數學演算法特點
Ⅰ 計算機方法 數學方法
要知道計算機演算法和數學方法之間存在著密不可分的聯系,在我們的高中學習生活中,教材里已經初步接觸到計算機演算法的應用,並且在高考的題型中有關計算機演算法的部分每年都會在選擇題或者填空題中以流程圖的形式出現。而在社會上被廣泛應用的計算機演算法可不只會出現在考試中出現,它作為基礎融入到計算機編程和程序設計中,與我們的生活息息相關,也帶來了大量的便利。據此本文結合現今高中數學教材學習中的部分知識對其進行講述。
2數學方法的特點
數學方法主要特點大致可以分為三個,就是抽象性、邏輯嚴密性和廣泛性。抽象性的表達讓數學方法做到可以將事物的特性簡化到只留有其間的等量關系和空間存在的形式,方便用作計算和統計的特性可以讓數學方法科學地解決我們生活中的部分問題。邏輯嚴密性則代表在數學方法應用的過程中,要保證所有的部分都符合邏輯,這個可以在我們高中生平常學習的幾何證明內容方面得以體現,也可以直觀的感受到運用數學條件的需要有理有據的同時符合數學邏輯的重要性,只有這樣才可以到一個確切的結果,同時也決定了數學方法的可靠性,沒有邏輯嚴密性就沒有可靠性。廣泛性的體現可能作為高中生的我們還不能明確地感受到,實際上我們可以在許多領域都看見數學存在的蹤影,當然不只是在我們的教科書里,更多地,例如心理學領域中與數學方法有關的心理統計學和心理測量學,還有經濟學領域必須用到的微積分、線性代數以及概率統計部分的數學思想等,由此可見數學在我們的生活里無處不在
Ⅱ 人教版必修3 數學,什麼是演算法最重要的特徵
演算法有三個特徵:有窮性,確切性,可執行性。這三個特徵缺一不可。
Ⅲ 高一數學必修3知識點﹛演算法(排序問題與演算法的多樣性)﹜
1.演算法的特徵
(1)確定性:演算法的確定性是指一個演算法中每一步操作都是明確的,不能模糊或有歧義,演算法執行後一定產生明確的結果;
(2)有窮性:演算法的有窮性是指一個演算法必須能夠在有限個步驟之內把問題解決,不能無限的執行下去;
(3)可行性:演算法的可行性是指一個演算法對於某一類問題的解決都必須是有效的,切實可行的,並且能夠重復使用.
2、程序框圖
基本的程序框有起始框,輸入、輸出框,處理框,判斷框.其中起始框是任何流程都不可缺少的,而輸入、輸出框可以用在演算法中任何需要輸入、輸出的位置.程序框圖中的圖框表示各種操作,圖框內的文字和符號表示操作的內容,帶箭頭的流線表示操作的先後次序.
(1)順序結構
順序結構描述的是最自然的結構,它也是最基本的結構,
其特點是:語句與語句之間,框與框之間是按從上到下的順
序進行,不能跳躍,不能回頭,如圖1表示的是順序結構的
示意圖,它的功能是:A和B兩個框是依次執行的,只有在
執行完A框後,才能接著執行B框.
(2)選擇結構
選擇結構是依據指定條件選擇不同的指令的控制結構.選擇結構和實際問題中的分類處理與數學思想中的分類討論思想是完全對應的.
(3)循環結構
循環結構就是根據指定條件決定是否重復執行一條或多條指令的控制結構.它的特點是:從某處開始,按照一定的條件反復執行某一處理步驟,其中反復執行的處理步驟稱為循環體
3、基本演算法語句
演算法是計算機科學的基礎,本部分要學習的演算法語句,是為了將演算法轉換為計算機能夠理解的程序語言和能在計算機上實現的程序所需要的語句,其作用就是實現演算法與計算機的轉換.
(1)賦值語句
賦值語句是用來表明賦給某一個變數一個具體的確定值的語句.賦值語句的一般格式為:變數名=表達式.
賦值語句還應注意以下幾點:①賦值號左邊只能是變數名字,而不是表達式;②賦值號左右不能對換;③不能利用賦值語句進行代數式(或符號)的演算(如化簡、因式分解等);④賦值號與數學中的等號的意義不同.
(2)輸入語句
輸入語句主要用來給變數輸入初始數據.輸入語句的一般格式是:變數=INPUT(「提示內容」).輸入語句要求輸入的值只能是具體的常數,不能是函數、變數或表達式。
(3)輸出語句
任何求解問題的演算法,都要把求解的結果「輸出」,這就需要有「輸出語句」來控制輸出.輸出語句主要有PRINT語句,利用PEINT語句可以使結果在屏幕上顯示出來.
(4)條件語句
條件語句就是處理條件分支邏輯結構的演算法語句.計算機通常是按照程序中語句出現的先後順序依次往下執行的.但有時需要根據某個給定條件是否滿足而決定所要執行的語句,
(5)循環語句
循環語句是用來處理演算法中的循環結構的程序語言.當遇到有規律的重復運算,或者在程序中需要對某些語句進行重復的執行時,需要用循環語句進行控制.Basic程序語言中常用的有兩種循環語句:WHILE循環和UNTIL循環
Ⅳ 高二數學 演算法的概念 在線等!!!!!!!!!!!!!
演算法 參考出處:http://blog.csdn.net/ctu_85/archive/2008/05/11/2432736.aspx
一、什麼是演算法
演算法是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。演算法常常含有重復的步驟和一些比較或邏輯判斷。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。時間復雜度用「O(數量級)」來表示,稱為「階」。常見的時間復雜度有: O(1)常數階;O(log2n)對數階;O(n)線性階;O(n2)平方階。
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。
[font class="Apple-style-span" style="font-weight: bold;" id="bks_etfhxykd"]演算法 Algorithm [/font]
演算法是在有限步驟內求解某一問題所使用的一組定義明確的規則。通俗點說,就是計算機解題的過程。在這個過程中,無論是形成解題思路還是編寫程序,都是在實施某種演算法。前者是推理實現的演算法,後者是操作實現的演算法。
一個演算法應該具有以下五個重要的特徵:
1、有窮性: 一個演算法必須保證執行有限步之後結束;
2、確切性: 演算法的每一步驟必須有確切的定義;
3、輸入:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定除了初始條件;
4、輸出:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、可行性: 演算法原則上能夠精確地運行,而且人們用筆和紙做有限次運算後即可完成。
演算法的設計要求
1)正確性(Correctness)
有4個層次:
A.程序不含語法錯誤;
B.程序對幾組輸入數據能夠得出滿足規格要求的結果;
C.程序對精心選擇的、典型的、苛刻的、帶有刁難性的幾組輸入數據能夠得出滿足規格要求的結果;
D.程序對一切合法的輸入數據都能產生滿足規格要求的結果。
2)可讀性(Readability)
演算法的第一目的是為了閱讀和交流;
可讀性有助於對演算法的理解;
可讀性有助於對演算法的調試和修改。
3)高效率與低存儲量
處理速度快;存儲容量小
時間和空間是矛盾的、實際問題的求解往往是求得時間和空間的統一、折中。
演算法的描述 演算法的描述方式(常用的)
演算法描述 自然語言
流程圖 特定的表示演算法的圖形符號
偽語言 包括程序設計語言的三大基本結構及自然語言的一種語言
類語言 類似高級語言的語言,例如,類PASCAL、類C語言。
演算法的評價 演算法評價的標准:時間復雜度和空間復雜度。
1)時間復雜度 指在計算機上運行該演算法所花費的時間。用「O(數量級)」來表示,稱為「階」。
常見的時間復雜度有: O(1)常數階;O(logn)對數階;O(n)線性階;O(n^2)平方階
2)空間復雜度 指演算法在計算機上運行所佔用的存儲空間。度量同時間復雜度。
時間復雜度舉例
(a) X:=X+1 ; O(1)
(b) FOR I:=1 TO n DO
X:= X+1; O(n)
(c) FOR I:= 1 TO n DO
FOR J:= 1 TO n DO
X:= X+1; O(n^2)
「演算法」一詞最早來自公元 9世紀 波斯數學家比阿勒·霍瓦里松的一本影響深遠的著作《代數對話錄》。20世紀的 英國 數學家 圖靈 提出了著名的圖靈論點,並抽象出了一台機器,這台機器被我們稱之為 圖靈機 。圖靈的思想對演算法的發展起到了重要的作用。
演算法是 計算機 處理信息的本質,因為 計算機程序 本質上是一個演算法,告訴計算機確切的步驟來執行一個指定的任務,如計算職工的薪水或列印學生的成績單。 一般地,當演算法在處理信息時,數據會從輸入設備讀取,寫入輸出設備,可能保存起來以供以後使用。
這是演算法的一個簡單的例子。
我們有一串隨機數列。我們的目的是找到這個數列中最大的數。如果將數列中的每一個數字看成是一顆豆子的大小 可以將下面的演算法形象地稱為「撿豆子」:
首先將第一顆豆子(數列中的第一個數字)放入口袋中。
從第二顆豆子開始檢查,直到最後一顆豆子。如果正在檢查的豆子比口袋中的還大,則將它撿起放入口袋中,同時丟掉原先的豆子。 最後口袋中的豆子就是所有的豆子中最大的一顆。
下面是一個形式演算法,用近似於 編程語言 的 偽代碼 表示
給定:一個數列「list",以及數列的長度"length(list)" largest = list[1] for counter = 2 to length(list): if list[counter] > largest: largest = list[counter] print largest
符號說明:
= 用於表示賦值。即:右邊的值被賦予給左邊的變數。
List[counter] 用於表示數列中的第 counter 項。例如:如果 counter 的值是5,那麼 List[counter] 表示數列中的第5項。
<= 用於表示「小於或等於」。
二、演算法設計的方法
1.遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。設要求問題規模為N的解,當N=1時,解或為已知,或能非常方便地得到解。能採用遞推法構造演算法的問題有重要的遞推性質,即當得到問題規模為i-1的解後,由問題的遞推性質,能從已求得的規模為1,2,…,i-1的一系列解,構造出問題規模為I的解。這樣,程序可從i=0或i=1出發,重復地,由已知至i-1規模的解,通過遞推,獲得規模為i的解,直至得到規模為N的解。
【問題】 階乘計算
問題描述:編寫程序,對給定的n(n≤100),計算並輸出k的階乘k!(k=1,2,…,n)的全部有效數字。
由於要求的整數可能大大超出一般整數的位數,程序用一維數組存儲長整數,存儲長整數數組的每個元素只存儲長整數的一位數字。如有m位成整數N用數組a[ ]存儲:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
並用a[0]存儲長整數N的位數m,即a[0]=m。按上述約定,數組的每個元素存儲k的階乘k!的一位數字,並從低位到高位依次存於數組的第二個元素、第三個元素……。例如,5!=120,在數組中的存儲形式為:
3 0 2 1 ……
首元素3表示長整數是一個3位數,接著是低位到高位依次是0、2、1,表示成整數120。
計算階乘k!可採用對已求得的階乘(k-1)!連續累加k-1次後求得。例如,已知4!=24,計算5!,可對原來的24累加4次24後得到120。細節見以下程序。
# include <stdio.h>
# include <malloc.h>
......
2.遞歸
遞歸是設計和描述演算法的一種有力的工具,由於它在復雜演算法的描述中被經常採用,為此在進一步介紹其他演算法設計方法之前先討論它。
能採用遞歸描述的演算法通常有這樣的特徵:為求解規模為N的問題,設法將它分解成規模較小的問題,然後從這些小問題的解方便地構造出大問題的解,並且這些規模較小的問題也能採用同樣的分解和綜合方法,分解成規模更小的問題,並從這些更小問題的解構造出規模較大問題的解。特別地,當規模N=1時,能直接得解。
【問題】 編寫計算斐波那契(Fibonacci)數列的第n項函數fib(n)。
斐波那契數列為:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (當n>1時)。
寫成遞歸函數有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
遞歸演算法的執行過程分遞推和回歸兩個階段。在遞推階段,把較復雜的問題(規模為n)的求解推到比原問題簡單一些的問題(規模小於n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n-2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分別能立即得到結果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數fib中,當n為1和0的情況。
在回歸階段,當獲得最簡單情況的解後,逐級返回,依次得到稍復雜問題的解,例如得到fib(1)和fib(0)後,返回得到fib(2)的結果,……,在得到了fib(n-1)和fib(n-2)的結果後,返回得到fib(n)的結果。
在編寫遞歸函數時要注意,函數中的局部變數和參數知識局限於當前調用層,當遞推進入「簡單問題」層時,原來層次上的參數和局部變數便被隱蔽起來。在一系列「簡單問題」層,它們各有自己的參數和局部變數。
由於遞歸引起一系列的函數調用,並且可能會有一系列的重復計算,遞歸演算法的執行效率相對較低。當某個遞歸演算法能較方便地轉換成遞推演算法時,通常按遞推演算法編寫程序。例如上例計算斐波那契數列的第n項的函數fib(n)應採用遞推演算法,即從斐波那契數列的前兩項出發,逐次由前兩項計算出下一項,直至計算出要求的第n項。
【問題】 組合問題
問題描述:找出從自然數1、2、……、n中任取r個數的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10個組合,可以採用這樣的遞歸思想來考慮求組合函數的演算法。設函數為void comb(int m,int k)為找出從自然數1、2、……、m中任取k個數的所有組合。當組合的第一個數字選定時,其後的數字是從餘下的m-1個數中取k-1數的組合。這就將求m個數中取k個數的組合問題轉化成求m-1個數中取k-1個數的組合問題。設函數引入工作數組a[ ]存放求出的組合的數字,約定函數將確定的k個數字組合的第一個數字放在a[k]中,當一個組合求出後,才將a[ ]中的一個組合輸出。第一個數可以是m、m-1、……、k,函數將確定組合的第一個數字放入數組後,有兩種可能的選擇,因還未去頂組合的其餘元素,繼續遞歸去確定;或因已確定了組合的全部元素,輸出這個組合。細節見以下程序中的函數comb。
【程序】
# include <stdio.h>
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(「%4d」,a[j]);
printf(「\n」);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也稱為試探法,該方法首先暫時放棄關於問題規模大小的限制,並將問題的候選解按某種順序逐一枚舉和檢驗。當發現當前候選解不可能是解時,就選擇下一個候選解;倘若當前候選解除了還不滿足問題規模要求外,滿足所有其他要求時,繼續擴大當前候選解的規模,並繼續試探。如果當前候選解滿足包括問題規模在內的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前試探。
【問題】 組合問題
問題描述:找出從自然數1,2,…,n中任取r個數的所有組合。
採用回溯法找問題的解,將找到的組合以從小到大順序存於a[0],a[1],…,a[r-1]中,組合的元素滿足以下性質:
(1) a[i+1]>a,後一個數字比前一個大;
(2) a-i<=n-r+1。
按回溯法的思想,找解過程可以敘述如下:
首先放棄組合數個數為r的條件,候選組合從只有一個數字1開始。因該候選解滿足除問題規模之外的全部條件,擴大其規模,並使其滿足上述條件(1),候選組合改為1,2。繼續這一過程,得到候選組合1,2,3。該候選解滿足包括問題規模在內的全部條件,因而是一個解。在該解的基礎上,選下一個候選解,因a[2]上的3調整為4,以及以後調整為5都滿足問題的全部要求,得到解1,2,4和1,2,5。由於對5不能再作調整,就要從a[2]回溯到a[1],這時,a[1]=2,可以調整為3,並向前試探,得到解1,3,4。重復上述向前試探和向後回溯,直至要從a[0]再回溯時,說明已經找完問題的全部解。按上述思想寫成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j<r;j++)
printf(「%4d」,a[j]);
printf(「\n」);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}
main()
{ comb(5,3);
}
4.貪婪法
貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
例如平時購物找錢時,為使找回的零錢的硬幣數最少,不考慮找零錢的所有各種發表方案,而是從最大面值的幣種開始,按遞減的順序考慮各幣種,先盡量用大面值的幣種,當不足大面值幣種的金額時才去考慮下一種較小面值的幣種。這就是在使用貪婪法。這種方法在這里總是最優,是因為銀行對其發行的硬幣種類和硬幣面值的巧妙安排。如只有面值分別為1、5和11單位的硬幣,而希望找回總額為15單位的硬幣。按貪婪演算法,應找1個11單位面值的硬幣和4個1單位面值的硬幣,共找回5個硬幣。但最優的解應是3個5單位面值的硬幣。
【問題】 裝箱問題
問題描述:裝箱問題可簡述如下:設有編號為0、1、…、n-1的n種物品,體積分別為v0、v1、…、vn-1。將這n種物品裝到容量都為V的若干箱子里。約定這n種物品的體積均不超過V,即對於0≤i<n,有0<vi≤V。不同的裝箱方案所需要的箱子數目可能不同。裝箱問題要求使裝盡這n種物品的箱子數要少。
若考察將n種物品的集合分劃成n個或小於n個物品的所有子集,最優解就可以找到。但所有可能劃分的總數太大。對適當大的n,找出所有可能的劃分要花費的時間是無法承受的。為此,對裝箱問題採用非常簡單的近似演算法,即貪婪法。該演算法依次將物品放到它第一個能放進去的箱子中,該演算法雖不能保證找到最優解,但還是能找到非常好的解。不失一般性,設n件物品的體積是按從大到小排好序的,即有v0≥v1≥…≥vn-1。如不滿足上述要求,只要先對這n件物品按它們的體積從大到小排序,然後按排序結果對物品重新編號即可。裝箱演算法簡單描述如下:
{ 輸入箱子的容積;
輸入物品種數n;
按體積從大到小順序,輸入各物品的體積;
預置已用箱子鏈為空;
預置已用箱子計數器box_count為0;
for (i=0;i<n;i++)
{ 從已用的第一隻箱子開始順序尋找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一個箱子,並將物品i放入該箱子;
box_count++;
}
else
將物品i放入箱子j;
}
}
上述演算法能求出需要的箱子數box_count,並能求出各箱子所裝物品。下面的例子說明該演算法不一定能找到最優解,設有6種物品,它們的體積分別為:60、45、35、20、20和20單位體積,箱子的容積為100個單位體積。按上述演算法計算,需三隻箱子,各箱子所裝物品分別為:第一隻箱子裝物品1、3;第二隻箱子裝物品2、4、5;第三隻箱子裝物品6。而最優解為兩只箱子,分別裝物品1、4、5和2、3、6。
若每隻箱子所裝物品用鏈表來表示,鏈表首結點指針存於一個結構中,結構記錄尚剩餘的空間量和該箱子所裝物品鏈表的首指針。另將全部箱子的信息也構成鏈表。以下是按以上演算法編寫的程序。
}
5.分治法
任何一個可以用計算機求解的問題所需的計算時間都與其規模N有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算;n=2時,只要作一次比較即可排好序;n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
分治法的設計思想是,將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
如果原問題可分割成k個子問題(1<k≤n),且這些子問題都可解,並可利用這些子問題的解求出原問題的解,那麼這種分治法就是可行的。由分治法產生的子問題往往是原問題的較小模式,這就為使用遞歸技術提供了方便。在這種情況下,反復應用分治手段,可以使子問題與原問題類型一致而其規模卻不斷縮小,最終使子問題縮小到很容易直接求出其解。這自然導致遞歸過程的產生。分治與遞歸像一對孿生兄弟,經常同時應用在演算法設計之中,並由此產生許多高效演算法。
分治法所能解決的問題一般具有以下幾個特徵:
(1)該問題的規模縮小到一定的程度就可以容易地解決;
(2)該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質;
(3)利用該問題分解出的子問題的解可以合並為該問題的解;
(4)該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
上述的第一條特徵是絕大多數問題都可以滿足的,因為問題的計算復雜性一般是隨著問題規模的增加而增加;第二條特徵是應用分治法的前提,它也是大多數問題可以滿足的,此特徵反映了遞歸思想的應用;第三條特徵是關鍵,能否利用分治法完全取決於問題是否具有第三條特徵,如果具備了第一條和第二條特徵,而不具備第三條特徵,則可以考慮貪心法或動態規劃法。第四條特徵涉及到分治法的效率,如果各子問題是不獨立的,則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好。
分治法在每一層遞歸上都有三個步驟:
(1)分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
(2)解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;
(3)合並:將各個子問題的解合並為原問題的解。
6.動態規劃法
經常會遇到復雜問題不能簡單地分解成幾個子問題,而會分解出一系列的子問題。簡單地採用把大問題分解成子問題,並綜合子問題的解導出大問題的解的方法,問題求解耗時會按問題規模呈冪級數增加。
為了節約重復求相同子問題的時間,引入一個數組,不管它們是否對最終解有用,把所有子問題的解存於該數組中,這就是動態規劃法所採用的基本方法。以下先用實例說明動態規劃方法的使用。
【問題】 求兩字元序列的最長公共字元子序列
問題描述:字元序列的子序列是指從給定字元序列中隨意地(不一定連續)去掉若干個字元(可能一個也不去掉)後所形成的字元序列。令給定的字元序列X=「x0,x1,…,xm-1」,序列Y=「y0,y1,…,yk-1」是X的子序列,存在X的一個嚴格遞增下標序列<i0,i1,…,ik-1>,使得對所有的j=0,1,…,k-1,有xij=yj。例如,X=「ABCBDAB」,Y=「BCDB」是X的一個子序列。
考慮最長公共子序列問題如何分解成子問題,設A=「a0,a1,…,am-1」,B=「b0,b1,…,bm-1」,並Z=「z0,z1,…,zk-1」為它們的最長公共子序列。不難證明有以下性質:
(
Ⅳ 數學演算法是什麼
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。一個演算法應該具有以下五個重要的特徵:
有窮性(Finiteness)
演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
確切性(Definiteness)
演算法的每一步驟必須有確切的定義;
輸入項(Input)
一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
輸出項(Output)
一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
可行性(Effectiveness)
演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
Ⅵ 數學常識中數值分析法有哪些特點
數值分析法的特點包括准確性(數值應該盡量近似准確)、穩健性(演算法應該能夠解決很多問題,並且當結果不準確時應該是與使用者有關)和速度(計算的速度越快,方法就越好)。計算方法本身所介紹的是一些適合於計算機上使用的數值分析方法,這些方法的基礎是數學分析,代數,微分方程等數學理論,根據我校學生比較注重基礎理論這一特點,——《數值分析方法》在介紹方法的同時,盡可能地闡述清楚方法的數學理論根據,並對方法的有關緒論做出嚴格而簡潔的證明。數值分析中的各種方法具有相對的獨立性,但作為一門課程,我們盡力把它編寫成具有較好連貫性及較為完整的教材。
矩陣的奇異值是一個數學意義上的概念,一般是由奇異值分解(Singular Value Decomposition,簡稱SVD分解)得到。如果要問奇異值表示什麼物理意義,那麼就必須考慮在不同的實際工程應用中奇異值所對應的含義。下面先盡量避開嚴格的數學符號推導,直觀的從一張圖片出發,讓我們來看看奇異值代表什麼意義。
數值分析(numerical analysis)是研究分析用計算機求解數學計算問題的數值計算方法及其理論的學科,是數學的一個分支,它以數字計算機求解數學問題的理論和方法為研究對象,為計算數學的主體部分。計算太空船的軌跡需要求出常微分方程的數值解。數值天氣預報中會用到許多先進的數值分析方法。
Ⅶ 何謂演算法演算法有什麼性質
演算法(algorithm),在數學(算學)和計算機科學之中,為任何一系列良定義的具體計算步驟,常用於計算、數據處理和自動推理。作為一個有效方法,演算法被用於計算函數,它包含了一系列定義清晰的指令,並可於有限的時間及空間內清楚的表述出來。
特點:
1、輸入:一個演算法必須有零個或以上輸入量。
2、輸出:一個演算法應有一個或以上輸出量,輸出量是演算法計算的結果。
3、明確性:演算法的描述必須無歧義,以保證演算法的實際執行結果是精確地符合要求或期望,通常要求實際運行結果是確定的。
4、有限性:依據圖靈的定義,一個演算法是能夠被任何圖靈完備系統模擬的一串運算,而圖靈機只有有限個狀態、有限個輸入符號和有限個轉移函數(指令)。而一些定義更規定演算法必須在有限個步驟內完成任務。
5、有效性:又稱可行性。能夠實現,演算法中描述的操作都是可以通過已經實現的基本運算執行有限次來實現。
(7)數學演算法特點擴展閱讀:
常用設計模式
完全遍歷法和不完全遍歷法:在問題的解是有限離散解空間,且可以驗證正確性和最優性時,最簡單的演算法就是把解空間的所有元素完全遍歷一遍,逐個檢測元素是否是我們要的解。
這是最直接的演算法,實現往往最簡單。但是當解空間特別龐大時,這種演算法很可能導致工程上無法承受的計算量。這時候可以利用不完全遍歷方法——例如各種搜索法和規劃法——來減少計算量。
1、分治法:把一個問題分割成互相獨立的多個部分分別求解的思路。這種求解思路帶來的好處之一是便於進行並行計算。
2、動態規劃法:當問題的整體最優解就是由局部最優解組成的時候,經常採用的一種方法。
3、貪心演算法:常見的近似求解思路。當問題的整體最優解不是(或無法證明是)由局部最優解組成,且對解的最優性沒有要求的時候,可以採用的一種方法。
4、簡並法:把一個問題通過邏輯或數學推理,簡化成與之等價或者近似的、相對簡單的模型,進而求解的方法。
Ⅷ 線性運算是數學中的一種重要演算法,這種演算法有什麼特點
加法和數量乘法稱為線性運算。
線性代數
線性代數有兩類基本數學構件.一類是對象:數組;一類是這些對象進行的運算。在此基礎之上可以對一系列涉及數組的數學模型進行探討和研究,從而解決實際問題.
(一)矩陣的線性運算
矩陣的加法和數乘運算,統稱為矩陣的線性運算。
矩陣加減法