- 資料庫市場份額:雲服務和新興廠商主導NoSQL

- 開源資料庫 vs. 商業資料庫

- 資料庫三大陣營:傳統廠商和雲服務提供商

最近由於時間原因我寫東西少了,在公眾號上也轉載過幾篇搞資料庫朋友的大作。按說我算是外行,沒資格在這個領域品頭論足,而當我看到下面這份報告時立即產生了學習的興趣,同時也想就能看懂的部分寫點心得體會分享給大家。

可能本文比較適合普及性閱讀,讓資料庫領域資深的朋友見笑了:)

資料庫分類維度:關系型/非關系型、交易型/分析型

首先是分類維度,上圖中的縱軸分類為Relational Database(關系型資料庫,RDBMS)和Nonrelational Database (非關系型資料庫,NoSQL),橫軸的分類為Operational(交易型,即OLTP)和Analytical(分析型,即OLAP)。

按照習慣我們先看關系型資料庫,左上角的交易型類別中包括大家熟悉的商業資料庫Oracle、MS SQL Server、DB2、Infomix,也包括開源領域流行的MySQL(MariaDB是它的一個分支)、PostgreSQL,還有雲上面比較常見的SQL Azure和Amazon Aurora等。

比較有意思的是,SAP HANA正好位於交易型和分析型的中間分界處,不要忘了SAP還收購了Sybase,盡管後者今天不夠風光了,而早年微軟的SQL Server都是來源於Sybase。Sybase的ASE資料庫和分析型Sybase IQ還是存在的。

右上角的分析型產品中包括幾款知名的列式數據倉庫Pivotal Greenplum、Teradata和IBM Netezza(已宣布停止支持),來自互聯網巨頭的Google Big Query和Amazon RedShift。至於Oracle Exadata一體機,它上面運行的也是Oracle資料庫,其最初設計用途是OLAP,而在後來發展中也可以良好兼顧OLTP,算是一個跨界產品吧。

再來看非關系型資料庫,左下角的交易型產品中,有幾個我看著熟悉的MongoDB、Redis、Amazon DynamoDB和DocumentDB等;右下角的分析型產品包括著名的Hadoop分支Cloudera、Hortonworks(這2家已並購),Bigtable(來自Google,Hadoop中的HBase是它的開源實現)、Elasticsearch等。

顯然非關系型資料庫的分類要更加復雜,產品在應用中的差異化也比傳統關系型資料庫更大。Willian Blair很負責任地對它們給出了進一步的分類。

NoSQL資料庫的進一步分類

上面這個圖表應該說很清晰了。非關系型資料庫可以分為Document-based Store(基於文檔的存儲)、Key-Value Store(鍵值存儲)、Graph-based(圖資料庫)、Time Series(時序資料庫),以及Wide Cloumn-based Store(寬列式存儲)。

我們再來看下每個細分類別中的產品:

文檔存儲 :MongoDB、Amazon DocumentDB、Azure Cosmos DB等

Key-Value存儲 :Redis Labs、Oracle Berkeley DB、Amazon DynamoDB、Aerospike等

圖資料庫 :Neo4j等

時序資料庫 :InfluxDB等

WideCloumn :DataStax、Cassandra、Apache HBase和Bigtable等

多模型資料庫 :支持上面不只一種類別特性的NoSQL,比如MongoDB、Redis Labs、Amazon DynamoDB和Azure Cosmos DB等。

OLTP市場規模:關系型資料庫仍占營收大頭

上面這個基於IDC數據的交易型資料庫市場份額共有3個分類,其中深藍色部分的關系型資料庫(RDBMS,在這里不統計數據挖掘/分析型資料庫)占據80%以上的市場。

Dynamic Database(DDMS,動態資料庫管理系統,同樣不統計Hadoop)就是我們前面聊的非關系型資料庫。這部分市場顯得小(但發展勢頭看好),我覺得與互聯網等大公司多採用開源+自研,而不買商業產品有關。

而遵循IDC的統計分類,在上圖灰色部分的「非關系型資料庫市場」其實另有定義,參見下面這段文字:

資料庫市場份額:雲服務和新興廠商主導NoSQL

請注意,這里的關系型資料庫統計又包含了分析型產品。Oracle營收份額42%仍居第一,隨後排名依次為微軟、IBM、SAP和Teradata。

代表非關系型資料庫的DDMS分類中(這里同樣加入Hadoop等),雲服務和新興廠商成為了主導,微軟應該是因為雲SQL Server的基礎而小幅領先於AWS,這2家一共占據超過50%的市場,接下來的排名是Google、Cloudera和Hortonworks(二者加起來13%)。

上面是IDC傳統分類中的「非關系型資料庫」,在這里IBM和CA等應該主要是針對大型機的產品,InterSystems有一款在國內醫療HIS系統中應用的Caché資料庫(以前也是運行在Power小機上比較多)。我就知道這些,餘下的就不瞎寫了。

開源資料庫 vs. 商業資料庫

按照流行度來看,開源資料庫從2013年到現在一直呈現增長,已經快要追上商業資料庫了。

商業產品在關系型資料庫的佔比仍然高達60.5%,而上表中從這列往左的分類都是開源占優:

Wide Cloumn:開源佔比81.8%;

時序資料庫:開源佔比80.7%;

文檔存儲:開源佔比80.0%;

Key-Value存儲:開源佔比72.2%;

圖資料庫:開源佔比68.4%;

搜索引擎:開源佔比65.3%

按照開源License的授權模式,上面這個三角形越往下管的越寬松。比如MySQL屬於GPL,在互聯網行業用戶較多;而PostgreSQL屬於BSD授權,國內有不少資料庫公司的產品就是基於Postgre哦。

資料庫三大陣營:傳統廠商和雲服務提供商

前面在討論市場份額時,我提到過交易型資料庫的4個巨頭仍然是Oracle、微軟、IBM和SAP,在這里William Blair將他們歸為第一陣營。

隨著雲平台的不斷興起,AWS、Azure和GCP(Google Cloud Platform)組成了另一個陣營,在國外分析師的眼裡還沒有BAT,就像有的朋友所說,國內互聯網巨頭更多是自身業務導向的,在本土發展公有雲還有些優勢,短時間內將技術輸出到國外的難度應該還比較大。(當然我並不認為國內缺優秀的DBA和研發人才)

第三個陣容就是規模小一些,但比較專注的資料庫玩家。

接下來我再帶大家簡單過一下這前兩個陣容,看看具體的資料庫產品都有哪些。

甲骨文的產品,我相對熟悉一些的有Oracle Database、MySQL以及Exadata一體機。

IBM DB2也是一個龐大的家族,除了傳統針對小型機、x86(好像用的人不多)、z/OS大型機和for i的版本之外,如今也有了針對雲和數據挖掘的產品。記得抱枕大師對Informix的技術比較推崇,可惜這個產品發展似乎不太理想。

微軟除了看家的SQL Server之外,在Azure雲上還能提供MySQL、PostgreSQL和MariaDB開源資料庫。應該說他們是傳統軟體License+PaaS服務兩條腿走路的。

如今人們一提起SAP的資料庫就想起HANA,之前從Sybase收購來的ASE(Adaptive Server Enterprise)和IQ似乎沒有之前發展好了。

在雲服務提供商資料庫的3巨頭中,微軟有SQL Server的先天優勢,甚至把它移植到了Linux擁抱開源平台。關系型資料庫的創新方面值得一提的是Amazon Aurora和Google Spanner(也有非關系型特性),至於它們具體好在哪裡我就不裝內行了:)

非關系型資料庫則是Amazon全面開花,這與其雲計算業務發展早並且占據優勢有關。Google當年的三篇經典論文對業界影響深遠,Yahoo基於此開源的Hadoop有一段時間幾乎是大數據的代名詞。HBase和Hive如今已不再是人們討論的熱點,而Bigtable和BigQuery似乎仍然以服務Google自身業務為主,畢竟GCP的規模比AWS要小多了。

最後這張DB-Engines的排行榜,相信許多朋友都不陌生,今年3月已經不是最新的數據,在這里列出只是給大家一個參考。該排行榜幾乎在每次更新時,都會有國內資料庫專家撰寫點評。

以上是我周末的學習筆記,班門弄斧,希望對大家有幫助。

參考資料《Database Software Market:The Long-Awaited Shake-up》

https://blocksandfiles.com/wp-content/uploads/2019/03/Database-Software-Market-White-Paper.pdf

擴展閱讀:《 資料庫&存儲:互相最想知道的事

尊重知識,轉載時請保留全文。感謝您的閱讀和支持!

❹ 有哪些輕型的非關系型資料庫

常見的非關系型資料庫有:1、mongodb;2、cassandra;3、redis;4、hbase;5、neo4j。其中mongodb是非常著名的NoSQL資料庫,它是一個面向文檔的開源資料庫。
常見的幾種非關系型資料庫:
1、MongoDB
MongoDB是最著名的NoSQL資料庫。它是一個面向文檔的開源資料庫。MongoDB是一個可伸縮和可訪問的資料庫。它在c++中。MongoDB同樣可以用作文件系統。在MongoDB中,JavaScript可以作為查詢語言使用。通過使用sharding MongoDB水平伸縮。它在流行的JavaScript框架中非常有用。
人們真的很享受分片、高級文本搜索、gridFS和map-rece功能。驚人的性能和新特性使這個NoSQL資料庫在我們的列表中名列第一。
特點:提供高性能;自動分片;運行在多個伺服器上;支持主從復制;數據以JSON樣式文檔的形式存儲;索引文檔中的任何欄位;由於數據被放置在碎片中,所以它具有自動負載平衡配置;支持正則表達式搜索;在失敗的情況下易於管理。
優點:易於安裝MongoDB;MongoDB Inc.為客戶提供專業支持;支持臨時查詢;高速資料庫;無模式資料庫;橫向擴展資料庫;性能非常高。
缺點:不支持連接;數據量大;嵌套文檔是有限的;增加不必要的內存使用。
2、Cassandra
Cassandra是Facebook為收件箱搜索開發的。Cassandra是一個用於處理大量結構化數據的分布式數據存儲系統。通常,這些數據分布在許多普通伺服器上。您還可以添加數據存儲容量,使您的服務保持在線,您可以輕松地完成這項任務。由於集群中的所有節點都是相同的,因此不需要處理復雜的配置。
Cassandra是用Java編寫的。Cassandra查詢語言(CQL)是查詢Cassandra資料庫的一種類似sql的語言。因此,Cassandra在最佳開源資料庫中排名第二。Facebook、Twitter、思科(Cisco)、Rackspace、eBay、Twitter、Netflix等一些最大的公司都在使用Cassandra。
特點:線性可伸縮;;保持快速響應時間;支持原子性、一致性、隔離性和耐久性(ACID)等屬性;使用Apache Hadoop支持MapRece;分配數據的最大靈活性;高度可伸縮;點對點架構。
優點:高度可伸縮;無單點故障;Multi-DC復制;與其他基於JVM的應用程序緊密集成;更適合多數據中心部署、冗餘、故障轉移和災難恢復。
缺點:對聚合的有限支持;不可預知的性能;不支持特別查詢。
3、Redis
Redis是一個鍵值存儲。此外,它是最著名的鍵值存儲。Redis支持一些c++、PHP、Ruby、Python、Perl、Scala等等。Redis是用C語言編寫的。此外,它是根據BSD授權的。
特點:自動故障轉移;將其資料庫完全保存在內存中;事務;Lua腳本;將數據復制到任意數量的從屬伺服器;鑰匙的壽命有限;LRU驅逐鑰匙;支持發布/訂閱。
優點:支持多種數據類型;很容易安裝;非常快(每秒執行約11萬組,每秒執行約81000次);操作都是原子的;多用途工具(在許多用例中使用)。
缺點:不支持連接;存儲過程所需的Lua知識;數據集必須很好地適應內存。
4、HBase
HBase是一個分布式的、面向列的開源資料庫,該技術來源於 Fay Chang 所撰寫的Google論文「Bigtable:一個結構化數據的分布式存儲系統」。就像Bigtable利用了Google文件系統(File System)所提供的分布式數據存儲一樣,HBase在Hadoop之上提供了類似於Bigtable的能力。
HBase是Apache的Hadoop項目的子項目。HBase不同於一般的關系資料庫,它是一個適合於非結構化數據存儲的資料庫。另一個不同的是HBase基於列的而不是基於行的模式。
5、neo4j
Neo4j被稱為原生圖資料庫,因為它有效地實現了屬性圖模型,一直到存儲層。這意味著數據完全按照白板的方式存儲,資料庫使用指針導航和遍歷圖。Neo4j有資料庫的社區版和企業版。企業版包括Community Edition必須提供的所有功能,以及額外的企業需求,如備份、集群和故障轉移功能。
特點:它支持唯一的約束;Neo4j支持完整的ACID(原子性、一致性、隔離性和持久性)規則;Java API: Cypher API和本機Java API;使用Apache Lucence索引;簡單查詢語言Neo4j CQL;包含用於執行CQL命令的UI: Neo4j Data Browser。
優點:容易檢索其相鄰節點或關系細節,無需連接或索引;易於學習Neo4j CQL查詢語言命令;不需要復雜的連接來檢索數據;非常容易地表示半結構化數據;大型企業實時應用程序的高可用性;簡化的調優。
缺點:不支持分片

❺ 2019數據架構選型必讀:1月資料庫產品技術解析

本期目錄

DB-Engines資料庫排行榜

新聞快訊

一、RDBMS家族

二、NoSQL家族

三、NewSQL家族

四、時間序列

五、大數據生態圈

六、國產資料庫概覽

七、雲資料庫

八、推出dbaplus Newsletter的想法

九、感謝名單

為方便閱讀、重點呈現,本期Newsletter(2019年1月)將對各個板塊的內容進行精簡。需要閱讀全文的同學可點擊文末 【閱讀原文】 或登錄https://pan..com/s/13BgipbaHeMfvm0YPtiYviA

進行下載。

DB-Engines資料庫排行榜

以下取自2019年1月的數據,具體信息可以參考http://db-engines.com/en/ranking/,數據僅供參考。

DB-Engines排名的數據依據5個不同的因素:

新聞快訊

1、2018年9月24日,微軟公布了SQL Server2019預覽版,SQL Server 2019將結合Spark創建統一數據平台。

2、2018年10月5日,ElasticSearch在美國紐約證券交易所上市。

3、亞馬遜放棄甲骨文資料庫軟體,導致最大倉庫之一在黃金時段宕機。受此消息影響,亞馬遜盤前股價小幅跳水,跌超2%。

4、2018年10月31日,Percona發布了Percona Server 8.0 RC版本,發布對MongoDB 4.0的支持,發布對XtraBackup測試第二個版本。

5、2018年10月31日,Gartner陸續發布了2018年的資料庫系列報告,包括《資料庫魔力象限》、《資料庫核心能力》以及《資料庫推薦報告》。

今年的總上榜資料庫產品達到了5家,分別來自:阿里雲,華為,巨杉資料庫,騰訊雲,星環 科技 。其中阿里雲和巨杉資料庫已經連續兩年入選。

6、2018年11月初,Neo4j宣布完成E輪8000萬美元融資。11月15日,Neo4j宣布企業版徹底閉源:

7、2019年1月8日,阿里巴巴以1.033億美元(9000萬歐元)的價格收購了Apache Flink商業公司DataArtisans。

8、2019年1月11日早間消息,亞馬遜宣布推出雲資料庫軟體,亞馬遜和MongoDB將會直接競爭。

RDBMS家族

Oracle 發布18.3版本

2018年7月,Oracle Database 18.3通用版開始提供下載。我們可以將Oracle Database 18c視為採用之前發布模式的Oracle Database 12c第2版的第一個補丁集。未來,客戶將不再需要等待多年才能用上最新版Oracle資料庫,而是每年都可以期待新資料庫特性和增強。Database 19c將於2019年Q1率先在Oracle cloud上發布雲版本。

Oracle Database 18c及19c部分關鍵功能:

1、性能

2、多租戶,大量功能增強及改進,大幅節省成本和提高敏捷性

3、高可用

4、數據倉庫和大數據

MySQL發布8.0.13版本

1、賬戶管理

經過配置,修改密碼時,必須帶上原密碼。在之前的版本,用戶登錄之後,就可以修改自己的密碼。這種方式存在一定安全風險。比如用戶登錄上資料庫後,中途離開一段時間,那麼非法用戶可能會修改密碼。由參數password_require_current控制。

2、配置

Innodb表必須有主鍵。在用戶沒有指定主鍵時,系統會生成一個默認的主鍵。但是在主從復制的場景下,默認的主鍵,會對叢庫應用速度帶來致命的影響。如果設置sql_require_primary_key,那麼資料庫會強制用戶在創建表、修改表時,加上主鍵。

3、欄位默認值

BLOB、TEXT、GEOMETRY和JSON欄位可以指定默認值了。

4、優化器

1)Skip Scan

非前綴索引也可以用了。

之前的版本,任何沒有帶上f1欄位的查詢,都沒法使用索引。在新的版本中,它可以忽略前面的欄位,讓這個查詢使用到索引。其實現原理就是把(f1 = 1 AND f2 > 40) 和(f1 = 2 AND f2 > 40)的查詢結果合並。

2)函數索引

之前版本只能基於某個列或者多個列加索引,但是不允許在上面做計算,如今這個限制消除了。

5、SQL語法

GROUP BY ASC和GROUP BY DESC語法已經被廢棄,要想達到類似的效果,請使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。

6、功能變化

1)設置用戶變數,請使用SET語句

如下類型語句將要被廢棄SELECT @var, @var:=@var+1。

2)新增innodb_fsync_threshold

該變數是控制文件刷新到磁碟的速率,防止磁碟在短時間內飽和。

3)新增會話級臨時表空間

在以往的版本中,當執行SQL時,產生的臨時表都在全局表空間ibtmp1中,及時執行結束,臨時表被釋放,空間不會被回收。新版本中,會為session從臨時表空間池中分配一個臨時表空間,當連接斷開時,臨時表空間的磁碟空間被回收。

4)在線切換Group Replication的狀態

5)新增了group_replication_member_expel_timeout

之前,如果某個節點被懷疑有問題,在5秒檢測期結束之後,那麼就直接被驅逐出這個集群。即使該節點恢復正常時,也不會再被加入集群。那麼,瞬時的故障,會把某些節點驅逐出集群。

group_replication_member_expel_timeout讓管理員能更好的依據自身的場景,做出最合適的配置(建議配置時間小於一個小時)。

MariaDB 10.3版本功能展示

1、MariaDB 10.3支持update多表ORDER BY and LIMIT

1)update連表更新,limit語句

update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3;

MySQL 8.0直接報錯

MariaDB 10.3更新成功

2)update連表更新,ORDER BY and LIMIT語句

update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3;

MySQL 8.0直接報錯

MariaDB 10.3更新成功

參考:

https://jira.mariadb.org/browse/MDEV-13911

2、MariaDB10.3增補AliSQL補丁——安全執行Online DDL

Online DDL從名字上看很容易誤導新手,以為不論什麼情況,修改表結構都不會鎖表,理想很豐滿,現實很骨感,注意這個坑!

有以下兩種情況執行DDL操作會鎖表的,Waiting for table metadata lock(元數據表鎖):

針對第二種情況,MariaDB10.3增補AliSQL補丁-DDL FAST FAIL,讓其DDL操作快速失敗。

例:

如果線上有某個慢SQL對該表進行操作,可以使用WAIT n(以秒為單位設置等待)或NOWAIT在語句中顯式設置鎖等待超時,在這種情況下,如果無法獲取鎖,語句將立即失敗。 WAIT 0相當於NOWAIT。

參考:

https://jira.mariadb.org/browse/MDEV-11388

3、MariaDB Window Functions窗口函數分組取TOP N記錄

窗口函數在MariaDB10.2版本里實現,其簡化了復雜SQL的撰寫,提高了可讀性。

參考:

https://mariadb.com/kb/en/library/window-functions-overview/

Percona Server發布8.0 GA版本

2018年12月21日,Percona發布了Percona Server 8.0 GA版本。

在支持MySQL8.0社區的基礎版上,Percona Server for MySQL 8.0版本中帶來了許多新功能:

1、安全性和合規性

2、性能和可擴展性

3、可觀察性和可用性

Percona Server for MySQL 8.0中將要被廢用功能:

Percona Server for MySQL 8.0中刪除的功能:

RocksDB發布V5.17.2版本

2018年10月24日,RocksDB發布V5.17.2版本。

RocksDB是Facebook在LevelDB基礎上用C++寫的高效內嵌式K/V存儲引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底層的存儲都是基於RocksDB來構建。

PostgreSQL發布11版本

2018年10月18日,PostgreSQL 11發布。

1、PostgreSQL 11的重大增強

2、PostgreSQL 插件動態

1)分布式插件citus發布 8.1

citus是PostgreSQL的一款sharding插件,目前國內蘇寧、鐵總、探探有較大量使用案例。

https://github.com/citusdata/citus

2)地理信息插件postgis發布2.5.1

PostGIS是專業的時空資料庫插件,在測繪、航天、氣象、地震、國土資源、地圖等時空專業領域應用廣泛。同時在互聯網行業也得到了對GIS有性能、功能深度要求的客戶青睞,比如共享出行、外賣等客戶。

http://postgis.net/

3)時序插件timescale發布1.1.1

timescale是PostgreSQL的一款時序資料庫插件,在IoT行業中有非常好的應用。github star數目前有5000多,是一個非常火爆的插件。

https://github.com/timescale/timescaledb

4)流計算插件 pipelinedb 正式插件化

Pipelinedb是PostgreSQL的一款流計算插件,使用這個創建可以對高速寫入的數據進行實時根據定義的聚合規則進行聚合(支持概率計算),實時根據定義的規則觸發事件(支持事件處理函數的自定義)。可用於IoT,監控,FEED實時計算等場景。

https://github.com/pipelinedb/pipelinedb

3、PostgreSQL衍生開源產品動態

1)agensgraph發布 2.0.0版本

agensgraph是兼容PostgreSQL、opencypher的專業圖資料庫,適合圖式關系的管理。

https://github.com/bitnine-oss/agensgraph

2)gpdb發布5.15

gpdb是兼容PostgreSQL的mpp資料庫,適合OLAP場景。近兩年,gpdb一直在追趕PostgreSQL的社區版本,預計很快會追上10的PostgreSQL,在TP方面的性能也會得到顯著提升。

https://github.com/greenplum-db/gpdb

3)antdb發布3.2

antdb是以Postgres-XC為基礎開發的一款PostgreSQL sharding資料庫,亞信主導開發,開源,目前主要服務於亞信自有客戶。

https://github.com/ADBSQL/AntDB

4)遷移工具MTK發布52版本

MTK是EDB提供的可以將Oracle、PostgreSQL、MySQL、MSSQL、Sybase資料庫遷移到PostgreSQL, PPAS的產品,遷移速度可以達到100萬行/s以上。

https://github.com/digoal/blog/blob/master/201812/20181226_01.md

DB2發布 11.1.4.4版本

DB2最新發布Mod Pack 4 and Fix Pack 4,包含以下幾方面的改動及增強:

1、性能

2、高可用

3、管理視圖

4、應用開發方面

5、聯邦功能

6、pureScale

NoSQL家族

Redis發布5.0.3版本

MongoDB升級更新MongoDB Mobile和MongoDB Stitch

2018年11月21日,MongoDB升級更新MongoDB Mobile和MongoDB Stitch,助力開發人員提升工作效率。

MongoDB 公司日前發布了多項新產品功能,旨在更好地幫助開發人員在世界各地管理數據。通過利用存儲在移動設備和後台資料庫的數據之間的實時、自動的同步特性,MongoDB Mobile通用版本助力開發人員構建更快捷、反應更迅速的應用程序。此前,這只能通過在移動應用內部安裝一個可供選擇或限定功能的資料庫來實現。

MongoDB Mobile在為客戶提供隨處運行的自由度方面更進了一步。用戶在iOS和安卓終端設備上可擁有MongoDB所有功能,將網路邊界擴展到其物聯網資產范疇。應用系統還可以使用MongoDB Stitch的軟體開發包訪問移動客戶端或後台數據,幫助開發人員通過他們希望的任意方式查詢移動終端數據和物聯網數據,包括本地讀寫、本地JSON存儲、索引和聚合。通過Stitch移動同步功能(現可提供beta版),用戶可以自動對保存在本地的數據以及後台資料庫的數據進行同步。

本期新秀:Cassandra發布3.11.3版本

2018年8月11日,Cassandra發布正式版3.11.3。

Apache Cassandra是一款開源分布式NoSQL資料庫系統,使用了基於Google BigTable的數據模型,與面向行(row)的傳統關系型資料庫或鍵值存儲key-value資料庫不同,Cassandra使用的是寬列存儲模型(Wide Column Stores)。與BigTable和其模仿者HBase不同,數據並不存儲在分布式文件系統如GFS或HDFS中,而是直接存於本地。

Cassandra的系統架構與Amazon DynamoDB類似,是基於一致性哈希的完全P2P架構,每行數據通過哈希來決定應該存在哪個或哪些節點中。集群沒有master的概念,所有節點都是同樣的角色,徹底避免了整個系統的單點問題導致的不穩定性,集群間的狀態同步通過Gossip協議來進行P2P的通信。

3.11.3版本的一些bug fix和改進:

NewSQL家族

TiDB 發布2.1.2版本

2018 年 12 月 22 日,TiDB 發布 2.1.2 版,TiDB-Ansible 相應發布 2.1.2 版本。該版本在 2.1.1 版的基礎上,對系統兼容性、穩定性做出了改進。

TiDB 是一款定位於在線事務處理/在線分析處理( HTAP: Hybrid Transactional/Analytical Processing)的融合型資料庫產品。除了底層的 RocksDB 存儲引擎之外,分布式SQL層、分布式KV存儲引擎(TiKV)完全自主設計和研發。

TiDB 完全開源,兼容MySQL協議和語法,可以簡單理解為一個可以無限水平擴展的MySQL,並且提供分布式事務、跨節點 JOIN、吞吐和存儲容量水平擴展、故障自恢復、高可用等優異的特性;對業務沒有任何侵入性,簡化開發,利於維護和平滑遷移。

TiDB:

PD:

TiKV:

Tools:

1)TiDB-Lightning

2)TiDB-Binlog

EsgynDB發布R2.5版本

2018年12月22日,EsgynDB R2.5版本正式發布。

作為企業級產品,EsgynDB 2.5向前邁進了一大步,它擁有以下功能和改進:

CockroachDB發布2.1版本

2018年10月30日,CockroachDB正式發布2.1版本,其新增特性如下:

新增企業級特性:

新增SQL特性:

新增內核特性:

Admin UI增強:

時間序列

本期新秀:TimescaleDB發布1.0版本

10月底,TimescaleDB 1.0宣布正式推出,官方表示該版本已可用於生產環境,支持完整SQL和擴展。

TimescaleDB是基於PostgreSQL資料庫開發的一款時序資料庫,以插件化的形式打包提供,隨著PostgreSQL的版本升級而升級,不會因為另立分支帶來麻煩。

TimescaleDB架構:

數據自動按時間和空間分片(chunk)

更新亮點:

https://github.com/timescale/timescaledb/releases/tag/1.0.0

大數據生態圈

Hadoop發布2.9.2版本

2018年11月中旬,Hadoop在2.9分支上發布了新的2.9.2版本,該版本進行了204個大大小小的變更,主要變更如下:

Greenplum 發布5.15版本

Greenplum最新的5.15版本中發布了流式數據載入工具。

該版本中的Greenplum Streem Server組件已經集成了Kafka流式載入功能,並通過了Confluent官方的集成認證,其支持的主要功能如下:

國產資料庫概覽

K-DB發布資料庫一體機版

2018年11月7日,K-DB發布了資料庫一體機版。該版本更新情況如下:

OceanBase遷移服務發布1.0版本

1月4日,OceanBase 正式發布OMS遷移服務1.0版本。

以下內容包含 OceanBase 遷移服務的重要特性和功能:

SequoiaDB發布3.0.1新版本

1、架構

1)完整計算存儲分離架構,兼容MySQL協議、語法

計算存儲分離體系以松耦合的方式將計算與存儲層分別部署,通過標准介面或插件對各個模塊和組件進行無縫替換,在計算層與存儲層均可實現自由的彈性伸縮。

SequoiaDB巨杉資料庫「計算-存儲分離」架構詳細示意

用戶可以根據自身業務特徵選擇面向交易的SQL解析器(例如MySQL或PGSQL)或面向統計分析的執行引擎(例如SparkSQL)。眾所周知,使用不同的SQL優化與執行方式,資料庫的訪問性能可能會存在上千上萬倍的差距。計算存儲分離的核心思想便是在數據存儲層面進行一體化存儲,在計算層面則利用每種執行引擎的特點針對不同業務場景進行選擇和優化,用戶可以在存儲層進行邏輯與物理的隔離,將面向高頻交易的前端業務與面向高吞吐量的統計分析使用不同的硬體進行存儲,確保在多類型數據訪問時互不幹擾,以真正達到生產環境可用的多租戶與HTAP能力。

2、其他更新信息

1)介面變更:

2)主要特性:

雲資料庫

本期新秀:騰訊發布資料庫CynosDB,開啟公測

1、News

1)騰訊雲資料庫MySQL2018年重大更新:

2)騰訊雲資料庫MongoDB2018年重大更新:

3)騰訊雲資料庫Redis/CKV+2018年重大更新:

4)騰訊雲資料庫CTSDB2018年重大更新:

2、Redis 4.0集群版商業化上線

2018年10月,騰訊雲資料庫Redis 4.0集群版完成邀測、公測、商業化三個迭代,在廣州、上海、北京正式全量商業化上線。

產品特性:

使用場景:

官網文檔:

https://cloud.tencent.com/document/proct/239/18336

3、騰訊自研資料庫CynosDB發布,開啟公測

2018年11月22日,騰訊雲召開新一代自研資料庫CynosDB發布會,業界第一款全面兼容市面上兩大最主流的開源資料庫MySQL和PostgreSQL的高性能企業級分布式雲資料庫。

本期新秀:京東雲DRDS發布1.0版本

12月24日,京東雲分布式關系型資料庫DRDS正式發布1.0版本。

DRDS是京東雲精心自研的資料庫中間件產品,獲得了2018年 」可信雲技術創新獎」。DRDS可實現海量數據下的自動分庫分表,具有高性能,分布式,彈性升級,兼容MySQL等優點,適用於高並發、大規模數據的在線交易, 歷史 數據查詢,自動數據分片等業務場景,歷經多次618,雙十一的考驗,已經在京東集團內大規模使用。

京東雲DRDS產品有以下主要特性

1)自動分庫分表

通過簡單的定義即可自動實現分庫分表,將數據實際存放在多個MySQL實例的資料庫中,但呈現給應用程序的依舊是一張表,對業務透明,應用程序幾乎無需改動,實現了對資料庫存儲和處理能力的水平擴展。

2)分布式架構

基於分布式架構的集群方案,多個對等節點同時對外提供服務,不但可有效規避服務的單點故障,而且更加容易擴展。

3)超強性能

具有極高的處理能力,雙節點即可支持數萬QPS,滿足用戶超大規模處理能力的需求。

4)兼容MySQL

兼容絕大部分MySQL語法,包括MySQL語法、數據類型、索引、常用函數、排序、關聯等DDL,DML語句,使用成本低。

參考鏈接:

https://www.jdcloud.com/cn/procts/drds

RadonDB發布1.0.3版本

2018年12月26日,MyNewSQL領域的RadonDB雲資料庫發布1.0.3版本。

推出dbaplus Newsletter的想法

dbaplus Newsletter旨在向廣大技術愛好者提供資料庫行業的最新技術發展趨勢,為社區的技術發展提供一個統一的發聲平台。為此,我們策劃了RDBMS、NoSQL、NewSQL、時間序列、大數據生態圈、國產資料庫、雲資料庫等幾個版塊。

我們不以商業宣傳為目的,不接受任何商業廣告宣傳,嚴格審查信息源的可信度和准確性,力爭為大家提供一個純凈的技術學習環境,歡迎大家監督指正。

至於Newsletter發布的周期,目前計劃是每三個月左右會做一次跟進, 下期計劃時間是2019年4月14日~4月25日, 如果有相關的信息提供請發送至郵箱:[email protected]

感謝名單

最後要感謝那些提供寶貴信息和建議的專家朋友,排名不分先後。

往期回顧:

↓↓別忘了點這里下載 2019年1月 完整版Newsletter 哦~

❻ 國產十大資料庫排名

1、openGauss企業。

2、達夢。

3、GaussDB。

4、PolarDB。

5、人大金倉。

6、GBase。

7、TDSQL。

8、SequoiaDB。

9、OushuDB。

10、AnalyticDB。

詳細介紹:

1、南大通用:

南大通用提供具有國際先進技術水平的資料庫產品。南大通用已經形成了在大規模、高性能、分布式、高安全的數據存儲、管理和應用方面的技術儲備,同時對於數據整合、應用系統集成、PKI安全等方面具有豐富的應用開發經驗。

2、武漢達夢:

武漢達夢資料庫有限公司成立於2000年,為國有控股的基礎軟體企業,專業從事資料庫管理系統研發、銷售和服務。其前身是華中科技大學資料庫與多媒體研究所,是國內最早從事資料庫管理系統研發的科研機構。達夢資料庫為中國資料庫標准委員會組長單位,得到了國家各級政府的強力支持。

3、人大金倉:

人大金倉資料庫管理系統KingbaseES是北京人大金倉信息技術股份有限公司自主研製開發的具有自主知識產權的通用關系型資料庫管理系統。

金倉資料庫主要面向事務處理類應用,兼顧各類數據分析類應用,可用做管理信息系統、業務及生產系統、決策支持系統、多維數據分析、全文檢索、地理信息系統、圖片搜索等的承載資料庫。

4、神舟通用:

神通資料庫是一款計算機資料庫。神通資料庫標准版提供了大型關系型資料庫通用的功能,豐富的數據類型、多種索引類型、存儲過程、觸發器、內置函數、視圖、Package、行級鎖、完整性約束、多種隔離級別、在線備份、支持事務處理等通用特性,系統支持SQL通用資料庫查詢語言。

❼ 圖資料庫哪家好

Transwarp StellarDB
Transwarp StellarDB是一款為企業級圖應用而打造的分布式圖資料庫,用於快速查找數據間的關聯關系,並提供強大的演算法分析能力。StellarDB克服了萬億級關聯圖數據存儲的難題,通過自定義圖存儲格式和集群化存儲,實現了傳統資料庫無法提供的低延時多層關系查詢,在社交網路、金融領域都有巨大應用潛力若是還有不明白可以統一去知道了解下

❽ 開源圖資料庫有哪些

Neo4j、JanusGraph、TigerGraph、Dgraph這些都是,其實大多數的圖資料庫都是開源的,圖資料庫、圖計算都算比較新的東西,還需要開源後大家共同去改進。這些都是國外的,其實國內大廠也開始做圖資料庫、圖計算相關的軟體了,比如阿里的GraphScope、位元組的ByteGraph。

❾ 全世界三大免費資料庫是什麼

一.三大檢索工具及相關資料庫介紹

1.三大檢索工具簡

科技部下屬的「中國科學技術信息研究所」從 1987 年起,每年以國外四大檢索工具 SCI 、ISTP 、Ei、ISR 為數據源進行學術排行。由於 ISR(《科學評論索引》) 收錄的論文與 SCI 有較多重復,且收錄我國的論文偏少因此,1993年起不再把 ISR 作為論文的統計源。而其中的 SCI 、ISTP 、 Ei 資料庫就是圖書情報界常說的國外三大檢索工具。

SCI ,即《科學引文索引》,是自然科學領域基礎理論學科方面的重要期刊文摘索引資料庫。它創建於1961 年,創始人為美國科學情報研究所所長 Eugene Garfield(1925.9.15).利用它,可以檢索數學、物理學、化學、天文學、生物學、醫學、農業科學以及計算機科學、材料科學等學科方面自 1945 年以來重要的學術成果信息;SCI 還被國內外學術界當做制定學科發展規劃和進行學術排名的重要依據。

ISTP ,即《科學技術會議錄索引》,創刊於 1978 年,由美國科學情報研究所編制,主要收錄國際上著名的科技會議文獻。它所收錄的數據包括農業、環境科學、生物化學、分子生物學、生物技術、醫學、工程、計算機科學 、化學、物理學等學科。從 1990-2003 年間, ISTP 和 ISSHP( 後文將要講到 ISSHP) 共收錄了 60 , 000 個會議的近 300 萬篇論文的信息。

Ei,即《工程索引》,創刊於 1884 年,由 Elsevier Engineering Information Inc. 編輯出版。主要收錄工程技術領域的論文(主要為科技期刊和會議錄論文 ) ,數據覆蓋了核技術、生物工程、交通運輸、化學和工藝工程、照明和光學技術、農業工程和食品技術、計算機和數據處理、應用物理、電子和通信、控制工程、土木工程、機械工程、材料工程、石油、宇航、汽車工程等學科領域。

2.與三大檢索工具相關的其它資料庫介紹
SSCI,即《社會科學引文索引》,創刊於 1969 年,收錄數據從 1956 年至今;是社會科學領域重要的期刊文摘索引資料庫。數據覆蓋了歷史學、政治學、法學、語言學、哲學、心理學、圖書情報學、公共衛生等社會科學領域。

A&HCI,即《藝術與人文科學引文索引》,創刊於 1976 年,收錄數據從 1975 年至今;是藝術與人文科學領域重要的期刊文摘索引資料庫。數據覆蓋了考古學、建築學、藝術、文學、哲學、宗教、歷史等社會科學領域。

ISSHP ,即《社會科學和人文會議錄索引》,創刊於 1979 年,數據涵蓋了社會科學、藝術與人文科學領域的會議文獻。這些學科包括:哲學、心理學、社會學、經濟學、管理學、藝術、文學、歷史學、公共衛生等領域。
xiaoxinsue 2006-06-03 10:35
二.如何利用三大檢索工具等資料庫檢索相關主題文獻

1.利用SCI、SSCI、A&HCI資料庫檢索相關主題文獻

(1) 通過往TOPIC檢索入口輸入檢索主題詞獲得相關主題文獻

(2) 通過往TOPIC檢索入口輸入檢索主題詞,然後對檢索結果進一步分析獲得相關主題文獻

(3) 通過往TOPIC和SOURCE TITLE檢索入口同時輸入檢索主題詞獲得相關主題文獻

例子:往TOPIC中輸入"nano*",同時往SOURCE TITLE 中輸入"ARTIFICIAL CELLS BLOOD SUBSTITUTES AND IMMOBILIZATION BIOTECHNOLOGY or BIO-MEDICAL MATERIALS AND ENGINEERING or BIOMATERIALS or CELLULAR POLYMERS or DENTAL MATERIALS or JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS or JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION or JOURNAL OF BIOMATERIALS APPLICATIONS or JOURNAL OF BIOMEDICAL MATERIALS RESEARCH or JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE or MACROMOLECULAR BIOSCIENCE", 利用上面的檢索式,可以檢索出SCI網路版2002年資料庫收錄"MATERIALS SCIENCE, BIOMATERIALS"類的文章102篇。

2.利用ISTP資料庫檢索相關主題文獻

可以通過TOPIC、SOURCE TITLE、CONFERENCE相結合的方式來檢索

3.利用Ei資料庫檢索相關主題文獻

例子:檢索醫學領域中含有 "pipe" 的文獻
如果僅僅用 "pipe" 檢索在所有欄位中檢索,會命中 4 萬多條記錄;即使同時限制在 TITLE 中檢索,結果也有 1 萬多條,數據冗餘太大。這時,可以考慮從學科的角度進行限制檢索:

先檢索到從 Ei Thesaurus 中檢索醫學類目:

Medicine : 461.6 , Medical care : 461.7 , Medical imaging : 461.1 , Medical problems ,

Medical supplies : 462.1 , Medical computing : 723.5 , Medical diagnosis , Medical ecation ,

Medical equipment , Medical monitoring : 462.2

利用 "Expert Search" : (461.1 wn CL OR 461.6 wn CL OR 461.7 wn CL OR 462.1 wn CL OR 723.5 wn CL) AND (pipe wn TI) 命中 500 多條記錄,因 723.5 類與計算機應用有關,命中記錄中有許多看不出是與醫學有關的,可以考慮將該類去掉檢索。結果就比較令人滿意。

4.利用 SCOPUS 資料庫檢索相關主題文獻

該資料庫提供了學科限制,因而相對容易。
三.如何利用三大檢索工具等資料庫檢索論文收錄情況
1.利用三大檢索工具等資料庫檢索單位 / 集體論文收錄情況
以清華大學為例
(1)利用 SCI 資料庫檢索單位 / 集體論文收錄情況

(tsinghua univ or tsing hua univ or qinghua univ or qing hua univ or 100084) same (peoples r china or beijing or bei jing)

(2)利用 ISTP 資料庫檢索單位 / 集體論文收錄情況

(tsinghua univ or tsing hua univ or qinghua univ or qing hua univ or 100084) same (peoples r china or beijing or bei jing)

(3)利用 Ei 資料庫檢索單位 / 集體論文收錄情況

利用作者索引或用復雜檢索,但效果均不好。

(4)利用 SCOPUS 資料庫檢索單位 / 集體論文收錄情況

AFFIL(100084 AND tsinghua)

(5)利用 CSSCI 、《中國期刊網》、《中文科技期刊資料庫》檢索單位 / 集體論文收錄情況

三個資料庫均提供機構檢索入口,可以查找單位 / 集體論文收錄情況。
2.利用三大檢索工具等資料庫檢索個人論文收錄情況
以周遠翔老師的論文為例子 ( 見附錄 ) :
(1)利用 SCI 資料庫檢索個人論文收錄情況

作者的文獻 ( 文章或報告 ) 共有 104 篇,在這些文章中,他的合作者包括以下八人: N. Yoshimura, 關志成, H. Katoh, 嚴萍,梁曦東,李光范, M. Nifuku, Atsushi Satake

構建檢索式: (zhou yx or yunxiang z) and (Yoshimura n or guan zc or cheng g or Katoh h or yan p or ping y or liang xd or xidong l or li gf or guangfan l or Nifuku m or Satake a or Atsushi S)

在 AUTHOR 欄位中輸入上述檢索式,命中 9 條記錄。與作者提供的論文核對後發現:這 9 條記錄全是作者本人的論文。

還有幾篇文獻是作者單獨完成的,對於這些文獻,需要單獨處理。

(2)利用 ISTP 資料庫檢索個人論文收錄情況

與檢索 SCI 資料庫類似,用同樣的檢索式和同樣的方法即可。

在 AUTHOR 欄位中輸入上述檢索式,命中 14 條記錄。與作者提供的論文核對後發現:這 14 條記錄全是作者本人的論文。比作者事先查好的 12 篇還多 2 篇。

(3)利用 Ei 資料庫檢索個人論文收錄情況

在高級檢索中輸入 (Ei 資料庫作者標引與 SCI 有很大不同: Ei 一般要將姓和名寫全,而 SCI 是要求姓寫全,名用第一個字母 ) :

(zhou, y.x. wn AU OR zhou, yuanxiang wn AU OR yuanxiang, z. OR yuanxiang, zhou OR zhou, y.-x. wn AU OR zhou, yx wn AU) AND (Yoshimura wn AU OR guan, z.c. wn AU OR guan, z.-c. wn AU OR cheng, g wn AU OR guan, cheng wn AU OR guan, zc wn AU OR Katoh wn AU OR yan, p wn AU OR yan, ping wn AU OR ping, y. wn AU OR ping, yan wn AU OR liang, x.-d. wn AU OR liang, x.d. wn AU OR liang, xd wn AU OR xidong, liang wn AU OR liang, xidong wn AU OR xidong, l. wn AU OR li, gf wn AU OR li, g.f. wn AU OR li, g.-f. wn AU OR guangfan, l. wn AU OR guangfan, li wn AU OR li, guangfan wn AU OR Nifuku wn AU OR Satake wn AU OR Atsushi wn AU)

命中 19 條記錄,這與讀者自己檢索的 27 條記錄相差 8 條。

後經檢查,發現漏檢的 8 條記錄中,有 7 條作者是 "zhou, y" ,有一條是 "zhou, yuanxing" 。所以,用上述檢索式會漏掉一部分記錄;因而我們應再修改一下檢索式:

把上述檢索式修改為: (zhou, y* wn AU OR yuanxiang, z. OR yuanxiang, zhou) AND (Yoshimura wn AU OR guan, z.c. wn AU OR guan, z.-c. wn AU OR cheng, g wn AU OR guan, cheng wn AU OR guan, zc wn AU OR Katoh wn AU OR yan, p wn AU OR yan, ping wn AU OR ping, y. wn AU OR ping, yan wn AU OR liang, x.-d. wn AU OR liang, x.d. wn AU OR liang, xd wn AU OR xidong, liang wn AU OR liang, xidong wn AU OR xidong, l. wn AU OR li, gf wn AU OR li, g.f. wn AU OR li, g.-f. wn AU OR guangfan, l. wn AU OR guangfan, li wn AU OR li, guangfan wn AU OR Nifuku wn AU OR Satake wn AU OR Atsushi wn AU) 命中 34 條記錄,從中找出了作者有 27 篇文獻被 Ei 資料庫收錄。

需要說明的是:利用第一個檢索式基本上可以比較准確地檢索到作者的文獻。只所以利用第二個檢索式,是考慮到 Ei 資料庫在數據標引過程中可能出現的小的差錯,可以基本上沒有遺漏地檢索出作者所有被 Ei 資料庫收錄的文獻。

(4)利用 SCOPUS 資料庫檢索個人論文收錄情況

(5) 利用 CSSCI 、《中國期刊網》、《中文科技期刊資料庫》檢索個人論文收錄情況

xiaoxinsue 2006-06-03 10:35
四.如何檢索論文被引用情況
1.檢索單位 / 集體論文被引用情況
(1)利用 SCI 、 SSCI 、 A&HCI 檢索論文被引用情況
從收錄的角度檢索,例子:

(tsinghua univ or tsing hua univ or qinghua univ or qing hua univ or 100084) same (peoples r china or beijing or bei jing)

(2)利用 SCOPUS 檢索論文被引用情況

(3)利用《中國期刊網》檢索論文被引用情況

備註: CSSCI 、《中國科技論文引文統計分析資料庫》均沒有提供按單位 / 集體檢索論文被引用情況的入口。
2.檢索個人論文被引用情況
(1) 利用SCI、SSCI、A&HCI檢索論文被引用情況 從收錄的角度檢索,例子:

(2) 利用SCOPUS檢索論文被引用情況

(3) 利用CSSCI、《中國科技論文引文統計分析資料庫》、《中國期刊網》檢索論文被引用情況

五.核心期刊投稿導引
1.期刊評價及評價工具
關於期刊評價,目前國內學術界有兩種觀點:一是核心期刊評價法,二是期刊綜合評價梯度法。前者簡稱「 0/1 法則」,後者簡稱「綜合法則」。兩種法則都是以傳統的情報學文獻離散定律、引文分析定律等為理論依據的。只是「綜合法則」涵蓋了「 0/1 法則」,更加強調梯度的概念。 期刊評價的工具,國外以 JCR(Journal Citation Reports) 為代表,國內以《中文核心期刊要目總覽》、《中國科技期刊引證報告》和《中國學術期刊綜合引證報告》為代表。《中文核心期刊要目總覽》和《中國科技期刊引證報告》是「0/1 法則」評價的結果,《中國學術期刊綜合引證報告》是「綜合法則」評價的結果。
2. 核心期刊的內涵及國內、國際核心期刊外延的界定
核心期刊的概念可以用一句話來概括:某一學科中高水平、高影響力的期刊。不難看出,核心期刊有兩個主要特性:一是學科性,二是學術性。

一般情況下,核心期刊都是在某一個學科範圍內來界定的某一個學科的核心期刊,到另一個學科就不一定是核心期刊 ( 當然,綜合性學科的核心期刊,如 NATURE 、 SCIENCE 等例外 ) 。

核心期刊的學術性主要要是以期刊影響因子來測定的。關於影響因子,有兩種統計方法:一種是三年統計法,一種是中期統計法。按三年統計法得出的結果就是目前我們常說的影響因子 (IF: Impact Factor :某一種期刊在第三年得到的引文數與該刊前兩年的總論文數之比。 ) ,按中期統計法得出的結果叫 「 中期影響因子」(MIF: Median Impact Factor 某一種期刊的引文累計達到 1/2 時,引文數與此時的總論文數之比 ) 。
3.如何向國內、國際核心期刊投稿

投國際刊物,請參考 JCR( 包括科技版和社科版 ) ,選擇自己想要找的學科類目,按照影響因子排序,挑選適合的刊物。然後在《烏利希國際期刊指南》網站查找刊物的地址或網站信息,登陸刊物的網站,查找在線投稿信息。

投國內刊物,請參考《中文核心期刊要目總覽》和《中國科技期刊引證報告》,從中選擇自己想要找的學科類別,然後按照影響力,挑選適合的刊物。投稿地址信息可以參考工具書《中文核心期刊要目總覽》,也可以登錄「中國期刊網」,查找刊物的投稿信息。

在向核心期刊投稿的過程中,需要注意的事項:

(1)盡量不要投增刊。

(2) 單位署名要規范。寫清華大學要同時寫上 Beijing, Peoples Republic of China. 這在 SCI 中尤其要注意。

六.SCI 收錄期刊
SCI收錄全世界出版的數、理、化、農、林、醫、生命科學、天文、地理、環境、材料、工程技術等自然科學各學科的核心期刊約3500種。美國科學情報研究所通過它嚴格的選刊標准和評估程序挑選刊源,而且每年略有增減,從而做到SCI收錄的文獻能全面覆蓋全世界最重要和最有影響力的研究成果。

ISI所謂最有影響力的研究成果,指的是報道這些成果的文獻大量地被其它文獻引用。為此,作為一部檢索工具,SCI一反其它檢索工具通過主題或分類途徑檢索文獻的常規做法,而設置了獨特的"引文索引"(Citation Index)。即通過先期的文獻被當前文獻的引用,來說明文獻之間的相關性及先前文獻對當前文獻的影響力。

SCI 以上做法上的特點,使得 SCI 不僅作為一部文獻檢索工具使用,而且成為科研評價和的一種依據。科研機構被 SCI 收錄的論文總量,反映整個機構的科研、尤其是基礎研究的水平;個人的論文被 SCI 收錄的數量及被引用次數,反映他的研究能力與學術水平。

SCI 的出版形式包括印刷版期刊和光碟版及聯機資料庫,現在還發行了互聯網上 Web 版資料庫。個人通過網路就可以對 sci 期刊目錄進行搜索和查找,相關鏈接如下:

SCI 收錄期刊 ( 按字母 ) :

http://www.isinet.com/cgi-bin/jrnlst/jlresults.cgi?PC=K

SCI 收錄期刊 ( 按分類 ) :

http://www.isinet.com/cgi-bin/jrnlst/jlsubcatg.cgi?PC=K

七.EI 投稿指南
為了適應我國科學技術的快速發展,為我國科技工作者向 EI 收錄期刊投稿提供方便,本指南收集了 EI 收錄的科技期刊中近 1900 余種刊物的最新投稿信息,其中包括通信地址、電話號碼、電子郵件地址和網站的網址等。

使用說明
(1) 本目錄按中國科學院圖書分類法排列。

(2)各來源期刊款目的著錄格式如下:

375C0005 ① ISSN 0306-4573 ②

Information Processing&Management. ③

1963. 6/yr ④ Editor-in-chief:Tefko Saracevic,School of Communication Information and Library Studies Rutgers University 4

Huntington Street New Brunswick,NJ 08903 USA. ⑤

E-mail:[email protected]

http://www.elsevier.nl/inca/publications/store/2/4/4/ ⑥

《信息處理與管理》刊載信息處理、傳播、儲存、利用、檢索和管理,包括:計算機和自動化技術在圖書館信息工作中的應用以及信息政策等方面的研究論文、評論和簡訊。 ⑦

註: ① 中圖公司報刊刊號 ② 國際標准刊號 ③ 刊名 ④ 創刊年及出版周期(或全年期數) ⑤ 編委或編輯部或出版機構名稱、地址、電話、傳真 ⑥ 電子郵件地址和網址 ⑦ 譯名和內容簡介(中文或英文)

(3)指南中部分縮寫解釋

ISSN:International Standard Serial Number 國際標准刊號 Pub:Publisher 出版者

❿ 國內圖資料庫排名前三的有哪些

DB-Engines 資料庫流行度排行榜 6 月更新已發布,排名前二十如下:總體排名和上個月相比基本一致,其中排名前三的 Oracle、MySQL 和 Microsoft SQL Server 也是分數增加最多的三個資料庫,增加的分數分別為 13.67、4.67 和 15.57,三者的總分也均已超過一千。

熱點內容
電腦一周不用郵箱連接不到伺服器 發布:2025-07-27 01:07:34 瀏覽:449
手指速演算法二 發布:2025-07-27 01:07:30 瀏覽:699
蘋果壓縮z 發布:2025-07-27 01:05:54 瀏覽:470
哪些設備需要雙重化配置保護 發布:2025-07-27 01:03:37 瀏覽:362
javawsdlwebservice 發布:2025-07-27 00:59:23 瀏覽:326
多項式求和的存儲表達方式畫圖 發布:2025-07-27 00:57:45 瀏覽:728
鋁壓縮曲線 發布:2025-07-27 00:48:16 瀏覽:563
修改ftp主動模式 發布:2025-07-27 00:48:01 瀏覽:856
java查看環境變數 發布:2025-07-27 00:45:47 瀏覽:18
php文件結構 發布:2025-07-27 00:44:19 瀏覽:675