當前位置:首頁 » 操作系統 » 演算法案例抽

演算法案例抽

發布時間: 2023-02-27 04:04:21

A. 如何實現抽簽演算法

首先,你的資料庫的user表需要存儲報名人的id,是否參加第一次抽簽(first)第一次抽簽是否抽中(first_row),是否參加第一次抽簽(second),第二次抽簽是否抽中(second_row),和報名人的基本信息(name,password......)。

然後進行報名注冊(報名的同時first=1,second=0),當第一次報名時間截止,如果第一次報名人數超過50人時抽簽,被抽到的人first_row=1。

然後進行第二次報名注冊,第一次沒有抽中的人(second_row==0)登錄時可以選擇是否報名(second=1),當第二次報名時間截止,所有second==1的用戶抽簽,抽中者second_row=1。

B. 什麼是演算法,都什麼,舉個例子,謝謝

根據我個人的理解:
演算法就是解決問題的具體的方法和步驟,所以具有以下性質:

1、有窮性: 一個演算法必須保證執行有限步之後結束(如果步驟無限,問題就無法解決)
2、確切性:步驟必須明確,說清楚做什麼。
3、輸入:即解決問題前我們所掌握的條件。
4、輸出:輸出即我們需要得到的答案。
5、可行性:邏輯不能錯誤,步驟必須有限,必須得到結果。

演算法通俗的講:就是解決問題的方法和步驟。在計算機發明之前便已經存在。只不過在計算機發明後,其應用變得更為廣泛。通過簡單的演算法,利用電腦的計算速度,可以讓問題變得簡單。

譬如:計算 1×2×3×4。。。。×999999999×1000000000
如果人為計算,可想而知,即使你用N卡車的紙張都很難計算出來,即使算出來了,也很難保證其准確性。
如果用VB演算法:
dim a as integer
a=1
For i =1 to 1000000000
a=a*i
next i
input a
就這樣,簡單的演算法,通過計算機強大的計算能力,問題就解決了。
關於這段演算法的解釋:i每乘一次,其數值都會增大1,一直乘到1000000000,這樣,就將從1到1000000000的每個數都乘了。而且每乘一次,就將結束賦給a,這樣,a就代表了前面的相乘的所有結果,一直乘到1000000000。最後得到的a,就是我們想要的。

〓以下是網路復制過來的,如果你有足夠耐心,可以參考一下。

演算法(Algorithm)是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法可以理解為有基本運算及規定的運算順序所構成的完整的解題步驟。或者看成按照要求設計好的有限的確切的計算序列,並且這樣的步驟和序列可以解決一類問題。
一個演算法應該具有以下五個重要的特徵:
1、有窮性: 一個演算法必須保證執行有限步之後結束;
2、確切性: 演算法的每一步驟必須有確切的定義;
3、輸入:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定除了初始條件;
4、輸出:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、可行性: 演算法原則上能夠精確地運行,而且人們用筆和紙做有限次運算後即可完成。
計算機科學家尼克勞斯-沃思曾著過一本著名的書《數據結構十演算法= 程序》,可見演算法在計算機科學界與計算機應用界的地位。
[編輯本段]演算法的復雜度
同一問題可用不同演算法解決,而一個演算法的質量優劣將影響到演算法乃至程序的效率。演算法分析的目的在於選擇合適演算法和改進演算法。一個演算法的評價主要從時間復雜度和空間復雜度來考慮。
時間復雜度
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法的時間復雜度也因此記做
T(n)=Ο(f(n))
因此,問題的規模n 越大,演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。
空間復雜度
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。
詳見網路詞條"演算法復雜度"
[編輯本段]演算法設計與分析的基本方法
1.遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。它把問題分成若干步,找出相鄰幾步的關系,從而達到目的,此方法稱為遞推法。
2.遞歸
遞歸指的是一個過程:函數不斷引用自身,直到引用的對象已知
3.窮舉搜索法
窮舉搜索法是對可能是解的眾多候選解按某種順序進行逐一枚舉和檢驗,並從眾找出那些符合要求的候選解作為問題的解。
4.貪婪法
貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
5.分治法
把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。
6.動態規劃法
動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。
7.迭代法
迭代是數值分析中通過從一個初始估計出發尋找一系列近似解來解決問題(一般是解方程或者方程組)的過程,為實現這一過程所使用的方法統稱為迭代法。
[編輯本段]演算法分類
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法。
[編輯本段]舉例
經典的演算法有很多,如:"歐幾里德演算法"。
[編輯本段]演算法經典專著
目前市面上有許多論述演算法的書籍,其中最著名的便是《計算機程序設計藝術》(The Art Of Computer Programming) 以及《演算法導論》(Introction To Algorithms)。
[編輯本段]演算法的歷史
「演算法」即演演算法的大陸中文名稱出自《周髀算經》;而英文名稱Algorithm 來自於9世紀波斯數學家al-Khwarizmi,因為al-Khwarizmi在數學上提出了演算法這個概念。「演算法」原為"algorism",意思是阿拉伯數字的運演算法則,在18世紀演變為"algorithm"。歐幾里得演算法被人們認為是史上第一個演算法。 第一次編寫程序是Ada Byron於1842年為巴貝奇分析機編寫求解解伯努利方程的程序,因此Ada Byron被大多數人認為是世界上第一位程序員。因為查爾斯·巴貝奇(Charles Babbage)未能完成他的巴貝奇分析機,這個演算法未能在巴貝奇分析機上執行。 因為"well-defined procere"缺少數學上精確的定義,19世紀和20世紀早期的數學家、邏輯學家在定義演算法上出現了困難。20世紀的英國數學家圖靈提出了著名的圖靈論題,並提出一種假想的計算機的抽象模型,這個模型被稱為圖靈機。圖靈機的出現解決了演算法定義的難題,圖靈的思想對演算法的發展起到了重要作用的。

C. hadoop的maprece常見演算法案例有幾種

基本MapRece模式

計數與求和
問題陳述:
有許多文檔,每個文檔都有一些欄位組成。需要計算出每個欄位在所有文檔中的出現次數或者這些欄位的其他什麼統計值。例如,給定一個log文件,其中的每條記錄都包含一個響應時間,需要計算出平均響應時間。
解決方案:
讓我們先從簡單的例子入手。在下面的代碼片段里,Mapper每遇到指定詞就把頻次記1,Recer一個個遍歷這些詞的集合然後把他們的頻次加和。

1 class Mapper
2 method Map(docid id, doc d)
3 for all term t in doc d do
4 Emit(term t, count 1)
5
6 class Recer
7 method Rece(term t, counts [c1, c2,...])
8 sum = 0
9 for all count c in [c1, c2,...] do
10 sum = sum + c
11 Emit(term t, count sum)

這種方法的缺點顯而易見,Mapper提交了太多無意義的計數。它完全可以通過先對每個文檔中的詞進行計數從而減少傳遞給Recer的數據量:

1 class Mapper
2 method Map(docid id, doc d)
3 H = new AssociativeArray
4 for all term t in doc d do
5 H{t} = H{t} + 1
6 for all term t in H do
7 Emit(term t, count H{t})

如果要累計計數的的不只是單個文檔中的內容,還包括了一個Mapper節點處理的所有文檔,那就要用到Combiner了:

1 class Mapper
2 method Map(docid id, doc d)
3 for all term t in doc d do
4 Emit(term t, count 1)
5
6 class Combiner
7 method Combine(term t, [c1, c2,...])
8 sum = 0
9 for all count c in [c1, c2,...] do
10 sum = sum + c
11 Emit(term t, count sum)
12
13 class Recer
14 method Rece(term t, counts [c1, c2,...])
15 sum = 0
16 for all count c in [c1, c2,...] do
17 sum = sum + c
18 Emit(term t, count sum)

應用:Log 分析, 數據查詢

整理歸類

問題陳述:
有一系列條目,每個條目都有幾個屬性,要把具有同一屬性值的條目都保存在一個文件里,或者把條目按照屬性值分組。 最典型的應用是倒排索引。
解決方案:
解決方案很簡單。 在 Mapper 中以每個條目的所需屬性值作為 key,其本身作為值傳遞給 Recer。 Recer 取得按照屬性值分組的條目,然後可以處理或者保存。如果是在構建倒排索引,那麼 每個條目相當於一個詞而屬性值就是詞所在的文檔ID。
應用:倒排索引, ETL
過濾 (文本查找),解析和校驗
問題陳述:
假設有很多條記錄,需要從其中找出滿足某個條件的所有記錄,或者將每條記錄傳換成另外一種形式(轉換操作相對於各條記錄獨立,即對一條記錄的操作與其他記錄無關)。像文本解析、特定值抽取、格式轉換等都屬於後一種用例。
解決方案:
非常簡單,在Mapper 里逐條進行操作,輸出需要的值或轉換後的形式。
應用:日誌分析,數據查詢,ETL,數據校驗

分布式任務執行

問題陳述:
大型計算可以分解為多個部分分別進行然後合並各個計算的結果以獲得最終結果。
解決方案: 將數據切分成多份作為每個 Mapper 的輸入,每個Mapper處理一份數據,執行同樣的運算,產生結果,Recer把多個Mapper的結果組合成一個。
案例研究: 數字通信系統模擬
像 WiMAX 這樣的數字通信模擬軟體通過系統模型來傳輸大量的隨機數據,然後計算傳輸中的錯誤幾率。 每個 Mapper 處理樣本 1/N 的數據,計算出這部分數據的錯誤率,然後在 Recer 里計算平均錯誤率。
應用:工程模擬,數字分析,性能測試
排序
問題陳述:
有許多條記錄,需要按照某種規則將所有記錄排序或是按照順序來處理記錄。
解決方案: 簡單排序很好辦 – Mappers 將待排序的屬性值為鍵,整條記錄為值輸出。 不過實際應用中的排序要更加巧妙一點, 這就是它之所以被稱為MapRece 核心的原因(「核心」是說排序?因為證明Hadoop計算能力的實驗是大數據排序?還是說Hadoop的處理過程中對key排序的環節?)。在實踐中,常用組合鍵來實現二次排序和分組。
MapRece 最初只能夠對鍵排序, 但是也有技術利用可以利用Hadoop 的特性來實現按值排序。想了解的話可以看這篇博客。
按照BigTable的概念,使用 MapRece來對最初數據而非中間數據排序,也即保持數據的有序狀態更有好處,必須注意這一點。換句話說,在數據插入時排序一次要比在每次查詢數據的時候排序更高效。
應用:ETL,數據分析

非基本 MapRece 模式

迭代消息傳遞 (圖處理)

問題陳述:
假設一個實體網路,實體之間存在著關系。 需要按照與它比鄰的其他實體的屬性計算出一個狀態。這個狀態可以表現為它和其它節點之間的距離, 存在特定屬性的鄰接點的跡象, 鄰域密度特徵等等。
解決方案:
網路存儲為系列節點的結合,每個節點包含有其所有鄰接點ID的列表。按照這個概念,MapRece 迭代進行,每次迭代中每個節點都發消息給它的鄰接點。鄰接點根據接收到的信息更新自己的狀態。當滿足了某些條件的時候迭代停止,如達到了最大迭代次數(網路半徑)或兩次連續的迭代幾乎沒有狀態改變。從技術上來看,Mapper 以每個鄰接點的ID為鍵發出信息,所有的信息都會按照接受節點分組,recer 就能夠重算各節點的狀態然後更新那些狀態改變了的節點。下面展示了這個演算法:

1 class Mapper
2 method Map(id n, object N)
3 Emit(id n, object N)
4 for all id m in N.OutgoingRelations do
5 Emit(id m, message getMessage(N))
6
7 class Recer
8 method Rece(id m, [s1, s2,...])
9 M = null
10 messages = []
11 for all s in [s1, s2,...] do
12 if IsObject(s) then
13 M = s
14 else // s is a message
15 messages.add(s)
16 M.State = calculateState(messages)
17 Emit(id m, item M)

一個節點的狀態可以迅速的沿著網路傳全網,那些被感染了的節點又去感染它們的鄰居,整個過程就像下面的圖示一樣:

案例研究: 沿分類樹的有效性傳遞
問題陳述:
這個問題來自於真實的電子商務應用。將各種貨物分類,這些類別可以組成一個樹形結構,比較大的分類(像男人、女人、兒童)可以再分出小分類(像男褲或女裝),直到不能再分為止(像男式藍色牛仔褲)。這些不能再分的基層類別可以是有效(這個類別包含有貨品)或者已無效的(沒有屬於這個分類的貨品)。如果一個分類至少含有一個有效的子分類那麼認為這個分類也是有效的。我們需要在已知一些基層分類有效的情況下找出分類樹上所有有效的分類。
解決方案:
這個問題可以用上一節提到的框架來解決。我們咋下面定義了名為 getMessage和 calculateState 的方法:

1 class N
2 State in {True = 2, False = 1, null = 0},
3 initialized 1 or 2 for end-of-line categories, 0 otherwise
4 method getMessage(object N)
5 return N.State
6 method calculateState(state s, data [d1, d2,...])
7 return max( [d1, d2,...] )

案例研究:廣度優先搜索
問題陳述:需要計算出一個圖結構中某一個節點到其它所有節點的距離。
解決方案: Source源節點給所有鄰接點發出值為0的信號,鄰接點把收到的信號再轉發給自己的鄰接點,每轉發一次就對信號值加1:

1 class N
2 State is distance,
3 initialized 0 for source node, INFINITY for all other nodes
4 method getMessage(N)
5 return N.State + 1
6 method calculateState(state s, data [d1, d2,...])
7 min( [d1, d2,...] )

案例研究:網頁排名和 Mapper 端數據聚合
這個演算法由Google提出,使用權威的PageRank演算法,通過連接到一個網頁的其他網頁來計算網頁的相關性。真實演算法是相當復雜的,但是核心思想是權重可以傳播,也即通過一個節點的各聯接節點的權重的均值來計算節點自身的權重。

1 class N
2 State is PageRank
3 method getMessage(object N)
4 return N.State / N.OutgoingRelations.size()
5 method calculateState(state s, data [d1, d2,...])
6 return ( sum([d1, d2,...]) )

要指出的是上面用一個數值來作為評分實際上是一種簡化,在實際情況下,我們需要在Mapper端來進行聚合計算得出這個值。下面的代碼片段展示了這個改變後的邏輯 (針對於 PageRank 演算法):

1 class Mapper
2 method Initialize
3 H = new AssociativeArray
4 method Map(id n, object N)
5 p = N.PageRank / N.OutgoingRelations.size()
6 Emit(id n, object N)
7 for all id m in N.OutgoingRelations do
8 H{m} = H{m} + p
9 method Close
10 for all id n in H do
11 Emit(id n, value H{n})
12
13 class Recer
14 method Rece(id m, [s1, s2,...])
15 M = null
16 p = 0
17 for all s in [s1, s2,...] do
18 if IsObject(s) then
19 M = s
20 else
21 p = p + s
22 M.PageRank = p
23 Emit(id m, item M)

應用:圖分析,網頁索引

值去重 (對唯一項計數)
問題陳述: 記錄包含值域F和值域 G,要分別統計相同G值的記錄中不同的F值的數目 (相當於按照 G分組).
這個問題可以推而廣之應用於分面搜索(某些電子商務網站稱之為Narrow Search)
Record 1: F=1, G={a, b}
Record 2: F=2, G={a, d, e}
Record 3: F=1, G={b}
Record 4: F=3, G={a, b}

Result:
a -> 3 // F=1, F=2, F=3
b -> 2 // F=1, F=3
d -> 1 // F=2
e -> 1 // F=2

解決方案 I:
第一種方法是分兩個階段來解決這個問題。第一階段在Mapper中使用F和G組成一個復合值對,然後在Recer中輸出每個值對,目的是為了保證F值的唯一性。在第二階段,再將值對按照G值來分組計算每組中的條目數。
第一階段:

1 class Mapper
2 method Map(null, record [value f, categories [g1, g2,...]])
3 for all category g in [g1, g2,...]
4 Emit(record [g, f], count 1)
5
6 class Recer
7 method Rece(record [g, f], counts [n1, n2, ...])
8 Emit(record [g, f], null )

第二階段:

1 class Mapper
2 method Map(record [f, g], null)
3 Emit(value g, count 1)
4
5 class Recer
6 method Rece(value g, counts [n1, n2,...])
7 Emit(value g, sum( [n1, n2,...] ) )

解決方案 II:
第二種方法只需要一次MapRece 即可實現,但擴展性不強。演算法很簡單-Mapper 輸出值和分類,在Recer里為每個值對應的分類去重然後給每個所屬的分類計數加1,最後再在Recer結束後將所有計數加和。這種方法適用於只有有限個分類,而且擁有相同F值的記錄不是很多的情況。例如網路日誌處理和用戶分類,用戶的總數很多,但是每個用戶的事件是有限的,以此分類得到的類別也是有限的。值得一提的是在這種模式下可以在數據傳輸到Recer之前使用Combiner來去除分類的重復值。

1 class Mapper
2 method Map(null, record [value f, categories [g1, g2,...] )
3 for all category g in [g1, g2,...]
4 Emit(value f, category g)
5
6 class Recer
7 method Initialize
8 H = new AssociativeArray : category -> count
9 method Rece(value f, categories [g1, g2,...])
10 [g1', g2',..] = ExcludeDuplicates( [g1, g2,..] )
11 for all category g in [g1', g2',...]
12 H{g} = H{g} + 1
13 method Close
14 for all category g in H do
15 Emit(category g, count H{g})

應用:日誌分析,用戶計數
互相關
問題陳述:有多個各由若干項構成的組,計算項兩兩共同出現於一個組中的次數。假如項數是N,那麼應該計算N*N。
這種情況常見於文本分析(條目是單詞而元組是句子),市場分析(購買了此物的客戶還可能購買什麼)。如果N*N小到可以容納於一台機器的內存,實現起來就比較簡單了。
配對法
第一種方法是在Mapper中給所有條目配對,然後在Recer中將同一條目對的計數加和。但這種做法也有缺點:
使用 combiners 帶來的的好處有限,因為很可能所有項對都是唯一的
不能有效利用內存

1 class Mapper
2 method Map(null, items [i1, i2,...] )
3 for all item i in [i1, i2,...]
4 for all item j in [i1, i2,...]
5 Emit(pair [i j], count 1)
6
7 class Recer
8 method Rece(pair [i j], counts [c1, c2,...])
9 s = sum([c1, c2,...])
10 Emit(pair[i j], count s)

Stripes Approach(條方法?不知道這個名字怎麼理解)
第二種方法是將數據按照pair中的第一項來分組,並維護一個關聯數組,數組中存儲的是所有關聯項的計數。The second approach is to group data by the first item in pair and maintain an associative array (「stripe」) where counters for all adjacent items are accumulated. Recer receives all stripes for leading item i, merges them, and emits the same result as in the Pairs approach.
中間結果的鍵數量相對較少,因此減少了排序消耗。
可以有效利用 combiners。
可在內存中執行,不過如果沒有正確執行的話也會帶來問題。
實現起來比較復雜。
一般來說, 「stripes」 比 「pairs」 更快

1 class Mapper
2 method Map(null, items [i1, i2,...] )
3 for all item i in [i1, i2,...]
4 H = new AssociativeArray : item -> counter
5 for all item j in [i1, i2,...]
6 H{j} = H{j} + 1
7 Emit(item i, stripe H)
8
9 class Recer
10 method Rece(item i, stripes [H1, H2,...])
11 H = new AssociativeArray : item -> counter
12 H = merge-sum( [H1, H2,...] )
13 for all item j in H.keys()
14 Emit(pair [i j], H{j})

應用:文本分析,市場分析
參考資料:Lin J. Dyer C. Hirst G. Data Intensive Processing MapRece
用MapRece 表達關系模式
在這部分我們會討論一下怎麼使用MapRece來進行主要的關系操作。
篩選(Selection)

1 class Mapper
2 method Map(rowkey key, tuple t)
3 if t satisfies the predicate
4 Emit(tuple t, null)

投影(Projection)
投影只比篩選稍微復雜一點,在這種情況下我們可以用Recer來消除可能的重復值。

1 class Mapper
2 method Map(rowkey key, tuple t)
3 tuple g = project(t) // extract required fields to tuple g
4 Emit(tuple g, null)
5
6 class Recer

D. java抽獎的演算法

那你可以再1-10000之間隨即嘛,概率小的獎品設置為1-10,概率大的設置為11-1000,最後隨即出來的數判斷一下在那個區間就可以了.
實體類,就是寫一個JAVA BEAN嘛,裡面記載獎品名字和數量啊,不懂可以追問

E. 有哪些經典的抽獎演算法

常見的有兩種

第一類是常見的有等級的抽獎活動,如一等、二等、三等獎等等

//分別為一、二、三、四等將的獎品數量,最後一個為未中獎的數量。
privatestaticfinalInteger[]lotteryList={5,10,20,40,100};

privateintgetSum(){
intsum=0;
for(intv:lotteryList){
sum+=v;
}
returnsum;
}

privateintgetLotteryLevel(){
Randomrandom=newRandom(System.nanoTime());
intsum=getSum();
for(inti=0;i<lotteryList.length;++i){
intrandNum=Math.abs(random.nextInt())%sum;
if(randNum<=lotteryList[i]){
returni;
}else{
sum-=lotteryList[i];
}
}
return-1;
}

第二類是不分等級的抽獎活動,僅需要參與人數與獎品總數,各獎品中獎概率相等。

//另一種抽獎演算法,用於公司抽獎,即總參與人數與獎品數固定。
=75;
privatestaticfinalinttotal=175;
privatestaticSet<Integer>lotterySet=newHashSet<Integer>();
static{
for(inti=1;i<=lotteryNum;++i){
lotterySet.add(total*i/lotteryNum);
}
}
privateintgetLotteryNum2(){
Randomrand=newRandom(System.nanoTime());
intrandNum=Math.abs(rand.nextInt())%total;
if(lotterySet.contains(randNum)){
returnrandNum*lotteryNum/total;
}
return-1;
}

F. 如果從五個隊中抽取兩個有怎樣的簡便演算法有多少種抽法

6個數任選3個(有序列排),6*5*46個數任選3個(無序列),因為c、b、a有3個數中排列有6種,abc acb bac cab bca cba 所以6個數任選3個(無序列)有6*5*4/6=20種

G. 搜索演算法的應用案例

(1)題目:黑白棋游戲
黑白棋游戲的棋盤由4×4方格陣列構成。棋盤的每一方格中放有1枚棋子,共有8枚白棋子和8枚黑棋子。這16枚棋子的每一種放置方案都構成一個游戲狀態。在棋盤上擁有1條公共邊的2個方格稱為相鄰方格。一個方格最多可有4個相鄰方格。在玩黑白棋游戲時,每一步可將任何2個相鄰方格中棋子互換位置。對於給定的初始游戲狀態和目標游戲狀態,編程計算從初始游戲狀態變化到目標游戲狀態的最短著棋序列。
(2)分析
這題我們可以想到用深度優先搜索來做,但是如果下一步出現了以前的狀態怎麼辦?直接判斷時間復雜度的可能會有點大,這題的最優解法是用廣度優先搜索來做。我們就可以有初始狀態按照廣度優先搜索遍歷來擴展每一個點,這樣到達目標狀態的步數一定是最優的(步數的增加時單調的)。但問題是如果出現了重復的情況我們就必須要判重,但是樸素的判重是可以達到狀態數級別的,其實我們可以考慮用hash表來判重。
Hash表:思路是根據關鍵碼值進行直接訪問。也就是說把一個關鍵碼值映射到表中的一個位置來訪問記錄的過程。在Hash表中,一般插入,查找的時間復雜度可以在O(1)的時間復雜度內搞定。對於這一題我們可以用二進制值表示其hash值,最多2^16次方,所以我們開個2^16次方的表記錄這個狀態出現沒有,這樣可以在O(1)的時間復雜度內解決判重問題。
進一步考慮:從初始狀態到目標狀態,必定會產生很多無用的狀態,那還有什麼優化可以減少這時間復雜度?我們可以考慮把初始狀態和目標狀態一起擴展,這樣如果初始狀態的某個被擴展的點與目標狀態所擴展的點相同時,那這兩個點不用擴展下去,而兩個擴展的步數和也就是答案。
上面的想法是雙向廣度優先搜索:
就像圖二一樣,多擴展了很多不必要的狀態。
從上面一題可以看到我們用到了兩種優化方法,即Hash表優化和雙向廣搜優化。一般的廣度優先搜索用這兩個優化就足以解決。

熱點內容
電腦怎麼卸載伺服器管理 發布:2025-08-14 14:37:57 瀏覽:502
怎麼看低配電腦的配置 發布:2025-08-14 14:24:16 瀏覽:397
安卓系統程序怎麼調節成方塊 發布:2025-08-14 14:23:22 瀏覽:663
遺傳演算法軸承 發布:2025-08-14 14:08:42 瀏覽:978
python調用restfulapi 發布:2025-08-14 13:58:07 瀏覽:850
怎麼下載雲伺服器到電腦上 發布:2025-08-14 13:58:06 瀏覽:657
蘋果搭配什麼安卓手機 發布:2025-08-14 13:57:13 瀏覽:944
qq緩存的文件視頻 發布:2025-08-14 13:50:21 瀏覽:386
python字元串notin 發布:2025-08-14 13:46:58 瀏覽:847
java資料庫訪問 發布:2025-08-14 13:46:22 瀏覽:994